Top Mass Measurement at CDF

Simon Sabik University of Toronto Toronto, Ontario, Canada

Frontiers in Contemporary Physics III Vanderbilt University Nashville, Tennessee May 23-28, 2005

Outline

- Motivation for measuring top mass
- Run I Measurements
- Event Topology
- Lepton + jet channel
 - Template method
 - Jet Energy Scale dependent template method (World's best result!)
 - Dynamical Likelihood Method
- Dilepton channel
 - Neutrino Weighing Algorithm
 - p_z of $t\bar{t}$ system
 - ϕ of ν
- Latest results

Motivation for measuring top mass

New Higgs mass prediction!

Previous measurements of the Top Quark Mass

- CDF and D0 run I combined uncertainty: $4.3 \, \text{GeV}/c^2$
- With more statistics and better detector acceptance, we can improve the result

$t\bar{t}$ events at the Tevatron

- Standard Model predicts $q\bar{q}$ annihilation is dominant production process
- SM predicts branching fraction of $t \rightarrow Wb$ close to 100%
- W can decay as $q\bar{q}$ or lv
- ⇒ Dilepton + ≥ 2 j + E_T : $\simeq 5\%$ no b tag: 8 kinematic solutions
- \Rightarrow Lepton + \geq 4j + E_T : \simeq 30%
 - b-tag: 12 kinematic solutions
 b-tag: 4 kinematic solutions
- $\Rightarrow \geq 6 j: \simeq 44\%$
 - Possible contribution from hard ISR or FSR

The CDF Detector

Simon Sabik (U. of Toronto), FCP 2005

The Lepton + jets channel

• Selections:

Select 4 jets ($E_t > 15GeV$) or 3.5 jets (4th jet $E_t > 8GeV$) 0, 1 or 2 b jets identified through secondary vertex measurement E_T and identified charged lepton

- Expected n_{events} (for b-tag \geq 1): n_{sig} = 79.5 and n_{back} = 18.5
- Template method: kinematic fit of the top mass
- Improvement to the template method:

Use additional information for b identification Jet energy scale dependent template method

Dynamical Likelihood Method

Lepton + jets: Template Method

- Select 1 lepton + 4 jets + E_T
- Select b-tag jet using secondary vertex
- Assume four highest E_T jets associated with 4 quarks
- v reconstructed with E_T and by constraining $M_{lv} = M_W$
- χ² function is minimized for each of the 24 solutions (0 b-tag) 12 solutions (1 b-tag) or 4 solutions (2 b-tag):

$$\chi^{2} = \sum_{l,jets} \frac{(\hat{P}_{T} - P_{T})^{2}}{\sigma_{P_{T}}^{2}} + \sum_{i=x,y} \frac{(\hat{U}_{i}' - U_{i}')^{2}}{\sigma_{U_{i}'}^{2}} + \frac{(M_{lv} - M_{W})^{2}}{\sigma_{M_{W}}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{lvj} - M_{t})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{jjj} - M_{t})^{2}}{\sigma_{M_{t}}^{2}}$$

• For each event, obtain top mass from solution with lowest χ^2

Lepton + jets Template Method: signal and background

- dependent signal Fit top mass template
- Background dominated by W + high E_t jets

Rec Mass 1-Tag(T): CDF Preliminary

• Likelihood function: perform shape analysis to extract best top mass

Lepton + jets Template Method: method check

Testing the procedure with pseudoexperiments

Fitted mass linear

• Pull center consistent with 0

Lepton + jets Template Method: data results

Data results by subsample:

Combined result for template method: $173.2^{+2.9}_{-2.8}(stat only)GeV/c^2$

Simon Sabik (U. of Toronto), FCP 2005

Lepton + jets Template: Jet Energy Scale systematic uncertainty

Jet Energy Scale systematic uncertainty on top mass: $3.1 GeV/c^2$

Lepton + jets Template: systematic uncertainties

$\Delta M_{\rm top} \; ({\rm GeV}/c^2)$
3.1
0.4
0.4
0.4
0.3
1.0
0.6
0.2
0.4
3.4

Final result for template method (with $318pb^{-1}$): $173.2^{+2.9}_{-2.8}(stat) \pm 3.4(syst)GeV/c^2$

Simon Sabik (U. of Toronto), FCP 2005

Lepton + jets Template Method with improved b identification

- Default b jet identification performed by reconstructing secondary vertex
- Use additional information:

Transverse displacement of track with respect to primary vertex Calculate probability that track is not from primary vertex Combine information from both b-tagging methods Lepton + jets with improved b identification: data results

Data results by subsample:

Final result with improved b identification: $173.0^{+2.9}_{-2.8}(stat) \pm 3.3(syst)GeV/c^2$

Lepton + jets Template Method fitting Jet Energy Scale

- W invariant mass dependent of JES, but not on top mass
- Use W mass to estimate JES
- \Rightarrow Sensitive to JES but insensitive to M_{top}

• We obtain: $JES = (-0.76 \pm 1.30)\sigma$

Lepton + jets Template Method fitting Jet Energy Scale

- Jet energy scale dominant systematic uncertainty
- Along with top mass, fit Jet Energy Scale
- 2D templates dependent on both top mass and Jet Energy scale

Simon Sabik (U. of Toronto), FCP 2005

Lepton + jets Template Method fitting Jet Energy Scale result

- Obtain JES = $(-0.10 \pm 0.90)\sigma$
- \Rightarrow Consistent with W invariant mass JES estimate

Result (with 318 pb^{-1}) $173.5^{+2.7}_{-2.6}(stat) \pm 2.5(JES) \pm 1.7(syst)GeV/c^2$ Best Top Mass measurement in the World!

Lepton + jets Dynamical Likelihood Method

- Integrate differential cross section
- Obtain likelihood of obtaining final state as a function of M_{top} for each event:

$$L^{i}(M_{top}) = \int \sum_{jet \ comb \ sol} \sum_{sol} \frac{2\pi^{4}}{Flux} |M|^{2} F(z1,z2) f(p_{t}) w(x,y_{t};\alpha) dx$$

- *M*: Matrix element of $t\bar{t}$ process
- F(z1,z2): parton distribution function
- $f(p_t)$: $t\bar{t}$ system transverse distribution function
- $w(x, y_t; \alpha)$: transfer function x (truth) \rightarrow y (observation)
- Combine likelihood for all events: $\prod_{events} L^i(M_{top})$

Lepton + jets Dynamical Likelihood Method background

- First, consider all events $t\bar{t}$ signal
- Use pseudoexperiments to simulate background effect
- Mapping function:

Lepton + jets Dynamical Likelihood Method result

• With only 168 $pb^{-1} M_{top} = 177.8^{+4.5}_{-5.0}(stat) \pm 6.2(syst)GeV/c^2$

• New result with $\sim 318 pb^{-1}$ soon!

The Dilepton channel

- Advantages:
 - Less combinatorics
- Disadvantages:

Smaller branching fraction ($\simeq 5\%$)

Two neutrinos

• Select events with 2 jets + E_T + 1 lepton + 1 track (or 2 leptons)

Expected n_{events} : $n_{sig} = 11.5$ and $n_{back} = 6.6$

• Underconstrained problem. 3 approaches:

Neutrino Weighing Algorithm p_z of $t\bar{t}$ system ϕ of v

The Neutrino Weighing Algorithm

- Keep E_T measurement aside
- Try all possible $\eta(\nu)$ and $\eta(\bar{\nu})$ possible pair

• η step = 0.1

- Solve E-P conservation: get 0 or 2 solution for each ν
- Assign weight to solution from consistency with measured E_T $w_i(m_{top}, \eta(v), \eta(\bar{v})) = e^{\left(-\frac{(E_T_x - P_x(v) - P_x(\bar{v}))^2}{2\sigma_{E_T}^2}\right)} e^{\left(-\frac{(E_T_y - P_y(v) - P_y(\bar{v}))^2}{2\sigma_{E_T}^2}\right)}$
- For given mass, add weights:

 $W(m_{top}) = \sum_{jetcomb} \sum_{\eta(\nu)\eta(\bar{\nu})} P(\eta(\nu), \eta(\bar{\nu})) \sum_{i}^{4} w_{i}(m_{top}, \eta(\nu), \eta(\bar{\nu}))$

We keep most probable mass for each event

Dilepton signal templates

Simon Sabik (U. of Toronto), FCP 2005

Dilepton background template

Testing the procedure with pseudo-experiments: linearity check

- Draw 5000 pseudo-experiments
- Keep mass that minimizes likelihood function
- Fitted mass linear

CDF II Preliminary

Testing the procedure with pseudo-experiments: pull distributions

Simon Sabik (U. of Toronto), FCP 2005

Dilepton data results (NWA)

Integrated luminosity: $197 \pm 12 pb^{-1}$

- \Rightarrow 19 data events
- $M_{top} = 168.1^{+11.0}_{-9.8}(stat) \pm 8.6(syst) \text{GeV}/\text{c}^2$
- New result with $\sim 360 pb^{-1}$ soon!

Dilepton p_z of $t\bar{t}$ system

- Introduce extra variable: p_z of $t\bar{t}$ system = 0 with σ = 180 GeV/c
- Smear measured quantities 10 000 times according to uncertainty

Jet energies Lepton momentum

 E_T

• Take solution that has highest probability (most entries in histogram bin)

Dilepton ϕ of v

- Try all possible $\phi(\nu)$ and $\phi(\bar{\nu})$ possible pair
 - 12×12 points
- With +1 constrain, we can use χ^2 fitter (similar to I+jet template method)

$$\chi^{2} = \sum_{l,jets} \frac{(\hat{P}_{T} - P_{T})^{2}}{\sigma_{P_{T}}^{2}} + \sum_{i=x,y} \frac{(\hat{U}_{i}' - U_{i}')^{2}}{\sigma_{U_{i}'}^{2}} + \frac{(M_{l1v1} - M_{W})^{2}}{\sigma_{M_{W}}^{2}} + \frac{(M_{l2v2} - M_{W})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{l1v1j1} - M_{t})^{2}}{\sigma_{M_{t}}^{2}} + \frac{(M_{l2v2j2} - M_{t})^{2}}{\sigma_{M_{t}}^{2}}$$

- 8 solutions per point: take one with lowest χ^2
- Weigh M_{ij}^{top} (for minimal χ_{ij}^2 solution) with: $exp(-\chi_{ij}^2/2)/\sum_i \sum_j exp(-\chi_{ij}^2/2)$

Summary

New CDF top mass better than world average!!!

 $M_{top} = 173.5^{+4.1}_{-4.0} GeV/c^2$

Most probable Higgs mass value from EW fit precision estimates:

 $M_{Higgs} = 94^{+54}_{-35} GeV/c^2$

Prospects for JES fit:

