The sun is our nearest star. From Earth we can see its surface in great detail. The images below were taken with the 1-meter Swedish Vacuum Telescope on the island of La Palma, by astronomers at the Royal Swedish Academy of Sciences (http://www.astro.su.se/groups/solar/solar.html). The image to the right is a view of sunspots on July 15, 2002. The enlarged view to the left shows never-before seen details near the 'penumbral' edge of the largest spot. Use a millimeter ruler and the fact that the dimensions of the left image are $19,300 \mathrm{~km} \times 29,500 \mathrm{~km}$ to determine the scale of the photograph, and then answer the questions.

Question 1 - What is the scale of the image in $\mathrm{km} / \mathrm{mm}$?

Question 2 - What is the smallest feature you can see in the image?

Question 3 - What is the average size of a Solar Granulation region?

Question 4 - How long and wide are the Dark Filaments?

Question 5 - How large are the Bright Spots?

Question 6 - Draw a circle centered on this picture that is the size of Earth (radius = $6,378 \mathrm{~km}$). How big are the features you measured compared to familiar Earth features?

Question 1 - What is the scale of the image in $\mathrm{km} / \mathrm{mm}$? Answer: the image is about $108 \mathrm{~mm} \times 164 \mathrm{~mm}$ so the scale is $19300 / 108=179 \mathrm{~km} / \mathrm{mm}$.

Question 2 - What is the smallest feature you can see in the image? Answer: Students should be able to find features, such as the Granulation Boundaries, that are only 0.5 mm across, or $0.5 \times 179=90 \mathrm{~km}$ across.

Question 3 - What is the average size of a Solar Granulation region? Answer: Students should measure several of the granulation regions. They are easier to see if you hold the image at arms length. Typical sizes are about 5 mm so that 5×179 is about 900 km across.

Question 4 - How long and wide are the Dark Filaments? Answer: Students should average together several measurements. Typical dimensions will be about $20 \mathrm{~mm} \times 2 \mathrm{~mm}$ or $3,600 \mathrm{~km}$ long and about 360 km wide.

Question 5 - How large are the Bright Spots? Answer: Students should average several measurements and obtain values near 1 mm , for a size of about 180 km across.

Question 6 - Draw a circle centered on this picture that is the size of Earth (radius $=6,378 \mathrm{~km}$). How big are the features you measured compared to familiar Earth features? Answer: See below.

Granulation Region - Size of a large US state.

Bright Spot - Size of a small US state or Hawaii

Filament - As long as the USA, and as narrow as Baja California or Florida.

