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Abstract Although real-coded evolutionary algorithms
(EAs) have been applied to optimization problems for
over thirty years, the convergence properties of these
methods remain poorly understood. We discuss the use
of discrete random variables to perform search in real-
valued EAs. Although most real-valued EAs perform
mutation with continuous random variables, we argue
that EAs using discrete random variables for mutation
can be much easier to analyze. In particular, we present
and analyze two simple EAs that make discrete choices
of mutation steps.

Keywords Convergence � Evolutionary algorithms �
Self-adaptation � Real-coded � Evolution Strategies

1 Introduction

Real-coded evolutionary algorithms (EAs) optimize a
function defined on Rn using vectors of floating point
numbers [20]. Real-coded representations have been
used by Evolutionary Programming (EP) and Evolution
Strategies (ES) since the 1960s, and they have been
widely applied with Genetic Algorithms since the early
1990’s. Despite their popularity, the convergence prop-
erties of real-coded EAs are essentially unknown. Al-
though a wide range of mutation and recombination
operators have been developed for these EAs (e.g., see
[20]), the impact of these operators on the convergence
properties of real-coded EAs has been largely unex-
plored [25].

One of the particular challenges for real-coded EAs is
the need to perform both global and local search at
different scales of resolution. The design and application

of EAs is motivated by their ability to effectively search
broadly to find near-optimal points. However on con-
tinuous domains, local refinement of solutions is also
needed to help ensure that the final population contains
locally-optimal points. Most real-coded EAs perform
local refinement with a mutation operator. In particular,
adaptive methods that dynamically rescale step length
parameters used for mutation have proven particularly
effective [8].

Unfortunately, the analysis of adaptive real-coded
EAs has proven quite challenging. We argue that one of
the reasons is that the formulation of common real-co-
ded EAs makes them difficult to analyze. In particular,
commonly used mutation operators generate new points
from a continuous distribution. Consequently, it is quite
difficult to characterize how the EAs search progresses,
even from one iteration to the next! For example, Qi and
Palmieri [21] use a discrete time stochastic process to
model the time-evolution of the probability density
functions that characterize the distribution of the entire
population in a real-coded EA. However, this analysis
only provides broad insight into how mutation and
selection interact in their model.

In this paper, we consider real-coded EAs that
perform mutation using steps generated by a discrete
random variable. These EAs have a finite number of
mutation steps to choose from, so we call them dis-
crete-choice real-coded EAs (DCRC-EAs). For exam-
ple, if the current point is x, then a new point x0 is
generated by adding s 2 Qn, where s is selected from a
finite set of possible mutation steps. The use of discrete
choices in a mutation operator significantly simplifies
the search dynamics of real-coded EAs. Additionally, it
also provides mathematical structure that can be lev-
eraged to more effectively characterize their conver-
gence properties. For example, the probability density
function that characterizes the distribution of the entire
population has a finite number of possible states in any
iteration.

We argue that discrete-choice mutation is a design
principle that can be employed to ensure robust
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convergence for real-coded EAs. To illustrate this, we
describe convergence theories for two DCRC-EAs.
First, we consider a self-adaptive ð1; kÞ-ES. If we dis-
cretize the step length update and the mutation steps,
then we can show that this ES converges on symmetric,
unimodal one-dimensional problems. Second, we con-
sider an explicitly adaptive ð1þ kÞ-EPSA. Evolutionary
pattern search algorithms (EPSAs) ensure that all
mutation steps about a point are sampled before the step
length is reduced. EPSAs use a finite, ‘‘well-distributed’’
set of mutation steps to ensure that they weakly con-
verge to stationary points of continuously differentiable
functions. These two analyses are simplifications of
more general convergence theories [14, 15, 16, 18].
However, our focus is on illustrating how the use of
discrete-choice mutation in these EAs provides mathe-
matical structure that can be leveraged to demonstrate
robust convergence properties.

The next two sections describe convergence theories
for the ð1; kÞ-ES and ð1þ kÞ-EPSA. We have made
an effort to keep the notation in these analyses similar
to our previous work [14, 15, 16, 18]. Consequently,
some of the notation used in these analyses is
inconsistent. However, each of these analyses is
self-contained.

2 Self-adaptive (1, k)-ES

The distinguishing feature of self-adaptive EAs is that
the control parameters are evolved by the EA (e.g., see
[3, 4, 26]). The idea behind this approach is that indi-
viduals with well-scaled step lengths will evolve more
rapidly and thus there is evolutionary pressure to both
optimize an individual’s real parameters as well as its
step length (in general, the step length may be repre-
sented by one or more parameters). Self-adaptation is a
central feature of EAs like evolution stategies (ES) and
evolutionary programming (EP), which are applied to
continuous design spaces. Although several authors
have developed convergence theories for explicitly
adaptive EAs, Auger [2], Beyer [5, 6] and Hart et al. [19]
appear to have developed the only theoretical investi-
gations of self-adaptive EAs.

We consider the convergence properties of the self-
adaptive ð1; kÞ-ES, described in Fig. 1. This ES gen-
erates k new points in each iteration and selects the
best point generated for the next iteration. This ES
typically updates the mutation scale ri

t with a
log-normal random variable, Di

t, and the new points xi
t

with a normal random variable, Bi
t. However, the use

of these continuous random variables significantly
complicates the analysis of this ES. Beyer [4, 5] notes
that these EAs can be described by an inhomogeneous
Markovian process, and that the stochastic
evolution of the system can be expressed by Chapman-
Kolmogorov equations. However, he further notes
that a direct treatment of these equations is generally
quite difficult when using log-normal and normal

random variables. Thus Beyer treats the ðl; kÞ-ES as a
dynamical system from which simpler dynamical sys-
tems are derived and validated.

The dynamics of the ð1; kÞ-ES can be significantly
simplified by considering discrete random variables Dk

t
and Bk

t . If both of these random variables are discrete,
then there are a finite number of possible individuals
that can be generated in each iteration. Consequently,
the expected behavior of the EA can be well-character-
ized from one iteration to the next without resorting to
approximations of the underlying stochastic process.

The remainder of this section describes the conver-
gence properties of the ð1; kÞ-ES with discrete random
variables. We demonstrate that this ES converges almost
surely to the global optimum of a symmetric, unimodal
objective function. If Y and Yt are random variables,
then we say that the sequence fYtgt�0 converges almost
surely to Y if Pflimt!1Yt ¼ Y g ¼ 1. We write this as
Yt!

a:s
Y . See Grimmett and Stirzaker [12] for a thorough

discussion of stochastic convergence.

2.1 A discrete ES

At any iteration, we consider a ð1; kÞ-ES that updates the
step length rk

t by (1) contracting rt by c < 1, (2) simply
setting it equal to rt or (3) expanding rt by g > 1. These
updates are generated by a discrete random variable Dk

t ,
which generates the values c, 1, and g with fixed prob-
abilities m1, m2, and m3 respectively. The step length rk

t is
used to generate the point xk

t by simply adding or sub-
tracting this value: xk

t ¼ xt � rk
t . Thus the random vari-

able Bk
t generates �1 and þ1 with equal probability.

Let Algorithm A denote the self-adaptive ð1; kÞ-ES
that employs these discrete random variables. In each
iteration, Algorithm A can generate at most six possible
new individuals ðxtþ1; rtþ1Þ:
xtþ1 ¼ xt � crt rtþ1 ¼ crt

xtþ1 ¼ xt � rt rtþ1 ¼ rt

xtþ1 ¼ xt � grt rtþ1 ¼ grt

Fig. 1 The self-adaptive ð1; kÞ-ES for one-dimensional problems. Dk
t

and Bk
t are random variables described in the text
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Let r̂i and x̂i refer to the i-th possibility, which are
illustrated in Fig. 2. Generically, each of these has some
probability of being generated, qi > 0, which is a prod-
uct of the probabilities of Dk

t and Bk
t (e.g., q3 ¼ m1=2).

We model the way that the new points are generated
in Algorithm A by ranking them in decreasing order
according to their proximity to the optimum, deter-
mined by their f ðxÞ values. The values of qi are used to
calculate the ranked probability for each point. The
ranked probablity pi represents the probability that
the point xtþ1, generated from xt, is at the position x̂i.
The population size k that is used in this calculation
represents the number of samples taken at a particular
iteration of Algorithm A. For example, suppose we
have a ranking where the order fx̂1; x̂6; x̂2; x̂5; x̂3; x̂4g
reflects the distance from the optimum from farthest to
nearest. Then the ranked probabilities are calculated as
follows:

p1 ¼ðq1Þk

p6 ¼ðq6 þ q1Þk � ðq1Þk

p2 ¼ðq2 þ q6 þ q1Þk � ðq6 þ q1Þk

p5 ¼ðq5 þ q2 þ q6 þ q1Þk � ðq2 þ q6 þ q1Þk

p3 ¼ðq3 þ q5 þ q2 þ q6 þ q1Þk � ðq5 þ q2 þ q6 þ q1Þk

p4 ¼1� ðq3 þ q5 þ q2 þ q6 þ q1Þk

2.2 Search dynamics

We consider the search dynamics of Algorithm A when
applied to a one-dimensional, symmetric, unimodal
objective function. Formally, we consider functions that
satisfy the following assumption:

Assumption 1. The function f : R! R has the property
that

1. There exists a unique global minimum x� ¼ 0,
2. f is strictly monotonically increasing for x 2 ðx�;1Þ.
3: f ðxÞ ¼ f ð�xÞ; 8x.
Figure 3 illustrates some functions that are consistent
with Assumption 1. Assumption 1 requires that f be
unimodal, but it is quite weak otherwise. In particular,
Assumption 2 does not require that f be continuous,
and the global optimum can be at an isolated point.
Note that we assume that x� ¼ 0 only for convenience,
since if an EA converges on a function that satisfies this
condition, then we can show convergence for any other
function h with nonzero global minimizer by considering
the convergence of the function f ðxÞ ¼ hðxþ x�Þ.

Let X k
t and Rk

t be random variables that describe the
distribution of the values of xt and rt respectively when a
population of size k is used by Algorithm A on a func-
tion that satisfies Assumption 1. There are various
metrics for demonstrating that Algorithm A converges
to x�. In the next section we will demonstrate that Rk

t !
a:s:

0
and X k

t !
a:s:

0. For now, though, we consider the expected
behavior of X k

t and Rk
t from one iteration to the next. In

particular, we wish to show that the expected value of
X k

tþ1 is closer to x� than xt is to xk. Formally, this is
equivalent to

EðjX k
tþ1j : X k

t ¼ xt;R
k
t ¼ rtÞ � jX k

t j : ð1Þ
Similarly, we wish to show that the expected value of Rk

t
is less than rt. Unfortunately, the following two exam-
ples illustrate that we cannot guarantee that the expected
behavior of X k

t and Rk
t is improving from any particular

point in the search.

Example 1 Let f ðxÞ ¼ jxj, c ¼ 0:75, g ¼ 1:25, and let
m1 ¼ m2 ¼ m3 ¼ 1=3. Now suppose that xt ¼ 100 and
rt ¼ 10. Figure 4a illustrates the search dynamics in this
case. It is clear that the probability that xtþ1 ¼ x̂i is
greater than the probability that xtþ1 ¼ x̂iþ1 in all cases.
Thus, it is easy to show that EðjX k

tþ1j : X k
t ¼ xt;

Rk
t ¼ rtÞ � jX k

t j. Now as k!1 the probability that
xtþ1 ¼ x̂1 goes to one. But this step is generated after
expanding the step length. Consequently, the expected
value of Rk

tþ1 > rt for sufficiently large values of k.

Fig. 2 Illustration of the six possible points that can be generate from
a point xt by Algorithm A. Note that the step length is expanded by g
for points x̂1 and x̂6, and it is contracted by c for points x̂3 and x̂4

Fig. 3 Examples of functions
that satisfy Assumption 1
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Example 2 Now consider the same algorithmic param-
eters as in Example 1, but let xt ¼ 100 and rt ¼ 1000.
Figure 4b illustrates the search dynamics in this case.
Note that every possible value for X k

tþ1 is farther from x�

than xt. Thus the expected value of X k
tþ1 is greater than

xt. However, it is clear that the event that xtþ1 ¼ x̂3 has
the greatest probability. Since the step length is con-
tracted in this case, it follows that the expected value of
Rk

tþ1 < rt for sufficiently large values of k.
These two examples clearly illustrate that we cannot

expect the values of X k
t and Rk

t to decrease indepen-
dently. However, it does appear that these variables
converge in a complementary fashion: when X k

t is ex-
pected to increase, Rk

t is expected to decrease and visa
versa. These observations led us to consider the con-
vergence of the random variable Zk

t ¼ X k
t

�
�
�
�þ Wc;gR

k
t , for

a constant Wc;g described below. In particular, we can
show that EðZk

tþ1 : X k
t ¼ xt;R

k
t ¼ rtÞ � Zk

t , which implies
that Algorithm A decreases Zk

t on average. This confirms
our intuition that either X k

t or Rk
t are expected to de-

crease in any given iteration.

2.3 Analysis of Zk
t

In this section we describe a general convergence theory
for Algorithm A when applied to functions that satisfy
Assumption 2. We make the following additional
assumption concerning the parameterization of Algo-
rithm A

Assumption 2. Algorithm A has the property that

1. 1=2 < c < 1 < g < 1=c.
2. x0 2 R \ Q and r0; c; g 2 Q:

The first part of this assumption specifies that the step
lengths do not contract too quickly and that the step

lengths do not expand too much relative to the rate of
contraction. The second part of this assumption is used to
simplify our analysis by eliminating the possibility of ties.

Lemma 1. Suppose that Algorithm A satisfies Assump-
tion 2 and f satisfies Assumption 1. Then from any itera-
tion ðxt; rtÞ, the points x̂1; . . . ; x̂6 that can be generated all
have distinct function values.

Proof. Given xt and rt, suppose towards a contradiction
that there exist x̂i and x̂j such that f ðx̂iÞ ¼ f ðx̂jÞ. Because
f is symmetric and strictly monotonically increasing for
x > 0, it follows that x̂i ¼ �x̂j.

Note that rt 2 Q for all t, since r0 2 Q and the step
lengths are only contracted and expanded by rational
factors. For some bi; bt 2 f�1; 1g and di 2 fc; 1; gg, we
can rewrite x̂i as follows:

x̂i ¼ xt þ rtbidi ¼ x0 þ
Xt

k¼1
rkbk þ rtbidi ¼ x0 þ �ri;

where �ri is a rational value that reflects the offset of x̂i
from x0. We can rewrite x̂j in a similar manner, so we can
rewrite the expression x̂i ¼ �x̂j as follows:

x0 þ �ri ¼ �x0 � �rj:

This implies that x0 ¼ �ð�ri þ �rjÞ=2, which is a rational
value. But this contradicts Assumption 2, which speci-
fies that x0 is irrational. Thus we cannot have two points
x̂i and x̂j with equal values. (

The crux of the convergence analysis in this section
is that the value of Zk

t decreases in expectation from
any given iteration ðxt; rtÞ. This is stated formally in
the following theorem, though we defer the proof of
this theorem until the end of this section. We use the
value

Wc;g ¼ n
c

1� c
þ ð1� nÞ 1

g� 1
;

for any n 2 ð0; 1Þ, to define Zk
t for the remainder of our

analysis.

Theorem 1. Suppose that Algorithm A satisfies Assump-
tion 2, and suppose that f satisfies Assumption 1.
Then there exists k0 > 0 such that for all k � k0;
EðZk

tþ1 : X k
t ¼ xt;

Pk
t ¼ rtÞ < Zk

t :

The following two lemmas will be used throughout
our analysis.

Lemma 2. If Algorithm A satisfies Assumption 2, then

c
1� c

< Wc;g <
1

g� 1
:

Proof. It is clear that Wc;g is between these two extremes,
so it suffices to show that

c
1� c

<
1

g� 1
:

x3x2 x4 x5 x6x1 xt

(a)

x3x2 x4 x5 x6x1 xt

(b)

Fig. 4 Examples of the search dynamics of Algorithm A: (a) xt � rt,
and (b) xt � rt
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We can rewrite this to get

0 <
1� cg

ð1� cÞðg� 1Þ :

Both terms in the denominator are positive, and the
numerator is positive since g < 1=c. (

Lemma 3. Let A > 0. Then we can rewrite the function
hðd;AÞ ¼ jd � Aj � jdj as follows:

hðd;AÞ ¼
A; d � 0
A� 2d; 0 � d � A
�A; d � A

8

<

:
:

Proof. The three cases in the definition of hðd;AÞ follow
by considering when d � A and d are positive and
negative. (

We now consider how EðZk
tþ1 : X k

t ¼ xt;R
k
t ¼ rtÞ

compares with Zk
t . Given xt and rt, we know that

r̂i ¼ dirt and x̂i ¼ xt þ bidirt, where di 2 fc; 1; gg and
bi 2 f�1; 1g. Thus we have

EðZk
tþ1 : X k

t ¼ xt;R
k
t ¼ rtÞ

¼ Eð X k
tþ1

�
�

�
�þ Wc;gR

k
tþ1 : X k

t ¼ xt;R
k
t ¼ rtÞ

¼
X6

i¼1
pi x̂ij j þ Wc;gr̂i
� �

¼
X6

i¼1
pið xt þ dibirtj j þ Wc;gdirtÞ;

where the probabilities pi reflect the probability of gen-
erating x̂i from xt with population size k. Now consider
the inequality

X6

i¼1
pið xt þ dibirtj j þ Wc;gdirtÞ � xtj j þ Wc;grt

� �

;

which is equivalent to

X6

i¼1
pi xt þ dibirtj j � xtj j þ Wc;grtðdi � 1Þ
� �

� 0: ð2Þ

Let gðxt; rt; kÞ be the left hand side of (2), and let �aj and
�pj refer to the term in g that corresponds to the j-th best
rank. Thus we can write g abstractly as

gðxt; rt; kÞ ¼
X6

i¼1
�pi�ai;

noting that the values �pi depend on k. The following
proposition demonstrates that the term in g corre-
sponding to the best point has a strictly negative coef-
ficient. Thus for sufficiently large k this term dominates
the value of g.

Proposition 1. Suppose that Algorithm A satisfies
Assumption 2, and suppose that f satisfies Assumption 1.
Let gðxt; rt; kÞ ¼

P6
i¼1 �ai�pi. Then there exist constants

C < 0 and D > 0, independent of k, such that
gðxt; rt; kÞ < rtðC�p1 þ 5Dð1� �p1ÞÞ

Proof. Without loss of generality, suppose that
xt � x� ¼ 0. From Lemma 1 we know that there is a
unique best point amongst the six possible points. Thus
we can write g as

gðxt;rt;kÞ¼
X6

i¼1
�ai�pi¼ �a1�p1þ

X6

i¼2
�ai�pi� �a1�p1þð1� �p1Þ

X6

i¼2
�ai:

It follows from Lemma 3 that jxt � rtbidij � jxtj � rtg,
so �ai � rtðgþ Wc;gðg� 1ÞÞ for all i. Thus we have
D ¼ gþ Wc;gðg� 1Þ.

The following three cases show that there exists C < 0
such that �a1 � rtC. We consider the case where 0 � xt
and x̂1, x̂2 or x̂3 is the best point; the analysis when xt � 0
follows similarly.

Case 1: If x̂1 ¼ xt � rtg is the best point, we know that
f ðxt � rtÞ > f ðxt � rtgÞ. Consequently, from the sym-
metry of f it follows that xt > rtðgþ 1Þ=2. From Lem-
ma 3 we have jxt � rtgj � jxtj < �rt for xt > rtðgþ 1Þ=2.
Thus

�a1¼jxt�rtgj� jxtjþWc;grtðg�1Þ<rtð�1þWc;gðg�1ÞÞ

< rt �1þ
1

g�1

� �

ðg�1Þ
� �

¼ 0:

This last inequality follows from Lemma 2. Thus we
have �a1 < rtC1, where C1 ¼ �1þ Wc;gðg� 1Þ < 0.

Case 2: If x̂2 ¼ xt � rt is the best point, we know that
f ðxt � rtcÞ > f ðxt � rtÞ. Consequently, from the sym-
metry of f it follows that xt > rtð1þ cÞ=2. From Lem-
ma 3 we have jxt � rtj � jxtj < �crt for all
xt > rtð1þ cÞ=2. Thus

�a1 ¼ jxt � rtj � jxtj < �crt < 0:

Thus we have �a1 < rtC2, where C2 ¼ �c < 0.

Case 3: If x̂3 ¼ xt � rtc is the best point, we know that
f ðxt þ rtcÞ > f ðxt � rtcÞ. Now xt � 0, so from Lemma 3
we have jxt � rtcj � jxtj � rtc for all xt � 0. Thus

�a1¼jxt�rtcj� jxtjþWc;grtðc�1Þ

� rtðcþWc;gðc�1ÞÞ< rt cþ c
1� c

� �

ðc�1Þ
� �

¼ 0:

This last inequality follows from Lemma 3. Thus
�a1 < rtC3, where C3 ¼ cþ Wc;gðc� 1Þ < 0.,

To conclude, let C ¼ maxi Ci < 0. (

Proposition 1 is the main result use to prove Theo-
rem 1.

Proof. [Theorem 1]Note that gðxt; rt; kÞ ¼ EðZk
tþ1 : X k

t ¼
xt;R

k
t ¼ rtÞ � Zk

t . It follows from Proposition 1 that
there exist constants C < 0 and D > 0, independent of k,
for which gðxt; rt; kÞ < rtðC�p1 þ 5Dð1� �p1ÞÞ. We know
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that �p1 � 1� ð1� jÞk, for some constant j. Thus
limk!1 �p1 ¼ 1, so there exists k0 such that for all k � k0,

�p1 >
�5Dð1� �p1Þ

C
:

Thus for k � k0, EðZk
tþ1 : X k

t ¼ xt;R
k
t ¼ rtÞ � Zk

t ¼
gðxt; rt; kÞ < 0. (

2.4 Super-martingale analysis

Our analysis in the previous section demonstrates that
Zk

t is expected to shrink from one iteration to the next.
By itself, this does not necessarily guarantee that X k

t and
Rk

t converge as we desire. However, we can use Theo-
rem 1 to demonstrate that Zk

t almost surely converges to
some random variable Zk

1.
The crux of this result is that Zk

t is a super-martingale.
A random process Yt is a super-martingale if E½jYtj	 <1
and E½Ytþ1jF0

t	 � Yt, whereF
0
t is the family of r-algebras

that describe the events underlying Yt [12]. Intuitively, a
super-martingale is a stochastic process that decreases
on average. Let ðX;F; PÞ be the probability space
describing the random events that underly X k

t and Rk
t .

Ft is a sequence of r-algebras, and we have
EðZk

tþ1 : FtÞ ¼ EðZk
tþ1 : X k

t ¼ xt;R
k
t ¼ rtÞ.

Theorem 2. Suppose that Algorithm A satisfies Assump-
tion 2 and suppose that f satisfies Assumption 1. Then there
exists k0 > 0 such that for all k � k0, Zk

t is a super-mar-
tingale with respect to the r-algebras Ft. Furthermore,
there exists a random variable Zk

1 such that Zk
t �!

a:s:
Zk
1.

Proof. From Theorem 1 we know that there exists k0
such for all k � k0, EðZk

tþ1 : FtÞ < Zk
t . To conclude that

Zk
t is a super-martingale with respect to Ft, note that

EðZk
t Þ <1. This follows from the fact that there are a

finite number of states that can be reached by Algo-
rithm A after t iterations, and Zk

t is finite for each of
these states. Since Zk

t is a non-negative super-martingale,
it follows that there exists a random variable Zk

1 such
that Zk

t �!
a:s:

Zk
1. (

Theorem 2 ensures that X k
t and Rk

t almost surely
generate a convergent sequence. This result confirms the
observation noted above: X k

t and Rk
t converge in a

complementary fashion. Furthermore, this result by it-
self suggests that the ES is behaving in an interesting
manner. For example, Theorem 2 confirms that Zk

t ðxÞ
has a limit point for all random events x 2 X. Thus,
Theorem 2 demonstrates that the asymptotic dynamics
of Algorithm A can be exactly characterized.

However, this result is not sufficient to demonstrate
that both X k

t and Rk
t converge to zero. Although such an

analysis is beyond the scope of this paper, we can apply
our results in Hart et al. [18] to prove this result.

Theorem 3. Suppose that Algorithm A satisfies Assump-
tions 2 and suppose that f satisfies Assumption 1. Then for
all k � k0, Rk

t �!
a:s:

0.

Let k1 � k0 be the smallest integral value of k for which

p log gþ q log c > 0, where p ¼ 1� 1� m3
2

� �kþ m3
2

� �k
and

q ¼ 1þm1
2

� �k� 1�m1
2

� �k
. Then for all k � k1, X k

t �!
a:s:

0.

Proof. These results follow directly from Theorems 2
and 3 [18]. The assumptions on Algorithm A required
for these theorems are slightly different than those we
require, but these assumptions are simply needed to
ensure that there exists Zk

1 for which Zk
t �!

a:s:
Zk
1. Fur-

thermore, these theorems do not depend on the specific
value of Wc;g used to formulate Zk

t , though Theorem 2
[18] does require that Wc;g has an irrational value. (

These convergence results for Algorithm A confirm
common empirical observations that self-adaptive ESs
converge to locally optimal points. The fact that Algo-
rithm A is a DCRC-EA is exploited extensively
throughout this analysis. Although this analysis does
assume limitations on the step length expansion and
contraction ratios, we believe that these limitations
provide insight into how the search dynamics of a ð1; kÞ-
ES need to be constrained in order to ensure robust
convergence. For example, the requirement for k1 in
Theorem 4 appears to relate directly to empirical
behavior; we have observed experiments in which this
condition was violated and Algorithm A failed to con-
verge.

3 Explicitly adaptive (1+k)-EPSA

Explicitly adaptive EAs have been developed by a
number of authors, and convergence theories have been
developed for a variety of explicitly adaptive formula-
tions [1, 11, 14, 15, 16, 22, 23, 24, 29]. Recent analyses of
EPSAs [14, 15, 16] have examined their convergence
behavior on problems of the form

min f ðxÞ
subject to x 2 X ¼ fy 2 Rn : l � Ay � ug; ð3Þ

where l; u 2 ðR
S
f�1gÞm and A 2 Qm
n. These results

show that if the sequence of best points generated in
each iteration, fx�t g, lies in a compact set, then for any
continuously differentiable nonlinear function there
exists a subsequence that converges to a stationary
point of the objective function f . These results are
particularly distinguished by their ability to exactly
capture the analytic behavior of a class of adaptive
EAs on nonconvex, multimodal problems. Although
some convergence theories have been developed for
EAs on nonlinear problems [1, 11, 24], EPSAs are the
only class of EAs whose local convergence properties
have been well-characterized on a broad class of non-
linear optimization problems. Consequently, the anal-
ysis of EPSAs provides valuable insight into the search
dynamics needed to effectively refine points within an
EA’s search.
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In this section, we consider the convergence proper-
ties of Algorithm B the explicitly adaptive ð1þ kÞ-EPSA
described in Fig. 5. This EPSA generates k new points
with mutation in each iteration and replaces the current
point if a better point is generated. The mutation steps
used by Algorithm B are restricted to lie in a finite pat-
tern defined by D. We require that D forms a positive
spanning set [7]: any point in X can be generated by a
positive linear combination of the vectors in the pattern.
Two examples of simple patterns are shown in Fig. 6. In
each iteration, Dt � D is the set of mutation steps that
have not been tested about xt.

1 The order in which these
steps are selected may be fixed, or they may be selected
from a random distribution. Further, such a randomized
selection method can be adaptive so long as the proba-
bility of selecting each step is greater than a fixed value
c > 0.

The mutation step length, Dt, is only reduced if all
mutation steps in D lead to points with higher function
values than xt. When an improving point is generated, Dt
may be increased. Let s 2 Q such that s > 1. Algo-
rithm B expands and contracts Dt by multiplying or
dividing by integral powers of s. More formally, we in-
crease Dt by multiplying by ht ¼ sjt where
jt 2 f0; 1; . . . ; jmaxg, jmax 2 N. This includes the case
where D is not increased. Similarly, we contract Dt by
multiplying by /t ¼ sjt , where jt 2 f�jmax; . . . ;�1g.

Algorithm B controls step length updates more
carefully than traditional ð1þ kÞ-ES methods. The
motivation for this mechanism is to provide more ex-
plicit control of the convergence of the step length
parameters. In particular, Algorithm B ensures that
the step lengths are not contracted so rapidly that the

algorithm fails to generate interesting limit points. The
key to this analysis is the fact that this EA uses a discrete
random variable to generate mutation steps from a finite
set of rational search directions, D. As a consequence,
we can show that some subsequence of the step lengths
fDtg must converge to zero.

3.1 Refining subsequences

Consider the points generated by Algorithm B, fxkg,
and the associated sequence of step lengths, fDkg. We
make the following general assumption about Algo-
rithm B

Assumption 3. The following are true for Algorithm B:

1. The sequence fxkg lies in a compact set,
2. 8s 2 D, s 2 Qn and jDj <1.

Assumption 3.1 is a standard assumption for the anal-
ysis of nonlinear optimizers on continuous domains [2].
A reasonable sufficient condition for this to hold is that
LXðyÞ ¼ fx 2 X : f ðxÞ � f ðyÞg is compact. Our analysis
does not make this assumption because we allow dis-
continuities and even f ðxÞ ¼ 1 for some x, so LXðyÞmay
not be closed. However, we could assume that the set is
bounded or precompact [9].

Fig. 5 Algorithm B. An explic-
itly adaptive ð1þ kÞ-EPSA. Note
that ht and /t can be selected
arbitrarily such that they repre-
sent powers of s > 1 (see Sec-
t. 3). For example, we can have
ht ¼ s and /t ¼ s�1 for all t

(a) (b)

Fig. 6 Illustration of two simple patterns of mutation offsets for
EPSAs: (a) a pattern of 2n coordinate-wise unit-length, and (b) a
pattern of n+1 unit-length offsets generated from a regular simplex

1Note that Algorithm B selects mutation steps from Dt with
replacement. Selecting steps without replacement would certainly
be more efficient, though that complicates the definition of Algo-
rithm B and is dissimilar to many EA implementations. However,
our analysis of Algorithm B also applies when steps are selected
without replacement.
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If the sequence fxkg lies in a compact set, there exist
convergent subsequences of this sequence. The following
definition describes the type of ‘‘interesting’’ convergent
subsequences that we will consider in our analysis.

Definition 1. We say that a convergent subsequence
fxkgk2K (for some set of indices K) is a refining subse-
quence if

1. Dki > Dkiþ1 for all ki 2 K,
2. limk2K Dk ¼ 0, and
3. For each xki , f ðxkiÞ � f ðxki þ Dki sÞ for all s 2 D.

The following theorem provides the main result of our
convergence analysis.

Theorem 4. If Algorithm B satisfies Assumption 3, then
there exists a refining subsequence of fxkg with proba-
bility one.

To prove Theorem 4, we show that the points gen-
erated by Algorithm B lie on a mesh, which implies that
the set of possible points at iteration t is finite. It follows
that there exists a subsequence of fDtg that converges to
zero with probability one.

We now define a mesh that contains the points fxtg.
Note that Dt is generated by expansions and contrac-
tions of D0, so we can write Dt ¼ D0srt , for some rt 2 Z.
Let rmax

t ¼ maxj¼0;...;t rj and rmin
t ¼ minj¼0;...;t rj; since

r0 ¼ 0, it follows that rmax
t � 0 � rmin

t . Now s ¼ sn=sd
where sn; sd 2 Z>0. We define �st ¼ ðsdÞr

max
t ðsnÞ�rmin

t ; �st is a
lower bound on the greatest common denominator of
D1=D0; . . . ;Dt=D0. Consider the mesh

Mt ¼ x0 þ
D0

�st

X

s2D
zss : zs 2 Z>0

( )

: ð4Þ

The set Mt is a mesh defined by the lattice spanned by the
directions in D and scaled by the smallest step length
seen so far. Note that �st is nondecreasing, which implies
that Mt � Mtþ1. As �st increases, the number of points in
the mesh increases because smaller fractional points are
added to the mesh. Fig. 7 illustrates the mesh Mt and
Mtþ1 after a step length has contracted.

The following lemma confirms that the sequence fxtg
generated by Algorithm B lies on the meshes fMtg.

Lemma 4. For all t, xt 2 Mt.

Proof. Clearly x0 2 M0. By induction we assume that
xt 2 Mt. If xtþ1 ¼ xt, then xtþ1 2 Mt � Mtþ1. Otherwise,
xtþ1 ¼ xt þ Dt�s for some �s 2 D. Now �stþ1 ¼ qt�st, where
qt 2 fsd ; . . . ; sjmax

d ; sn; . . . ; sjmax
n ; 1g. Thus we have

xtþ1 ¼ xt þ Dt�s ¼ xt þ
D0

�stþ1
srt �stqt�s

¼ x0 þ
D0

�stþ1

� X

s2Dnf�sg
zssþ ðz�s þ srt�stqtÞ�s

�

:

But from the definition of �st, we know that srt�st 2 Z.
Thus if z0s ¼ zs for all s 2 D n f�sg and z0�s ¼ z�s þ �srt�stqt,
then xtþ1 ¼ x0 þ D0

�stþ1

P

s2D z0ss 2 Mtþ1. (

The following lemma shows that the step lengths are
bounded above for all t.

Lemma 5. The step length Dt is bounded above by a
positive constant independent of t.

Proof. Let X0 be the compact set that contains the points
generated by the EPSA. Since X0 is bounded, the
diameter d ¼ maxa;b2X0 ja� bj is finite. Suppose towards
a contradiction that Algorithm B generates a point
xt 6¼ xt�1 with step length greater or equal than ds2jmax .
Now xt must have been generated via a mutation step
with a step length greater or equal to dsjmax . But if a
point has a step length greater than d then any mutation
steps about that point will be unsuccessful because they
lie outside of X0. Thus we have a contradiction, and
therefore all step lengths are bounded above by a posi-
tive constant independent of t. (

We now use Lemmas 4 and 5 to prove the following
proposition, which provides the key result for the proof
of Theorem 4. This proposition demonstrates that with
probability one some subsequence of the step lengths
converges to zero. The basic idea behind this proof is
that if the step lengths were bounded away from zero in
all cases, then there is a mesh M1 that contains all of the
points fxtg. But this would contradict the fact that
Algorithm B forces the step lengths to decrease when all
mutation steps in D have been generated.

Proposition 2. If the points sampled by Algorithm B lie in
a compact set X0 then

P lim inf
k!1

Dk ¼ 0

� �

¼ 1:

Proof. Suppose that there exists a non-positive integer q
such that 0 < D0s

q � Dt for all t � 0. This implies that
rt � q for all t � 0. Further, we know from Lemma 5
that there is a non-negative integer �q such that rt � �q.
Let �s1 ¼ ðsdÞ�qðsnÞ�q, and note that �st � �s1. Conse-
quently, it follows that for all k, xk 2 M1, where

M1 ¼ xþ D0

�s1

X

s2D
zss : zs 2 Z>0

( )

:

It follows that the intersection of M1 and X0 is finite.
Thus there must exist a point x̂ and an index N such that
for all k > N , xk ¼ x̂. Since each mutation step is selected
with a probability bounded away from zero (indepen-
dent of t), it follows that with probability one there exist
infinitely many points in fxkg, k > N , for which all
mutation steps are generated (unsuccessfully) and the
step length is contracted. But this implies that Dk ! 0
with probability one, which gives a contradiction. (

Given Proposition 2, we prove Theorem 4. A refining
subsequence is guaranteed to exist (with probability one)
because we have subsequences for which Dt ! 0 and for
which all mutation steps have been generated.
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Proof (Theorem 4). Consider the subsequence fxkgk2K
that consists of the points for which the step length is
contracted after unsuccessfully generating all steps in D,
and for which Dk > Dkþ1. From Proposition 1 we know
that with probability one fxkgk2K is an infinite sequence.
It follows that it has a convergent subsequence in X0. Let
this convergent subsequence be fxkgk2K 0 , and note that
limk2K 0 D

0
k ¼ 0. Thus we have shown that there exists a

refining subsequence of fxkg with probability one. (
Theorem 4 ensures that there exist ‘‘interesting’’

convergent subsequences of the points generated by
Algorithm B for which we can prove convergence.
However, this provides a weak convergence theory be-
cause we can only prove convergence for a subsequence
of fxkg. We focus on convergent subsequences because
the conditions required to ensure that the entire sequence
converges are rather restrictive (e.g., see Torczon [28]).

3.2 Analysis of limit points

Given that Algorithm B generates a refining subse-
quence with probability one, we can apply the conver-

gence theory for EPSAs [15, 16] to describe the type of
limit points that Algorithm B can generate. In particu-
lar, the smoothness of f at the limit point of a refining
subsequence determines the properties of f at that point.
The following theorem describes limit points of refining
subsequences for general, nonsmooth functions. A nat-
ural generalization of the notion of a gradient for non-
smooth functions is the generalized directional
derivative [6]. The generalized directional derivative of f
at x in the direction s is

f oðx; sÞ ¼ lim sup
y!x;t#0

f ðy þ tsÞ � f ðyÞ
t

:

Note that if f oðx; sÞ � 0, then f is increasing in the
direction s. Thus a local minimum of a nonsmooth
function is defined by a point where f oðx; s0Þ � 0 for all
s0 2 Rn. Recall that f is Lipshitz if f ðxÞ � f ðyÞj j �
Cjx� yj for some C independent of x and y.

Theorem 5. [Theorem 2 [16]] Let x̂ be the limit of a
refining subsequence fxkgk2K . If f is Lipshitz in the
neighborhood of x̂ then there exists a positive spanning set
S � D such that for all s 2 S, f oðx̂; sÞ � 0 if xk þ Dks is
feasible for infinitely many k 2 K.

Note that Algorithm B does not consider subsets of
D that might be positively spanning (e.g. by updating Dt
earlier). Thus this theorem shows that for all s 2 D, the
directional derivative of f at x̂ in the direction s is po-
sitive. If the refining subsequence converges to a non-
differentiable point, �x, then it may be possible for
f oð�x; �sÞ � 0 for every direction s in a given positive
spanning set and for all � > 0 [27].

The next theorem extends the previous result when f
is strictly differentiable at a limit point x̂. A point x is
strictly differentiable if 5f ðxÞ exists and
5f ðxÞT w ¼ limy!x;t#0

f ðyþtwÞ�f ðyÞ
t for all w 2 Rn [6].

Theorem 6. [Theorem 3 [16]] Let X ¼ Rn, and let x̂ be the
limit of a refining subsequence of fxkg. If f is Lipshitz in
the neighborhood of x̂ and f is strictly differentiable at x̂,
then 5f ðx̂Þ ¼ 0.

If f is continuously differentiable then for any point
x, f is Lipshitz in the neighborhood of x and f is strictly
differentiable at x [6]. Thus in this case 5f ðx̂Þ ¼ 0 for a
limit point x̂ of any refining subsequence. However,
Theorem 6 is more general because it is applicable to
functions for which continuity properties vary across the
search domain.

The result given by Theorem 2 can be extended to
bound constrained problems if the setD contains the unit
vectors and their opposites: f�e1; . . . ;�eng. This
restriction ensures that Algorithm B can effectively
search along the bound constraint as well as away from
the bound constraint. Recall that a first-order con-
strained stationary point x̂ for problem (3) is a Karush-
Kuhn-Tucker (KKT) point, where there is no first-order
direction of improvement [10].

Fig. 7 An example of a the mesh Mt generated by the mutation steps
D ¼ fe1; e2;�e1 � e2g; and b the mesh Mtþ1 after the step length is
halved
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Theorem 7. Let X be a bound-constrained domain, and
let x̂ be the limit of a refining subsequence of fxkg. If
f�e1; . . . ;�eng � D, f is Lipshitz in the neighborhood
of x̂, and f is strictly differentiable at x̂, then x̂ is a
KKT point.

Proof. This result follows directly from Theorem 4 [16]
since if f�e1; . . . ;�eng � D then these search directions
are �-conforming directions for any value of �. Conse-
quently, this theorem ensures that x̂ is a KKT point. (

These convergence results for Algorithm B ensure
convergence on a much broader range of problems than
the results for Algorithm A. Although both methods are
DCRC-EAs, the careful step length control in Algo-
rithm B provides additional mathematical structure that
ensures convergence on a wide range of nonlinear
problems. Further, we exploit the fact that Algorithm B
is a DCRC-EA only to demonstrate the existence of
interesting limit points. Subsequently, the analysis in this
section simply follows from the properties of that sub-
sequence.

4 Discussion

Our analysis of Algorithms A and B clearly leverages the
fact that their mutation operators make discrete choices.
For both methods, the simplified search dynamics allow
us to mathematically describe key properties of these
methods. As a consequence, our analysis does not
approximate the underlying stochastic processes of these
EAs. The convergence theories we have described di-
rectly reflect the search behavior of these methods.
Furthermore, these analyses are applicable to classes of
problems, and thus they ensure that convergence is not
particular to a specific problem domain.

Although convergence theories have been developed
for DCRC-EAs, we have witnessed that EA practi-
tioners are reluctant to use mutation operators that
make discrete choices. Despite this, our experience is
that these EAs can be effective in practice. For
example, empirical studies of EPSAs on test problems
and a real-world application confirm that these
methods perform a global search that is comparable to
standard self-adaptive EAs [13, 19]. Similarly, the
preliminary numerical experiments in Hart et al. [18]
suggest that self-adaptive ESs like Algorithm A are
not inherently less effective than standard ð1; kÞ-ES
formulations.

There are several theoretical issues that need to be
addressed to better assess the practical utility of
DCRC-EAs. For example, the lower bound on k in
Theorems 2 and 3 needs to be reconsidered. Although
we have demonstrated that practical values of k are
feasible (i.e. k < 6), the argument used in our analysis
is broad and thus the lower bound on k is weak.
Thus, it is unclear whether k ¼ 2 is generally
allowable, and how the problem structure (e.g. the

Lipshitz constant) impacts the minimal allowable value
of k. Additionally, our convergence analysis for self-
adaptive ES can be directly generalized to multi-
dimensional problems. We have taken a preliminary
step in this direction by demonstrating convergence
for self-adaptive ESs on separable, unimodal problems
of the form gð�xÞ ¼

Pn
i¼1 giðxiÞ, where gi are one-

dimensional unimodal functions [17]. However, these
results need to be generalized to a much broader range
of multi-dimensional problems. We also need to gen-
eralize these convergence theories to allow for other
evolutionary operators, particularly crossover. For
example, standard crossover operators can be used
with EPSAs without loss of generality in the conver-
gence theory, but no such analysis has been developed
for DCRC-EAs. Finally, it remains to be seen whether
analyses of the rate of convergence can be developed
for DCRC-EAs like these. In fact, the discretizations
used in DCRC-EAs may make it more difficult to
analyze convergence rates than standard self-adaptive
EAs, for which the well-developed analytic techniques
for continuous distributions can be applied [5].
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