APPENDIX F

Mass-Balance Calculations

Mass-Balance Calculations for Metals Contribution from Eroded Mine Waste

Statement of Problem

Mine-waste deposits are present within the Upper Arkansas River floodplain (500-year floodplain) and some lie along the banks of the river's main channel. The deposits located along the main-channel banks are potentially susceptible to erosion and transport by river flow, especially during bank-full flow conditions. Mine waste eroded from the banks then contributes to either the total metals load carried downstream as suspended and bed-load sediment or the dissolved metals load when metals are released from mine waste to solution. The purpose of the mass-loading calculations described below is to specifically evaluate the dissolved metals load that could be contributed to the Upper Arkansas River by erosion of mine waste from the channel banks during bank-full flow conditions.

Explanation of Approach and Assumptions

In order to evaluate the contribution of mine-waste erosion to the dissolved metals content of river water, river flow and mine-waste characteristics along the river reach between California Gulch and the bottom of Reach 3, approximately 9.5 miles downstream of California Gulch, (Site Characterization Report's Reaches 1, 2 and 3; InterFluve's [1999] subreaches 2 through 6) were described from existing sources of data. Some of the mine-waste deposits present along these river reaches are susceptible to erosion and entrainment due to channel migration (InterFluve 1999). These are also the river reaches where the locations and extent of mine-waste deposits have been delineated and mapped to date.

Mine-Waste Erosion from Channel Banks

Mine-waste deposits within the 500-year floodplain were originally mapped by USEPA (URS, 1997), and we used those maps to identify the mine-waste deposits that lie along the main-channel banks. Mine-waste deposits in contact with the main channel are on average less than 2-feet thick. We assume an average mine-waste thickness at the main-channel banks of 1 foot and also assume that the entire thickness at the banks has the potential for erosion by river flow during bank-full conditions. We also conservatively assume that mine-waste deposits from any location along the main-channel bank have equal potential to be eroded and entrained in river flow.

Metals Release from Mine Waste to Solution

The average metals content of each mine-waste deposit mapped along the Arkansas River, estimated from all available sample data including data for surficial samples, was used to describe the mass of metals associated with a unit mass of those mine wastes.

Metals are present in various forms within the mine-waste deposits. Previous studies of soil and mine waste in the river's floodplain have shown that cadmium, lead and zinc are primarily associated with iron and manganese oxide phases (Levy et al., 1992) and that metals are readily leached from mine waste (Smith et al., 1998). Given these observations, we assumed that the observed metals leaching from mine waste (by water) was controlled primarily by desorption from secondary mineral phases (e.g. hydrous oxides), and possibly organic matter, rather than by dissolution of the primary mineral phases (carbonates and sulfides). Secondary salts, such as soluble sulfate salts, commonly form on the upper surfaces of mine-waste deposits and have been observed on some mine wastes and other floodplain deposits along the upper Arkansas River (Levy et al., 1992; Smith et al., 1998). These salts are generally soluble in water and may also release metals when mine wastes are entrained by river water.

Work performed by Smith et al. (1998) demonstrates that lead is readily leached from the upper portions of the mine-waste deposits present along the Arkansas River. In a series of batch leaching experiments on depth-specific, mine-waste core samples, lead partitioning to water was greatest in samples from the surface layer and lowest in deeper layers. The resultant empirical partition coefficients (Kd = concentration in solid/concentration in solution) for lead, from all of the mine-waste samples evaluated including those from the surface layer, range from approximately 765 to 30,000 L/Kg. Because the mass of metals associated with the surface salts and their occurrence within the floodplain are not known, the release of metals from soluble surface salts was considered by adopting the conservative assumptions described below.

Once mine wastes are eroded and entrained by river water, we assume that distribution of metals to the dissolved phase is controlled by equilibrium partitioning rather than by precipitation and dissolution reactions. The presence of readily water-soluble forms of metals at the mine-waste surface was considered when partition coefficients were selected to describe metals release from mine waste; very conservative (low Kd values; i.e., relatively greater partitioning from solid to water) estimates of metals release were used in the mass-balance calculations. The Kd values selected are likely to be too low to accurately describe metals release from mine waste at depth within the deposits and result in over-estimation of dissolved concentrations. We also conservatively assume that once metals are released to solution they remain in solution without sorption or other removal processes retarding their transport.

Based on descriptions of bed sediments from the Arkansas River (Kimball et al., 1995) that contain metals transported downstream from the mine-waste deposits this is appears to be an overly conservative assumption as well.

Dissolved Metals Mass-Load Calculation

Calculation of the net metals mass load and resultant dissolved metals concentrations was performed for defined subreaches of the Arkansas River using a simple spreadsheet (table attached).

For the purposes of these calculations, we assumed that metals are distributed between solid mine waste and the dissolved phase in accordance with equilibrium partitioning behavior once those mine wastes are eroded and entrained by river water. Dissolved-phase metals are transported conservatively, and the dissolved-metals load increases downstream in proportion to the mass of mine waste eroded by the river. The result is an estimate of the net dissolved-metals load at a location downstream of mine-waste deposits that may be contributed from the eroded mine waste.

Mine-waste erosion to river water was estimated from the total length of tailing in contact with the main channel and an estimated bank erosion rate for mine waste in contact with the main channel. The weighted average metals concentration of mine waste eroded along a specified subreach of the river was estimated by summing the average metal concentration for each tailing deposit times the proportion of total mine waste length represented by each deposit along the subreach. The mass of metals released to the dissolved phase from the mass of mine waste eroded was computed using estimates of an equilibrium partition coefficient for each metal at chemical conditions representative of Upper Arkansas River water at bank-full flow conditions. The net mass of dissolved metals contributed to the river flow and resulting net change in dissolved concentrations along the defined subreach was then computed and summed to obtain an estimate of the dissolved metal concentration increase resulting from mine-waste erosion along Reaches 1, 2 and 3.

Sources of Information/Data

1. Linear feet of mine waste in contact with main channel for each mine-waste deposit:

Maps from URS (1997) were used to delineate areas of mine-waste deposits within the river floodplain. GIS methods were used to identify and define the length of each distinct mine-waste deposit in contact with the main channel. The channel-length estimates obtained using GIS mapping methods are included on the attached table and were used in computations.

2. Average metals concentrations for each mine-waste deposit:

The average metals concentrations for each mine-waste deposit are the same as those used in the mine waste ranking analysis. All metals concentration data, regardless of depth, for each deposit was used to calculate an average for that deposit. It is not known whether the data available are representative of the actual average conditions.

3. Mine-waste erosion rate:

The mine-waste erosion rate at bank-full conditions was estimated using a conservative approach. A moderately high bank-erosion rate of 5.0 ft/yr, for a small area of active channel migration, was reported by InterFluve (1999). This value of 5.0 feet per year was applied for the full length of the channel, creating a much exaggerated average erosion rate for the length of the 11-mile reach. This erosion rate was used along with an estimated average thickness for mine-waste deposits of 1 foot to compute the volume of mine wastes eroded per year per foot of channel length along Reaches 1, 2 and 3 (InterFluve's subreaches 2 through 6). This estimate was then used along with an estimated bulk density for mine wastes of 1.5 Kg/L to describe the mass of mine waste eroded per unit time per linear foot of mine-waste length along the main-channel bank (6.8×10^{-6} Kg/second). This value was used with the length-of-mine-waste estimates to compute the mass of mine waste eroded (per unit time) in each of the reaches evaluated on the attached table.

4. Discharge at various points along river at bank-full conditions:

Bank-full discharge was estimated by InterFluve (1999) at various points along the river. They report average bank-flow discharges for their subreaches 2, 3 and 4 of 300, 550 and 1057 cfs, respectively.

Subreach (InterFluve, 1999)	Bank Full Discharge (cfs)
2	330
3	550
4	1057
5	515
6	n/a (792*)

n/a = not available

*Bank-full discharge for subreach 7 substituted for subreach 6.

5. Solid/water distribution coefficients (K_d):

 K_d values for the metals of interest under chemical conditions similar to those expected for Upper Arkansas River (high-flow conditions) were compiled from the following sources:

- Davis, A., R.L. Olsen, D.R. Walker, 1991. Distribution of metals between water and entrained sediment in streams impacted by acid mine discharge, Clear Creek, Colorado, USA, Applied Geochemistry, v. 6, p. 333-348.
- Dempsey, B.A. and P.C. Singer, 1980. The effects of calcium on the adsorption of zinc by MnOx(s) and Fe(OH)3(am), In Contaminants and Sediments, Vol. 2, ed., R.A. Baker, Ann Arbor, MI: Ann Arbor Science, Ann Arbor, MI, p. 333-352.

- Duddridge, J.I. and M. Wainright, 1981. Heavy metals in river sediments Calculation of metal adsorption using Langmuir and Freundlich isotherms, Environmental Pollution, v.B2, p. 387-397.
- Gadde, R.R. and H.A. Laitinen, 1974. Studies of heavy metal adsorption by hydrous iron and manganese oxides, Analytical Chemistry, v. 46, p. 2022-2026.
- Gardiner, J., 1974. The chemistry of cadmium in natural waters II. The adsorption of cadmium on river muds and naturally occurring solids, Water Resources, v. 8, p. 157-164.
- Levy, D.B., K.A. Barbarick, E.G. Siemer and L.E. Sommers, 1992. Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado, J. Environ. Quality, v. 21, p. 185-195.
- Oakley, S.M., P.O. Nelson, and K.J. Williamson, 1981. Model of trace-metal partitioning in marine sediments, Environmental Science and Technology, v. 15, p. 474-480.
- O'Connor, J.T. and C.E. Renn, 1981. Soluble adsorbed zinc equilibrium in natural waters, J. American Water Works Association, v. 56, p. 1055-1061.
- Ramamoorthy, S. and B.R. Rust, 1978. Heavy metal exchange processes in sediment water systems, Environmental Geology, v. 2, p. 165-172.
- Smith, K.S., S.J. Sutley, P.H. Briggs, A.L., Meier, K.Walton-Day, 1998. Trends in water-leachable lead from a fluvial tailings deposit along the upper Arkansas River, Colorado. Proceedings Tailings and Mine Waste Conference '98, Ft. Collins, CO, Balkema Press. p. 763-768.
- U.S. EPA, 1999. Understanding Variation in Partition Coefficient, Kd, Values, Prepared by U.S. EPA Office of Radiation and Indoor Air and Office of Environmental Restoration, August 1999, EPA 402-R-99-004B.

The resultant compilation is presented on the attached table titled "K_d Calculations."

Two of these sources, Levy et al. (1992) and Smith et al. (1998), provide site-specific partitioning data for mine wastes from the Upper Arkansas River floodplain and one, Davis et al. (1991), provides empirical partitioning data for suspended stream sediment in Clear Creek, central Colorado. The remaining references describe metals partitioning to sediments and soils from a range of settings. The attached table presents the Kd values found. The Kd values used for the mass-balance calculations were selected to represent the conservative (low) end of the range determined from site-specific studies. These are generally more conservative than Kd values from other sources/settings.

Results and Discussion of Uncertainties

Results are shown on the attached tables as the increase in metals concentration (micrograms/L) resulting from metals partitioning to water from eroded mine wastes occurring along the reach from California Gulch downstream to the Highway 24 bridge. The estimated increase in concentrations, or the concentrations attributable to metals release from eroded mine wastes at bank-full conditions, are

extremely low (< 1 μ g/L for cadmium, copper, lead and zinc) in comparison to the high-flow dissolved metals concentrations observed in the river at the downstream end of Reach 2 (InterFluve's subreach 4) at the Highway 24 bridge, as shown below.

Location	Discharge (cfs) (Date)	Curre	nt Dissolv (µ	ved Conce ıg/l)	ntration	Estimated Increase in Concentration (µg/l) due to Mine- Waste Erosion from River Banks								
	(Date)	Cd	Cu	Pb	Zn	Cd	Cu	Pb	Zn					
AR-5*	200 (8/95)	1	5	1	240									
AR-5	500 (5/96)	6	11	114	1030									
AR-5	500 (7/96)	0.4	2	0.3	95	0.002	0.002	0.006	0.092					
AR-5	347 (5/98)	1	5	1	160									
AR-5	300 (7/98)	0.4	2	0.6	70									
AR-70**	na (7/96)	<5	<50	27	78									
AR-70	na (5/96)	<5	<50	<5	267	0.004	0.007	0.014	0.206					
AR-70	na (6/96)	<5	<50	<5	85	0.004	0.007	0.014	0.200					
AR-70	na (7/96)	<5	< 50	<5	69									

Estimated Mass Loading from Tailings

*AR-5 is a Resurrection sampling location at the top of Reach 3, approximately 0.25 miles downstream of Highway 24 Bridge above confluence with Empire Gulch. **AR-70 is a USGS sampling location within Reach 3.

Based on these comparisons, it appears that the dissolved metals contributed to river water as a result of mine-waste erosion from the channel banks is not a significant source of metals loading in comparison to other sources.

These results are consistent with those of Walton-Day et al. (1999) who found that the dissolved metals load was not significantly changed at Arkansas River stations upstream and downstream of mine-waste deposits in Reach 3. The most significant increases in metals loads were observed during local snowmelt conditions, rather than during later high-flow conditions, suggesting that surface runoff over mine waste is more significant contributor to metals concentrations in river water than mine-waste erosion. The Walton-Day et al. (1999) study concluded that mine-waste deposits do not contribute measurable trace-element loads to the river.

References cited

- InterFluve, Inc. and FLO Engineering, 1999. Fluvial Geomorphic Assessment of Upper Arkansas River, Final Report, prepared for URS Operating Services, Inc., Denver, Colorado, May 7, 1999.
- Kimball, B.A., E.Callender, E.V. Axtmann, 1995. Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, USA, Applied Geochemistry, v. 10, p. 285-306.

- Levy, D.B., K.A. Barbarick, E.G. Siemer and L.E. Sommers, 1992. Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado, J. Environ. Quality, v. 21, p. 185-195.
- Smith, K.S., S.J. Sutley, P.H. Briggs, A.L., Meier, K.Walton-Day, 1998. Trends in water-leachable lead from a fluvial tailings deposit along the upper Arkansas River, Colorado. Proceedings Tailings and Mine Waste Conference '98, Ft. Collins, CO, Balkema Press. p. 763-768.
- URS Operating Services, Inc., 1997. Sampling Activities Report, Upper Arkansas Fluvial Tailings, Leadville, Colorado: Report to U.S. Environmental Protection Agency, Contract No. 68-W5-0031.
- Walton-Day, K., F.J. Rossi, L.J. Gerner, J.B. Evans, T.J. Yager, J.F. Ranville, and K.S. Smith, 1999. Effects of fluvial tailings deposits on soils and surface- and ground-water quality, and implications for remediation – Upper Arkansas River, Colorado, 1992-1996, U.S.Geological Survey Water Resources Investigation Report 99-4273.

K_d Calculations

Metal	Reference	KL		Am	Diss. Me	tal Conc.	Mol. Wt.	Solid M	etal Conc.	Langmuir Kd	Kd	Comments
		log(L/mol)	L/umol	umol/g	umol/L	ug/L	g/mol	umol/g	mg/Kg	L/kg	L/Kg	
Cadmium							112					
	Gardiner, 1974	5.2	0.158489	2	0.09	10		0.03	3.17	317		pH = 7.3 to 8, river sediment
	Ramamoorthy and Rust, 1978	5.4	0.251189	31	0.09	10		0.70	77.87	7787		pH = 7.5, 36% organic matter
	Ramamoorthy and Rust, 1978	5.4	0.251189	17	0.09	10		0.38	42.70	4270		pH = 7.5, 1% organic matter
	Ramamoorthy and Rust, 1978	5.4	0.251189	10	0.09	10		0.22	25.12	2512		pH = 7.5, 2.5% organic matter.
	Duddridge and Wainright, 1981	4.4	0.025119	30	0.09	10		0.07	7.54	754		pH = 7.4, 3.7% organic matter
	Duddridge and Wainright, 1981	4	0.01	26	0.09	10		0.02	2.60	260		pH = 7.1, 1% organic matter
	USGS, 1999										50	pH = 8 to 10
	USGS, 1999										12600	pH = 8 to 10
	Levy et al., 1992										115 to1050	Arkansas River tailings study/water soluble
Copper							63.5					
	Ramamoorthy and Rust, 1978	5.2	0.158489	173	0.31	20		8.64	548.37	27419		36% organic matter
	Ramamoorthy and Rust, 1978	5.1	0.125893	34	0.31	20		1.35	85.61	4280		1% organic matter
	Oakley et al., 1981										205	Iron oxide only, seawater
	Oakley et al., 1981										7300	Manganese oxide only, seawater
	Davis et al., 1991										200	Empirical for Clear Creek
	McKenzie, 1980	3.1	0.001259	133	0.31	20		0.05	3.35	167		Goethite only, fresh water
	Levy et al., 1992										130 to 5400	Arkansas River tailings/water soluble
Lead							207.2					
	Ramamoorthy and Rust, 1978	5.4	0.251189	13.9	0.10	20		0.34	69.83	3492		36% organic matter
	Duddridge and Wainwright, 198	4.9	0.079433	20	0.10	20		0.15	31.77	1589		1% organic carbon
	USGS, 1999										1950	pH = 6.4 to 8.7, 1 to 10 ug/L Pb
	USGS, 1999										10760	pH = 6.4 to 8.7, 1 to 10 ug/L Pb
	McKenzie, 1980	2.9	0.000794	85	0.10	20		0.01	1.35	68		Goethite only, fresh water
	McKenzie, 1980	4	0.01	2600	0.10	20		2.51	520.00	26000		Manganese oxide only, fresh water
	Gadde and Laltinen, 1974	4.1	0.012589	2400	0.10	20		2.92	604.28	30214		amorphous iron oxide, pH = 6
	Smith et al., 1998										765 to 30,000	Arkansas River tailings/water leachable
Zinc							65.4					
	O'Connor and Wainwright, 1981	3.8	0.00631	180	30.58	2000		34.73	2271.45	1136		pH = 7.3, river sediment
	Duddridge and Wainwright, 198	4.2	0.015849	47	30.58	2000		22.78	1489.80	745		pH = 7.1 (river sediment), 1% organic carbon
	Duddridge and Wainwright, 198	4.7	0.050119	59	30.58	2000		90.43	5914.01	2957		pH = 7.3 (river sediment), 4% organic carbon
	Davis et al., 1991										26	Empirical for Clear Creek
	Dempsey and Singer, 1980	5.9	0.794328	170	30.58	2000		4129.54	270071.60	135036		amorphous iron oxide only, pH = 7
	Levy et al., 1992										75 to 1200	Arkansas River tailings/water soluble

Metals Loading Calculations Worksheet

									Mass Bank																			
		Total Length of	Fraction of								Eroded/Second/	/ Mass of Tailing	Average		Tailing													
	Total Distance	Tailing Exposed	Tailings Exposed	1 .				Weighted Average	Metals Cor	ncentration	Bank-Linear-	Eroded/Second	Bank-Full		Suspended in				N	lass of Metal	Released (m	g) to Water per K	g Dissolved	I Concentratio	ວກ (ug/L) Ir	ncrease		
Mapped Deposits	Along River Bank	to Bank	at Bank	Codmium	rage Metals C	Jontent (mo	g/Kg) Zipo	(mg/Kg) in Erodab	le l'ailing al	ong Reach	Foot Ka/Soc/Et	along Reach	Discharge	Discharge	River Water	Metals K	d Values (at a	ambient	pH)	odmium (of Lailing in F	iver and Zine	Codmium	Along Re	ach	Zino	Mass Load (mg/sec) In	crease Along Reach
7081200	reel	reel 0	0.00	0	Copper	Leau	ZINC	Caumum Copper	Leau	ZING	Ry/Sec/Fi	Ny/Sec	200	L/Sec	Ky/L	Caumum C	Jopper Le	au		aumum C	opper L	eau zinc	Caumum	Copper	Leau	ZINC	Caumum Copper	Leau Zinc
Cal. Gulch at Ark River	15218	0	0.000	0									200															
Cal. Gulch to AA	2733	0	0.000	0									200															
AA		36.39	0.050	0 115	5 160	3900	1700	6	8 19	6 86	6																	
AB		0	0.000	0 220	535	3900	1650	0 0	0 450	0 0	0																	
AC AD		235.52	0.320	0 250	453	4883	1000	0 82 14	0 159	2 5/80	5																	
AF		0	0.000	0 414	698	8402	26433	0	0		n																	
AG		153.01	0.212	2 105	5 857	5400	16600	22 18	2 114	4 351	7																	
AH		0	0.000	0 95	5 290	3400	2000	0 0	0	0 (D																	
Al		297.35	0.412	2 208	8 88	2095	3900	86 3	6 86	2 1606	6																	
AJ		0	0.000	0 95	5 1200	6500	2500	0	0	0 (0						100			1.00								
AA-AI	2394	/22.27	1.000	0	1 1		1	195 37	4 379	5 10996	6.80E-06	4.91E-03	330	9345.6	5.26E-07	115	130	765	75	1.68	2.85	4.95 144.0	0.001	0.001	0.003	0.076	8.26E-03 1.40E-02	2.43E-02 7.11E-01
BB	3330	286 34	1.000	0 85	228	5350	1135	85 22	8 535	0 1134	6 80E-06	1 05E-03	330	0345.6	2 08E-07	115	130	765	75	0.73	1 74	6.98 1/1	0.000	0.000	0.001	0.003	1 /3E-03 3 30E-03	1 36E-02 2 91E-02
DD	3330	200.34	1.000	0 00	, 220	5550	1150	0 00 22	.0 555	115	0.802-00	1.852-05	550	9343.0	2.002-07	115	150	705	15	0.75	1.74	0.90 14.3	0.000	0.000	0.001	0.003	1.452-05 5.582-05	1.302-02 2.912-02
CA		254.4	0.20	7 115	5 55	5800	3100	24 1	1 120	1 642	2																	
CC		0	0.000	0 85	5 1100	4800	4400	0 0	0	0 (D																	
CD		255.88	0.208	8 517	867	9080	41000	108 18	1 189	1 8538	8																	
CE		128.45	0.10	5 232	2 282	3251	2621	24 2	9 34	0 274	4																	
CF		0	0.000	0 120	300	8500	980	0	0	0 (0																	
CG		0	0.000	0 115	55	2700	440 6615		0																			
CK		85.87	0.000	0 330	60	1075	200		4 7	5 1/	1																	
CL 02		174.75	0.143	2 175	917	3108	16105	25 13	0 44	2 229	1														+			
CN		0	0.000	0 85	185	1776	1670	0	0	0 0	D										_							
CO		0	0.000	0 244	956	1936	6227	0	0	0 (D																	
CP		0	0.000	0 100	293	2533	1210	0 0	0	0 (0																	
CR		0	0.000	0 111	391	1622	4383	0	0	0 (D					├												
CS CA CS	0700	329.34	0.268	o 208	431	2926	9990	56 11	0 78 0 120	4 2678		0.005 00	220	0245.0	9 04E 07	115	120	765	75	0.76	1.01	1 70 65	6 0.001	0.002	0.000	0.050	6 31E 03 1 60E 03	
CA-US	3786	1228.09	1.000		1			00 25	0 130	4982	0.80E-06	8.30E-03	330	9345.0	0.94E-07	115	130	105	/5	0.70	1.91	1.70 05.	0.001	0.002	0.002	0.059	0.31E-03 1.00E-02	1.42E-02 0.48E-01
FA		0	0.00	0 133	676	3245	6413	0	0	0 0	0																	
FB		302.5	0.088	8 88	8 848	4062	6020	8 7	5 35	7 529	9																	
FC		351.9	0.102	2			6020	0 0	0	0 61	5																	
FD		49.77	0.014	4			460	0 0	0	0	7																	
FE		49.69	0.014	4 95	5 55	85	460	0 1	1	1	7																	
		114.32	0.03	3 305	5 165	2725	955	0 10	5 9	1 32	2																	
FH		280.62	0.000	2 05	55	2300	955		1 18	8 8'	2																	
FI		200.02	0.002	2 95	5 55	680	1100	6	3 4	2 6	8																	
FJ		469.58	0.130	6 230	220	9700	3200	31 3	0 132	3 43	7																	
FL		69.81	0.020	0 350	190	2700	1500) 7	4 5	5 30	D																	
FM		565.6	0.164	4 270	231	5640	9350) 44 3	8 92	7 1536	6																	
FN		164.43	0.048	8 95	5 140	1400	900	5	7 6	7 43	3																	
FO		0	0.000	0	005	0.100	900	0 0	0	0 (D																	
GA		0	0.000	0 95	285	3133	6767	0	0																			
GC		0	0.000	0	<u> </u>		6767	· 0	0		5 n																	
GE		51.11	0.01	5 95	5 210	2700	1000	1	3 4	0 1	5																	
GH		33.68	0.010	0 95	5 55	350	310) 1	1	3	3																	
GI		33.54	0.010	0 95	5 55	1600	840) 1	1 1	6 8	8																	
GJ		59.83	0.01	7			840	0 0	0	0 1	5																	
GK		121.97	0.03	5			840	0	0	0 30	0																	
GL		0	0.000	0 203	3 153	6300	9600		0 56	0 (5 60'	0																	
GN		211.40	0.00	1 200	5 370	9200	9800		0 50	0 00	2																	
HA		0	0.000	0 95	5 55	3400	2900	0	0	0 0	0																	
HB		0	0.000	0 78	3 120	1350	800	0	0	0 (D																	
HD		31.33	0.009	9 95	5 120	2500	1300) 1	1 2	3 12	2				-													
HE		37.67	0.01	1 95	130	1100	510	1	1 1:	2 (6																	
HI		125.46	0.036	b 240	130	7200	13000	9	5 26	2 474	4					┨───┤──												
	10091	106.35 3441.0F	0.03	95	300	1600	2200	3	3 4 1 400	9 68 1 464	6 905 00	2 24E 02	550	15576	1 505 06	115	130	765	75	1 32	1.61	5.25 60	5 0.002	0.002	0.009	0.001	3 09E-02 3 76E 03	1 23E-01 1 42E+00
	10001	5741.50	1.000	Ĩ	1			100 21	. 402	. 401	0.002-00	2.040-02	550	13310	1.002-00	115	100	, 05	75	1.52	1.01	0.20	0.002	0.002	0.000	0.091	0.002-02 0.702-02	1.202-01 1.422400
IA		105.32	0.34	5 210	55	3800	750	0 72 1	9 131	1 259	9																	
IC		0	0.000	0 95	130	1000	680	0 0	0	0 (D																	
KK		200	0.65	5 148	185	2350	1250	97 12	1 153	9 819	9																	
KL		0	0.000	228	218	4783	4360	0	0 00-	0 10-		0.005.00	4057	20024.04	0.045.00	445	100	705	75	4.40	1.07	2 70 11	0 0 000	0.000	0.000	0.004	2 025 02 0 005 02	7 725 02 0 0 15 22
IA-KW	9975	305.32	1.000	U	1			169 14	0 285	0 1078	b.80E-06	2.08E-03	1057	29934.24	0.94E-08	115	130	/65	/5	1.46	1.07	3.72 14.°	increase in los	0.000 ad for Reache	0.000 9 bac 1 se	0.001 combined	3.03E-03 2.22E-03	1.13E-03 2.94E-02
Cal Gulch to 07083710	3000	508/ 57					I			1												ing/sec	10100000 111 102		se at end c	of Reach 2	1 67E-03 2 45E 02	6 10F-03 0 15E-02
SUBREACH 4/PEACH 2	52299	0504.07																-				1	-	agre moredst		A REAGINZ	1.072-03 2.432-03	0.102-00 0.102-02
LA		0	0.00	0 260	260	5600	12000	0	0	0 0	0																	
LB		159.24	0.039	9 275	210	3300	10450	10.73006 8.19386	7 128,760	8 407.7424	4																	
LC		0	0.000	0 374	434	4680	48320	0 0	0	0 (D																	
LD		0	0.000	0 74	226	1856	2792	2 0	0	0 (0																	
LG		118.95	0.029	9 190	200	5300	7700	5.537777 5.82923	9 154.474	8 224.425	7																	
LH		507.92	0.124	4 48	3 480	3500	/800	0 462040 0 5025	6 435.592	9 970.749	9																	
		7.01	0.002	2 269	340	2000	11400	0.402049 0.5925	0 4.29413	0 19.5012	n												+ +					
		0	0.000	ŏ				0	0	0 0	0	1	<u>├</u>												+			
LM		290.18	0.07	1 152	425	7300	5273	10.80758 30.2185	519.048	3 374.923	5	1				1 1												
LN		0	0.000	0				0	0	0 (D																	
LO		0	0.000	0				0	0	0 0	0																	
LP		0	0.000	0				0	0	0 (0																	
LQ		0	0.000	0	+			0	0				├										+ +		+			
		0	0.000	0	+ +]		0	0	0 0	0												+ +					
L3 T		0	0.000	ŏ				0	0	0 0	0	1	<u>├</u>												+			
LU		0	0.000	0				0	0	0 0	D	1				1 1												
LV		0	0.000	0				0	0	0 (D																	
MA		45.19	0.01	1 85	5 140	1000	3000	0.941193 1.550	2 11.0728	6 33.2185	8																	
MB		493.15	0.12	1 123	3 242	2075	6518	14.86283 29.2423	2 250.734	8 787.609	3																	
ME	1	0	0.000	U	1	, i	1	0	U	υ <u>ι</u> (U	1	1			I		1			1		1	1	1			1 1

Metals Loading Calculations Worksheet

										Mass Bank			Erodeo										ſ	
	Total Length of	Fraction of								Eroded/Second/	Mass of Tailing	Average	Tailing											
Total Distance	Tailing Exposed	Tailings Exposed			Weighted Average Metals Concentration			Bank-Linear- Eroded/Second Ban		Bank-Full Suspended in		d in	n			tal Release	d (mg) to Wa	ater per Kg	Dissolved Concentr	ation (ug/L) Increase				
Mapped Deposits Along River Bank	to Bank	at Bank	Average Me	tals Content (n	ng/Kg)	(mg/Kg) i	n Erodable	Tailing ald	ong Reach	Foot	along Reach	Discharge	Discharge River Wa	er Metals Ko	l Values (at a	ambient pH)		of Tailing	in River		Along	Reach	Mass Load	(mg/sec) Increase Along Reach
Feet	Feet		Cadmium Copp	er Lead	Zinc	Cadmium	Copper	Lead	Zinc	Kg/Sec/Ft	Kg/Sec	cfs	L/sec Kg/L	Cadmium C	opper Le	ad Zinc	Cadmium	Copper	Lead	Zinc	Cadmium Copper	Lead Zinc	Cadmium	Copper Lead Zinc
MF	53.89	0.013	228	140 1203	3 11800	3.010651	1.848646	15.88515	5 155.8144															
MG	0	0.000				0	0	(0 0															
MH	0	0.000				0	0	(0 0															
MI	0	0.000				0	0	(0 0															
MJ	0	0.000				0	0	(0 0															
MK	0	0.000				0	0	(0 0															
ML	74.41	0.018			2350	0 0	0	(0 42.84662															
MM	61.45	0.015			2350	0 0	0	(0 35.38402															
MN	0	0.000				0	0	(0 0															
MP	104.21	0.026	89	170 1160	0 1677	2.272568	4.34086	29.61998	8 42.82131															
MQ	144.02	0.035	101	313 1458	8 5798	3.564196	11.04548	51.45147	7 204.606															
NA	95.34	0.023	169	225 950	0 3765	3.94802	5.256239	22.19301	1 87.9544															
NB	307.18	0.075	95	280 2500	0 1900	7.15046	21.07504	188.17	7 143.0092															
NC	0	0.000				0	0	(0 0															
ND	183.23	0.045	120	170 1270	0 640	5.387599	7.632432	57.01876	6 28.73386															
NG	0	0.000				0	0	(0 0															
NH	0	0.000				0	0	(0 0															
NH1	0	0.000				0	0	(0 0															
NI	0	0.000				0	0	(0 0															
NJ	75.08	0.018	115	55 760	0 410	2.115629	1.011823	13.98155	5 7.542678															
NL	0	0.000				0	0	(0 0															
NN	63.66	0.016	80	108 4300	0 2200	1.247884	1.684643	67.07374	4 34.3168	1 1		1					1 1							
NO	176.19	0.043	85	330 3000	0 1500	3.669591	14.24665	129.515	5 64.75748								1							
NP	89.86	0.022	128	180 1950	0 1250	2.818343	3.963295	42.93569	9 27.52288								1							
NR	0	0.000				0	0	(0 0			1		1			+ +							
NT1	74.27	0.018	94	235 1950	0 2900	1.71064	4.276601	35.48669	9 52.77508															
NT2	0	0.000				0	0	(0 0															
NT3	0	0.000				0	0	(0 0															
NU	0	0.000				0	0	(0 0															
OA	180.19	0.044	57	455 3150	0 2700	2.516651	20.08906	139.0781	1 119.2098															
OB	375.86	0.092	85	65 813	3 868	3 7.82821	5.986278	74.87453	3 79.93984															
OC	0	0.000				0	0	(0 0															
OD	0	0.000				0	0	(0 0															
OE	37.6	0.009	221	268 3513	3 6912	2 2.036093	2.469108	32.36558	8 63.68087															
OF	199.63	0.049	85	65 340	0 660	4.157786	3.179484	16.63115	5 32.28399															
OG	72.82	0.018	97	70 100	0 970	1.730772	1.249011	1.784301	1 17.30772															
OH	90.62	0.022	48	160 2150	0 1675	5 1.065817	3.552724	47.73973	3 37.19258															
OI	0	0.000				0	0	(0 0															
LA-OH 12507.5	4081.15	1.000	·	·		105.55	248.27	2469.78	8 4095.95	6.80E-06	2.78E-02	2 515	14584.8 1.90E	-06 115	130	765 7	5 0.91	1.90	3.22	53.89	0.002 0.004	0.006 0.103	2.53E-02	5.26E-02 8.95E-02 1.50E+00
END OF SUBREACH 5																								
OJ	0	0.000				0	0	(0 0															
OJ3	0	0.000				0	0	(0 0															
OK	0	0.000				0	0	(0 0															
PA	79.89	0.044	95	330 4050	0 1900	4.133472	14.35838	176.2164	4 82.66943															
PC	0	0.000				0	0	(0 0															
PD	69.42	0.038	85	103 5500	0 455	5 3.213679	3.894223	207.9439	9 17.20263															
PE	0	0.000				0	0	(0 0															
PF	0	0.000				0	0	(0 0															
PG	50.93	0.028	94	170 2395	5 4800	2.607357	4.715433	66.43212	2 133.1416															
PJ	0	0.000				0	0	(0 0															
PM	0	0.000				0	0	(0 0															
PN	0	0.000				0	0	(0 0															
PP	0	0.000			+	0	0	(0 0														l	
PX	0	0.000				0	0	(0 0															
QA	0	0.000				0	0	(u 0			1					+ +					<u>↓ </u>		
QD	0	0.000	100	111 010	4 000		0	(1					+ +					<u>↓ </u>		
QF	335.56	0.183	160	114 243	1 698	29.24079	20.83406	444.2773	3 127.5629			1					+ +					<u>↓ </u>		
QG	0	0.000				0	0		0 0					_										
QH	0	0.000	145	270 2404	0 0400	0	0	E26 040				l					+					<u> </u>	l	
	317.97	0.173	115	370 3100	0 2400	19.91512	64.07473	20.0474	4 415.6199								_							
QJ	87.58	0.048	115	190 1600	0 2700	0 5.485317	9.062697	/0.31/43	5 128.7857															
	0	0.000				0	0	(
	0	0.000				0	0					-												
	0	0.000				0	0	(
	91.61	0.000	80	535 1000	0 3450	2 555750	22 77014	94 4402	7 153 3421															
QF QQ	01.01	0.044	00	555 1900	0 3450	3.555759	23.77914	04.44921	7 155.5421															
	0	0.000				0	0	(
	100 50	0.000	75	300 1300	1000	5 202055	21 17100	01 74457	U U			1	<u>├</u> ───				+					+		
	129.38	0.071	10	1300	0 1200	0.292900	∠۱.۱/ IOZ ∩	01.74400 /	0 04.00728			1					+ +					+ +	1	
0	0	0.000	<u> </u>		+	0	0	((1					+ +					+ +	1	
	122.60	0.000	65	670 6400	0 2200	4 731660	48 77252	465 2969	8 167 4204			1					+ +					+ +	1	
	133.00	0.073	00	010 0400	2300	, 4./3100Z	+0.11232	100.000	0 107.4281			1	<u>├</u> ──				+ +						l	
07	0	0.000			+	0	0					1	<u>├</u>				+ +					<u> </u>	l	
	0	0.000	<u> </u>		+	0	0	((1					+ +					+ +	1	
	262.04	0.000	65	240 3000	1000	0 30827	34 360	429 612	4 143 2041			1					+ +					+ +	1	
RC	171 61	0.143	65	300 1700	0 1100	6 07512	28 03002	158 8879	8 102 2007			1					+ +							
RF	115.37	0.093	320	520 3100	0 12000	20.10675	32.67346	194 784	1 754 0037			1					+ +							
0.J-RF 6813.75	1836 12	1 000	0_0		- 12000	113 67	305 74	2933.30	9 2310 46	6 80E-06	1 25E-02	792	22429.44 5.57F	-07 115	130	765 7	5 0.98	2 33	3.83	30.40	0.001 0.001	0.002 0.017	1.22E-02	2.91E-02 4.78E-02 3.80E-01
SUBREACH 6/REACH 3	.300.12	1.000					500.14		2010.40	0.002 00		132	0.071				0.00	2.00	5.00	ma/sec incre	ase in load for Reach	es 1. 2 and 3 combined	8 74F-02	1.55E-01 3.20E-01 4.61E+00
GRAND TOTAL 81186.25	11901.84				-				-											3.220		ease at end of Reach 3	3 90E-03	6.91E-03 1.43E-02 2.06E-01
01180.20	11301.04			-	1	-			1			-					-	1			ug/L IIICI	sass at one of reading	0.002-03	0.072 00 1.402-02 2.00E-01