Index: /cf-standard-names/trunk/src/cf-standard-name-table.xml =================================================================== --- /cf-standard-names/trunk/src/cf-standard-name-table.xml (revision 59) +++ /cf-standard-names/trunk/src/cf-standard-name-table.xml (revision 60) @@ -1216,131 +1216,131 @@ 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Mass_fraction_of_ammonium" means that the mass is expressed as mass of NH4. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_fraction_of_ammonium" means that the mass is expressed as mass of NH4. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. 1 - "condensed_water" means liquid and ice. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + "condensed_water" means liquid and ice. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 cli - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 clw - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). Convective cloud is that produced by the convection schemes in an atmosphere model. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). Convective cloud is that produced by the convection schemes in an atmosphere model. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). Convective cloud is that produced by the convection schemes in an atmosphere model. - - - 1 - "condensed_water" means liquid and ice. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). Convective cloud is that produced by the convection schemes in an atmosphere model. + + + 1 + "condensed_water" means liquid and ice. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 1 - "frozen_water" means ice. "moisture" means water in all phases contained in soil. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + "frozen_water" means ice. "moisture" means water in all phases contained in soil. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Mass_fraction_of_nitrate" means that the mass is expressed as mass of NO3. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_fraction_of_nitrate" means that the mass is expressed as mass of NO3. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "particulate_organic_matter_dry_aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_particulate_organic_matter_dry_aerosol and secondary_particulate_organic_matter_dry_aerosol. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "particulate_organic_matter_dry_aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_particulate_organic_matter_dry_aerosol and secondary_particulate_organic_matter_dry_aerosol. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_humidity" and "air_temperature". + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_humidity" and "air_temperature". 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm1 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 1 micrometer. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_humidity" and "air_temperature". + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm1 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 1 micrometer. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_humidity" and "air_temperature". 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_humidity" and "air_temperature". + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_humidity" and "air_temperature". 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_particulate_organic_matter_dry_aerosol and secondary_particulate_organic_matter_dry_aerosol is particulate_organic_matter_dry_aerosol. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_particulate_organic_matter_dry_aerosol and secondary_particulate_organic_matter_dry_aerosol is particulate_organic_matter_dry_aerosol. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_particulate_organic_matter_dry_aerosol and secondary_particulate_organic_matter_dry_aerosol is particulate_organic_matter_dry_aerosol. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_particulate_organic_matter_dry_aerosol and secondary_particulate_organic_matter_dry_aerosol is particulate_organic_matter_dry_aerosol. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Mass_fraction_of_sulfate" means that the mass is expressed as mass of SO4. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_fraction_of_sulfate" means that the mass is expressed as mass of SO4. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - "moisture" means water in all phases contained in soil. "unfrozen_water" means liquid and vapour. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + "moisture" means water in all phases contained in soil. "unfrozen_water" means liquid and vapour. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - "Water" means water in all phases. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + "Water" means water in all phases. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 1 - Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. + Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. @@ -2406,5 +2406,5 @@ Sea surface wave directional variance spectral density is the variance of the amplitude of the waves within given ranges of direction and wave frequency. - + s-1 Frequency is the number of oscillations of a wave per unit time. @@ -2939,11 +2939,11 @@ The surface called "surface" means the lower boundary of the atmosphere. - - m s-1 - The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. surface_eastward_sea_water_geostrophic_velocity is the sum of a variable part, surface_eastward_sea_water_geostrophic_velocity_assuming_sea_level_for_geoid, and a constant part due to the stationary component of ocean circulation. - - - m s-1 - The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. "sea_level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. surface_eastward_sea_water_geostrophic_velocity_assuming_sea_level_for_geoid is the variable part of surface_eastward_sea_water_geostrophic_velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. + + m s-1 + The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. surface_geostrophic_eastward_sea_water_velocity is the sum of a variable part, surface_geostrophic_eastward_sea_water_velocity_assuming_sea_level_for_geoid, and a constant part due to the stationary component of ocean circulation. + + + m s-1 + The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. "sea_level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. surface_geostrophic_eastward_sea_water_velocity_assuming_sea_level_for_geoid is the variable part of surface_geostrophic_eastward_sea_water_velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. @@ -3013,11 +3013,11 @@ The surface called "surface" means the lower boundary of the atmosphere. "shortwave" means shortwave radiation. "Upward" indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. - - m s-1 - The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. surface_northward_sea_water_geostrophic_velocity is the sum of a variable part, surface_northward_sea_water_geostrophic_velocity_assuming_sea_level_for_geoid, and a constant part due to the stationary component of ocean circulation. - - - m s-1 - The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. "sea_level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. surface_northward_sea_water_geostrophic_velocity_assuming_sea_level_for_geoid is the variable part of surface_northward_sea_water_geostrophic_velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. + + m s-1 + The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. surface_geostrophic_northward_sea_water_velocity is the sum of a variable part, surface_geostrophic_northward_sea_water_velocity_assuming_sea_level_for_geoid, and a constant part due to the stationary component of ocean circulation. + + + m s-1 + The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. "sea_level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. surface_geostrophic_northward_sea_water_velocity_assuming_sea_level_for_geoid is the variable part of surface_geostrophic_northward_sea_water_velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. @@ -3625,33 +3625,33 @@ s-1 - "Tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Condensed_water" means liquid and ice. + "Tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Condensed_water" means liquid and ice. s-1 - The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. "condensed_water" means liquid and ice. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. "condensed_water" means liquid and ice. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). s-1 - "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). s-1 - The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). s-1 - The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). s-1 - "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). s-1 - The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). s-1 - The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). + The specification of a physical process by the phrase due_to_process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_of_X" means derivative of X with respect to time. Mass fraction is used in the construction mass_fraction_of_X_in_Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). @@ -4557,3 +4557,21 @@ volume_fraction_of_condensed_water_in_soil_at_wilting_point + + mass_fraction_of_convective_cloud_condensed_water_in_air + + + surface_geostrophic_eastward_sea_water_velocity + + + surface_geostrophic_eastward_sea_water_velocity_assuming_sea_level_for_geoid + + + surface_geostrophic_northward_sea_water_velocity + + + surface_geostrophic_northward_sea_water_velocity_assuming_sea_level_for_geoid + + + wave_frequency +