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ABSTRACT

The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in
spatial frequency and orientation. It is widely used for image compression. Measures of the
visibility of DWT quantization errors are required to achieve optimal compression. Uniform
quantization of a single band of coefficients results in an artifact that is the sum of a lattice
of random amplitude basis functions of the corresponding DWT synthesis filter, which we
call D W T  uniform quantization noise. We measured visual detection thresholds for samples of
DWT uniform quantization noise in Y, Cb, and Cr color channels.

The spatial frequency of a wavelet is r 2-L  , where r  is display visual resolution in
pixels/degree, and L  is the wavelet level. Amplitude thresholds increase rapidly with spatial
frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to
horizontal/vertical to diagonal.

We propose a mathematical model for DWT noise detection thresholds that is a function of
level, orientation, and display visual resolution. This allows calculation of a "perceptually
lossless" quantization matrix for which all errors are in theory below the visual threshold.
The model may also be used as the basis for adaptive quantization schemes.
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 1 . INTRODUCTION

NASA’s extensive image compression requirements may be met in part by the use of
wavelet techniques.1  Wavelets form a large class of signal and image transforms, generally
characterized by decomposition into a set of self-similar signals that vary in scale and (in 2D)
orientation.2  The Discrete Wavelet Transform (DWT) is a particular member of this family
which operates on discrete sequences, and which has proven to be an effective tool in image
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compress ion .3, 4, 5, 6 In a typical compression application, an image is subjected to a two-
dimensional DWT whose coefficients are then quantized and entropy coded.

DWT compression is lossy, and depends for its success upon the invisibility of the artifacts.
The purpose of this paper is to provide information on the visibility of DWT artifacts, and to
show how it may be used in the design of wavelet compression systems. In this research we
have generally followed earlier work on the Discrete Cosine Transform7, 8, 9, with some
important differences that will be discussed below.

 2 . BACKGROUND

 2 .1 . Discrete Wavelet Transform

Figure 1 illustrates the elements of a one-dimensional, two-channel perfect-
reconstruction filter bank. The input discrete sequence x  is convolved with high-pass and
low-pass analysis filters aH  and aL , and each result is down-sampled by two, yielding the
transformed signals x H  and x L  . The signal is reconstructed through up-sampling and
convolution with high and low synthesis filters sH   and sL  . For properly designed filters, the
signal x  is reconstructed exactly (y= x ) .
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Figure 1. A two-channel perfect-reconstruction filter bank.

A DWT is obtained by further decomposing the low-pass signal xL  by means of a second
identical pair of analysis filters, and, upon reconstruction, synthesis filters, as shown in
Figure 2. This process may be repeated, and the number of such stages defines the level  of
the transform.
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Figure 2. Two-level 1D Discrete Wavelet Transform.
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With two-dimensional signals such as images, the DWT is typically applied in a separable
fashion to each dimension. Now each filter is two-dimensional, with the subscript indicating
the separable horizontal and vertical components, and the downsampling operation is
applied in both dimensions. As in the one-dimensional case, the process may be repeated a
number of times, in each case by applying the component x L L  as input to a second stage of
identical filters.

Here we adopt the term level  to describe the number of 2D filter stages a component has
passed through, and the term orientat ion  to identify the four possible combinations of low-
pass and high-pass filtering the signal has experienced. We index orientations as follows:
{1,2,3,4} = {LL,HL,HH,LH} where low and high are in the order horizontal-vertical. Each
combination of level and orientation {L ,O}  specifies a single band . For the purpose of this
research we selected the 9-7 tap Antonini biorthogonal filters.4

 2 .2 . DWT Quantization Matrix

Compression of the DWT is achieved by quantization and entropy coding of the DWT
coefficients. Typically a uniform quantizer is used, implemented by division by a factor Q  and
rounding to the nearest integer. The factor Q  may differ for different bands. It will be
convenient to speak of a quantization matrix to refer to a set of quantization factors
corresponding to a particular matrix of levels and orientations.

A particular quantization factor Q  in one band will result in coefficient errors in that
band that are approximately uniformly distributed over the interval [-Q/2 ,Q/2 ]. The error
image will be the sum of a lattice of basis functions with amplitudes proportional to the
corresponding coefficient errors. To predict the visibility of the error due to a particular Q ,
we must measure the visibility thresholds for individual basis functions and error
ensemble s .

 2 .3 . Display Visual Resolution

Visibility of DWT basis functions will depend upon display visual resolution in
pixels/degree. Given a viewing distance v  in cm and a display resolution d  in pixels/cm, the
effective display visual resolution (DVR) r  in pixels/degree of visual angle is

r d v d v= ( ) ≈tan π π180 180 (1)

 2 .4 . Wavelet Level and Spatial Frequency

A single basis function encompasses a band of spatial frequencies. We take the Nyquist
frequency of the display resolution as the nominal spatial frequency of the first DWT level,
and the frequency of each subsequent level will be reduced by a factor of two. Thus for a
display resolution of r  pixels/degree, the spatial frequency f of level L  will be

f r L= −2 cycles/degree (2)

 3 . METHODS

Stimuli were modulations of either Y, Cb, or Cr channels of a color image. These produce
images that are black/white, yellow/purple, and red/green respectively. All modulations
were added to an otherwise uniform (YCbCr = {128,0,0}) image of size 1024x1024 pixels.
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Modulations were either single DWT basis functions or samples of DWT uniform
quantization noise, as shown in Figure 3. We created images of basis functions by setting to
one a single coefficient in band {L,0} in an otherwise zero DWT (Figure 3a), and computing
the inverse DWT. Images of DWT noise were produced by filling one band of an otherwise
zero DWT with samples drawn uniformly from the interval [-1,1] (Figure 3c) and inverse
transforming the result.

a)  b) 

c)  d) 

Figure 3. Example stimuli: a) basis function DWT, b) basis function, image size
64x64, c) noise DWT, d) noise, image size 32x32.

Individual modulation images were scaled to produce amplitudes in the range of [0,126].
The amplitude of the modulated signal is our measure of stimulus intensity. The modulated
channel, plus the two remaining unmodulated channels, were then transformed to R'G'B'
using the rule
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To vary the display visual resolution we pixel-replicated the stimuli by factors of 1 (no
replication), 2, or 4 in both dimensions, yielding visual resolutions of 64, 32, and 16
pixels/degree. For all stimuli, the duration was 16 frames in duration at a frame rate of 60 Hz,
or 267 msec. The time course was a Gaussian e-π(f/8)2

 where f is in frames. To measure detection
thresholds for individual stimuli we used an adaptive two-alternative forced-choice (2AFC)
procedure .10  Three observers took part in the experiments. Observer gyy was a 23 year old
female corrected myope, sfl was a 21 year old male emmetrope, and observer abw was a 43
year old corrected myope.

 4 . RESULTS

 4 .1 . Effect of DWT Level

Thresholds for display resolutions of 16, 32, and 64 pixels/degree, all at orientation 4, are
shown in Figure 4. In general thresholds are largely unaffected by resolution, once they are
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expressed as a function of spatial frequency in cycles/degree. Additional data from observer
sfl confirm this observation.
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Figure 4. Thresholds at display resolutions of 16 (triangles) 32 (squares) and 64
pixels/degree (circles), for orientation 4.

 4 .2 . Single Basis Functions vs Noise Images

Figure 5 plots the difference between log thresholds for single basis functions and for
noise. As expected, basis function thresholds are uniformly higher than noise thresholds. We
considered a simple spatial probability summation model to account quantitatively for the
difference between basis function and noise thresholds.11, 12 In this context, this model
asserts that the Minkowski sum over individual basis functions amplitudes is equal for all
basis functions ensembles at threshold. This prediction is plotted as the horizontal line in
Figure 5. It is clear that probability summation provides an excellent account of the
difference between basis and noise thresholds.
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Figure 5. Difference between log thresholds for DWT noise and basis functions.
Open symbols show data for individual orientations, solid symbols are means.
Heavy line is the probability summation prediction.
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 4 .3 . Grayscale Model

One model that provides a reasonable fit to thresholds for grayscale DWT is

log log log log .Y a k f g fO= + −( )0
2

(4)

This is a parabola in log Y  vs log f coordinates, with a minimum at g O f0   and a width of k2 .
The term g O   shifts the minimum by an amount that is a function of orientation, and where
g2 = g4= 1. The term a  defines the minimum threshold. The optimized parameters and rms
error (of log Y ) are given in Table 3. The fit is shown in Figure 6.

Color Observer r m s a k f0 g1 g3

Y gyy & sfl 0 .134 0.495 0.466 0.401 1.501 0.534

Table 3. Parameters for DWT threshold model for the Y channel.
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Figure 6. Fit of the threshold model to grayscale data of observers gyy and sfl.

 4 .4 . Color Results and Model

Figure 7 shows results for observers sfl and abw at orientations 1, 3, and 4 for a DWT noise
pattern and display gamma of 2.3.

We have applied the same model used for grayscale thresholds to the color thresholds in
Figure 7. The solid curves therein show the various fits. The parameters are in Table 4, along
with the Y parameters from Table 3.
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Figure 7. Thresholds for DWT uniform noise in Cr and Cb channels..
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Table 4. Parameters for DWT YCbCr threshold model.

 5 . QUANTIZATION MATRICES

We now use the model developed above to compute a "perceptually lossless" quantization
matrix, by using a quantization factor for each level and orientation that will result in a
quantization error that is just at the threshold of visibility. For uniform quantization and a
given quantization factor Q , the largest possible coefficient error is Q / 2 . The amplitude of the
resulting noise is approximately A L,O Q/2. Thus we set

Q Y AL O L O L O, , ,= 2
 . (5)

The basis function amplitudes A L,O  are given for six levels in Table 5.

Leve l
Or ien ta t ion 1 2 3 4 5 6

1 0.62171 0.345374 0.18004 0.0914012 0.0459435 0.0230128
2 0.672341 0.413174 0.227267 0.117925 0.0597584 0.0300184
3 0.727095 0.494284 0.286881 0.152145 0.0777274 0.0391565
4 0.672341 0.413174 0.227267 0.117925 0.0597584 0.0300184

Table 5. Basis function amplitudes A L,O for a six-level Antonini DWT.

Combining (4), (5), and (2),
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Table 6 shows example matrices computed from this formula.

Color Observer r m s a k f0 g1 g3

Y gyy & sfl 0 .134 0.495 0.466 0.401 1.501 0.534
Cr sfl 0 .113 0.944 0.521 0.404 1.868 0.516

a b w 0.127 0.803 0.539 0.328 2.017 0.589
Cb sfl 0 .145 1.633 0.353 0.209 1.520 0.502

a b w 0.093 2.432 0.520 0.269 1.706 0.599
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Table 6. Quantization factors for four-level Antonini DWT for r=32 pixel/degree.

Figure 8 shows an example image compressed using the quantization matrix of Table 6,
and twice that matrix. Viewed from the appropriate distance (24 inches, approximately arm's
length) the quantization artifacts should be invisible for the left image, and visible for the
right. Using typical entropy coding techniques, the resulting bitrates for these two examples
are 1.05 and 0.67 bits/pixel.

Figure 8. Image compressed with perceptually lossless DWT quantization matrix
(left) and twice that matrix (right). Image dimensions are 256x256 pixels.
Quantization matrix is designed for a viewing distance of 24 inches.

The quantization matrix is inevitably a function of the display visual resolution, as is
evident from (6). Figure 9 shows Y quantization factors for display visual resolutions of 16,

Level
Color Or ien ta t ion 1 2 3 4

Y 1 14.049 11.106 11.363 14 .5
2 23.028 14.685 12.707 14.156
3 58.756 28.408 19.54 17.864
4 23.028 14.685 12.707 14.156

Cb 1 55.249 46.559 48.45 59.988
2 86.789 60.485 54.571 60.476
3 215.84 117.45 86.737 81.231
4 86.789 60.485 54.571 60.476

Cr 1 25.044 19.282 19.665 25.597
2 60.019 34.335 27.276 28.55
3 184.64 77.569 47.441 39.468
4 60.019 34.335 27.276 28.55
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32, and 64 pixels/degree. These figures show that for low visual resolution (16 pixels/degree),
the quantization factors are small and almost invariant with level and orientation. At the
middle resolution, typical of office viewing of desktop computer images, the function is still a
rather flat function of level for all orientations except 3, which shows a large elevation at
the lowest level. At the highest visual resolution, oblique horizontal, and vertical factors are
strong functions of level, while the reference signal is still nearly invariant with level.
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Figure 9. Quantization matrices for three display visual resolutions plotted as
functions of level and orientation.

 6 . CONCLUSIONS

We have measured visual thresholds for samples of uniform quantization noise of a DWT
based on the Antonini wavelet. Thresholds were collected for gamma-corrected signals in the
three channels of the YCbCr color space. We propose a mathematical model for the
thresholds, which may be used to design a simple "perceptually lossless" quantization matrix,
or which may be used to weight quantization errors or masking backgrounds in more
elaborate adaptive quantization schemes. These perceptual data, models, and methods may
enhance the performance of wavelet compression schemes.
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