
UCRL-SM-224277

Getting Data Into VisIt

September 2006

Version 1.5.4

Law
ren

ce

Live
rm

or
e

Nati
on

al

Lab
or

ato
ry



ii



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither 
the United States Government nor the University of California nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under Contract W-7405-ENG-48.
iii



iv



Table of Contents
Introduction
Manual chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Manual conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Picking a strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Definition of terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Creating compatible files
Creating a conversion utility or extending a simulation . . . . . . . . . . . . . . . . . . . . . . . . 7
Survey of database reader plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

BOV file format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
X-Y Curve file format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Writing Silo files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Using the Silo library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Inspecting Silo files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Silo files and parallel codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Creating a new Silo file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Dealing with time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Option lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Writing a rectilinear mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Writing a curvilinear mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Writing a point mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Writing an unstructured mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Writing a scalar variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Single precision vs. Double precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Writing expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Creating a master file for parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Writing VTK files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Getting started with visit_writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Regular meshes with data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Rectilinear meshes with data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Curvilinear meshes with data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Point meshes with data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Unstructured meshes with data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Creating a master file for parallel (.visit file) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Creating compatible files II Advanced topics
Writing vector data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Adding metadata for performance boosts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Writing data extents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Writing spatial extents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Ghost zones  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Writing ghost zones to your files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Materials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Creating a database reader plug-in
Structure of VisIt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Starting your plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Picking a database reader plug-in interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Using XMLEdit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Generating a plug-in code skeleton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Building your plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Calling your plug-in for the first time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Implementing your plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Required plug-in methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Debugging your plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Opening your file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Returning file metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Returning a mesh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Returning a scalar variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Returning a vector variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Using a VTK reader class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Advanced topics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Returning cycles and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Auxiliary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Returning ghost zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Parallelizing your reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Instrumenting a simulation code
Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Using libsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Getting libsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Building in libsim support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Restructuring the main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Using libsim in a Fortran simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Using libsim in a parallel Fortran simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Running an instrumented simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Connecting to an instrumented simulation from VisIt . . . . . . . . . . . . . . . . . . . . 161

Writing data access code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
The VisIt Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
How data access functions are called . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Compiler and platform issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Making data access functions available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Data access function for metadata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
vi



Data access function for meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Data access function for scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Data access function for curves  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Data access function for the domain list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
vii



viii



Chapter 1 Introduction
1.0 Overview

VisIt is a free, open source, platform independent, distributed, parallel, visualization tool 
for visualizing data defined on two- and three-dimensional structured and unstructured 
meshes. VisIt’s plug-in architecture allows it to perform a wide variety of plotting and data 
processing operations, and also allows VisIt to import data from many different data 
formats. 

This manual explains in detail how to get your data into VisIt, concentrating on three main 
strategies: writing compatible files, writing a new plug-in for VisIt, or instrumenting a 
simulation code. In addition to providing the how-to’s of getting your data into VisIt, this 
manual also presents reasons for why you might choose one strategy over another.

This manual is geared towards someone who wants to visualize and analyze data using 
VisIt. VisIt reads a large number of file formats so users of some existing simulation 
software will be able to use VisIt right away. This manual is for the user who has data files 
that VisIt does not read, or who wants to directly access data from a homegrown 
simulation code. Whichever the case, this manual assumes familiarity with computer 
programming since all of the covered approaches for getting data into VisIt require some 
programming. The examples in this manual are written primarily using the C and C++ 
programming languages, though relevant examples for the Fortran and Python languages 
are also included.
Overview Getting Data into VisIt Manual 1



Introduction
2.0 Manual chapters

This manual is broken down into the following chapters:

3.0 Manual conventions

This manual uses the following conventions:

4.0 Strategies

Often, the first strategy to consider when trying to get your data into VisIt is creating data 
files using a data format that VisIt can already read. This is usually the simplest method 
for getting data into VisIt as it can be accomplished by adding a new I/O module to your 
simulation code or it can be achieved by creating an external data conversion utility.

Changing your simulation code to write out data that VisIt can read is sometimes not an 
option. For example, you might not have the simulation’s source code or perhaps there is 

Chapter title Chapter description

Introduction This chapter.

Creating compatible  fi les Describes how to store data into file 
formats that VisIt already reads.

Creating compatible  fi les  
II  Advanced topics

Describes how to store metadata to 
boost VisIt’s performance and also 
covers more exotic types of data that 
can be stored into file formats that 
VisIt already reads.

Creating a database 
reader plug-in

Describes how to create a new data-
base reader plug-in for VisIt so it can 
read your own data file format.

Instrumenting s imulation 
codes

Describes how to instrument your 
simulation code so VisIt can directly 
access its data without the need to 
write files.

Element All GUI elements, like windows, menus, and buttons will 
use bold helvetica.

Chapters All references to other chapters will use Bold Times.

Documents All document or file names will be italicized.
2 Manual chapters



Introduction
too much risk involved in changing the source code. In addition, you might have gigabytes 
of archived data that you’ve written using your simulation’s native data format and now 
you want to visualize that data in VisIt. If any of these cases apply to your situation then 
you might want to consider writing a database reader plug-in for VisIt so VisIt can natively 
understand your simulation code’s data format. 

If you want to maintain your current data format but you don’t want to write a database 
reader plug-in for VisIt, you have another option: instrument the simulation code. VisIt 
provides a modestly sized library that contains C-Language functions that you can use to 
instrument your simulation code. When a simulation code is instrumented, VisIt can 
connect to it and access any of the arrays that you expose. This approach lets VisIt 
visualize the data from your simulation code directly without the need to write files.

5.0 Picking a strategy

The strategy you use to get your data into VisIt depends on your situation. The following 
table indicates reasons when you might pick one strategy over another.

Strategy Reasons when to use

Create compatible 
files

•You have access to your simulation code’s source 
code and one of VisIt’s supported file formats can 
express your data.

•You can write a conversion utility and don’t mind 
using it to copy the existing data into a new data 
format.

Write a database 
reader plug-in

•You have written a lot of data files using your 
own data format or a format that VisIt does not 
read.

•Changing the simulation’s source code is not an 
option.

•VisIt’s supported file formats can’t fully capture 
your data’s structure or content.

•Your data format is already supported in another 
visualization application.

Instrument simula-
tion code

•You want to use VisIt to inspect your data as it is 
calculated.

•You don’t want to change your simulation code 
so it writes a different data format.

•Your simulation code is written in the C, C++, or 
Fortran programming languages.
Picking a strategy 3



Introduction
The following table indicates reasons why you would not pick one of the given strategies.

After examining the above tables, you probably have a pretty good idea of which strategy 
will work best for getting your data into VisIt. The following chapters will provide details 
on how best to get your data into VisIt using each of the recommended strategies.

6.0 Definition of terms

This section defines some of the terms that will be used to describe data structures that 
VisIt can visualize. These terms are defined here because many branches of science that 
might use VisIt to visualize and analyze data have their own terms. It is hoped that adding 

Strategy Reason to not use

Create compatible 
files

•You don’t want to change or are unable to change 
your simulation’s source code

•You don’t want to replicate data in another data 
format, taking up more storage.

•Your data format is already supported in another 
visualization application

Write a database 
reader plug-in

•Developing a VisIt database reader plug-in can be 
difficult, though this manual aims to lessen the 
difficulties.

•You need to run VisIt on several platforms and 
you don’t want to build the plug-in on all of those 
platforms.

•You don’t want to maintain a VisIt plug-in. Note 
that you could donate the plug-in to the VisIt 
development team.

Instrument simula-
tion code

•You don’t want to change or are unable to change 
your simulation’s source code.

•Your simulation code is not written in C, C++, or 
Fortran.
4 Picking a strategy



Introduction
the definition of terms here will reduce ambiguity when different types of data are covered 
in later chapters.

Term Definition

Curvilinear 
mesh

A curvilinear mesh is a mesh composed entirely of quad-
rilateral or hexahedral cells. Furthermore, the mesh is 
constructed such that all zones exist in a logically contig-
uous brick having NX zones in the X dimension, NY 
zones in the Y dimension, and in the case of 3-D: NZ 
zones in the Z dimension. Each node in the mesh requires 
an explicitly provided coordinate value.

Domain A domain is a unit of work that corresponds to a piece of 
the mesh that is handled by a given processor when run-
ning in parallel. Meshes are often split into multiple 
pieces, or domains, that can be assigned to different pro-
cessors in order to handle larger simulations.

Ghost zone A ghost zone is a zone on the boundaries of domains and 
it is used to ensure that each domain knows the data value 
on the other side of the domain boundary so operations 
requiring continuity do not give rise to discontinuities at 
domain boundaries.

Material A physical material such as air or steel that is assigned to 
various zones in a mesh to indicate the types of materials 
that make up the simulated model. Zones that contain 
more than one material are said to be “mixed” since their 
compositions are determined by a set of volume fractions 
of various materials in the zone.

Mesh A mesh is a structure composed of zones.

Node A mathematical point. Nodes are used to describe the 
coordinates for zones that make up a mesh.

Node-cen-
tered

Node-centered is a term that applies to data stored on a 
mesh; it means that there is one data value for each node 
in the mesh and that values in the zone are created by 
interpolating data from the nodes.

Point mesh A mesh consisting of a set of locations, or points, in 
space. These nodes are not connected.
Picking a strategy 5



Introduction
Rectilinear 
mesh

A rectilinear mesh is a mesh composed entirely of quadri-
lateral or hexahedral cells that are all the same shape. 
Furthermore, the mesh is constructed such that all zones 
exist in a contiguous brick having NX zones in the X 
dimension, NY zones in the Y dimension, and in the case 
of 3-D: NZ zones in the Z dimension. The coordinates for 
the nodes are supplied as lists of NX, NY, or NZ elements 
from which the full complement of nodes can be created.

Time step Simulations proceed by calculating their state at the cur-
rent time and then making adjustments that are needed to 
advance the state of the simulation to the next time. This 
is done in an iterative cycle. One iteration of the simula-
tion is called a time step.

Unstruc-
tured mesh

An unstructured mesh consists of a set of nodes and a set 
of zones. The set of zones may consist of many different 
zone types such as triangles, quadrilaterals, tetrahedra, 
hexahedra, prisms, pyramids, or other polyhedra. Adja-
cent zones share the same nodes and the nodes are repre-
sented as a shape type identifier and a list of the nodes 
that comprise the zone.

Zone-cen-
tered

Zone-centered is a term that applies to data stored on a 
mesh; it means that there is one data value for each zone 
in the mesh.

Zone/Cell Zone and Cell are used interchangeably in this document. 
A zone is a shape that unites one or more nodes into a 
connected structure where the nodes are the vertices of 
the connected structure. Point meshes can have nodes as 
zones. 1-D meshes contain zones that are lines that con-
nect nodes. 2-D meshes contain 2-D shapes such as trian-
gles and quadrilaterals that connect nodes together. 3-D 
meshes contain volumetric polyhedra such as: tetrahe-
drons, hexahedrons, prisms, pyramids, etc.

Term Definition
6 Picking a strategy



Chapter 2 Creating compatible files
1.0 Overview

This chapter elaborates on how to create files that VisIt can read. The two main methods of 
creating files that VisIt can read are: creating a conversion utility and altering a simulation 
code to write out its data in a new file format. This chapter discusses the merits of each 
approach so you can decide which is best for your situation. Once you settle on an 
approach, you can elect to write out Silo files from C or Fortran, or you can write out VTK 
files from any programming language. If you decide to write out VTK files, this chapter 
presents examples for doing so in C and Python.

2.0 Creating a conversion utility or extending a simulation

Creating files using a data format that VisIt can read is often the easiest strategy for getting 
your data into VisIt. You can change your simulation code to natively write its data to a 
format that VisIt can read, such as Silo or VTK. Alternatively, you can create a conversion 
utility to post-process your data files into a format that VisIt can read. Both of these 
approaches have their pros and cons and, fortunately, the programming done to achieve 
either is essentially the same.

Approach Pros Cons

Modify 
simulation 
code

•Data is in a format that can 
be immediately visualized

•Depending on the simula-
tion code’s implementa-
tion language, there may 
not be a binding to a suit-
able I/O library.
Overview Getting Data into VisIt Manual 7



Creating compatible files
The chief differences between the two approaches arise in where the new code is located. 
When changing a simulation code, you will most likely add a new I/O module that can 
dump out your simulation’s data for the purpose of visualization. When creating a 
conversion utility, you are creating a stand-alone program that you have to run on the data 
after the simulation has completed.

A very simple simulation code’s main loop might look like the example below. The 
purpose of the simple pseudocode listing is to point out where you might want to add 
additional routines that can write your data to files compatible with VisIt. You might want 
to provide a switch that tells your program to write data files that VisIt can read in addition 
to your regular data format. Alternatively, you might opt to just write files that are 
compatible with VisIt.

/* SIMPLE SIMULATION SKELETON */
void write_vis_dump()
{

if(write_data_for_visit)
/* Add your code to write VisIt data files here. */

else
write_vis_dump_using_regular_format();

}
int main(int argc, char **argc)
{

read_input_deck();
do
{

simulate_one_timestep();
write_vis_dump();

} while(!simulation_done());
return 0;

}

If you choose to write a conversion utility, a pseudocode skeleton might look something 
like this:

/* SIMPLE CONVERSION UTILITY SKELETON */
void write_to_visit_format(const char *, MeshAndData *)
{

/* Add your code to write a VisIt data file here. */

Create con-
version util-
ity

•Simulation code does not 
have to be changed

•Replicates data on disk

•Extra step is required to 
visualize simulation data

•Utility must be maintained

•Utility must read data from 
file before it can be written 
to new data format.

Approach Pros Cons
8 Overview



Creating compatible files
}
void convert_file(const char *filename)
{

struct MeshAndData data;
char newfilename[1024];
read_data_from_regular_format(filename, &data);
create_visit_filename(filename, newfilename);
write_to_visit_format(newfilename, &data);
free_data(&data);

}
int main(int argc, char *argv[])
{

for(int i = 1; i < argc; ++i)
convert_file(argv[i]);

return 0;
}

3.0 Survey of database reader plug-ins

VisIt provides database reader plug-ins for over 5 dozen different file formats. This 
chapter will talk briefly about some specialized file formats before covering the Silo and 
VTK file formats. Silo and VTK will be covered much more extensively because they are 
two of the most general formats and they are capable of describing a wide variety of 
different data constructs.

Silo is a C-language library with a well-defined application programming interface (API) 
for writing out the types of objects in which most simulations are interested (e.g. meshes, 
variables). Silo files can be written to two different underlying file structures: HDF5 and 
PDB; both are self-describing, platform independent, binary file formats. If you write a 
file on one platform using the Silo library, it can be read by the Silo library on any other 
platform. Silo bindings also exist for the Fortran and Python programming languages. 
Fore more information, see the Silo User’s Guide.

The VTK file format is written by various C++ classes in VTK (Visualization Tool Kit) 
and is most often stored in ASCII text files. The VTK file format does, more recently, 
support an XML-based file format, which includes support for binary data and 
compression. However, this manual will provide example code to write data into VTK’s 
legacy ASCII format. The example code will use VisIt’s visit_writer library to 
demonstrate creating VTK files without using the VTK library itself so the applications 
will be very lightweight.

3.1 BOV file format

As mentioned earlier, VisIt can read over 5 dozen file formats and this manual will mainly 
concentrate on two of them. There are other file formats that might be useful to you 
depending on how you have written your data files. For example, if you have written your 
data as a binary file consisting of 1 variable on a NX*NY*NZ rectilinear mesh then it is 
Survey of database reader plugins 9



Creating compatible files
possible that you can use VisIt’s BOV (“Brick of Values”) database reader plug-in and not 
have to do any data conversion.

VisIt’s BOV database reader plug-in is used to read data out of a binary file containing just 
the data values. If your data file was written using code resembling the following code 
fragments then you might be able to use VisIt’s BOV database reader plug-in.

/* Example C code */
float data[NZ][NY][NX];
FILE *fp = fopen(“bov.values”, “wb”);
fwrite((void *)data, sizeof(float), NX*NY*NZ, fp);
fclose(fp);

c Example Fortran code
real values(NX, NY, NZ)
open (unit=output, file=’fbov.values’, status=’replace’,

. form=’unformatted’)
write(output) values
close (output)

Files written in this manner typically have an auxiliary data header text file stored along 
side of the real data file to contain information such as the dimensions of the data and its 
type and endian representation. If this sounds like what you write from your simulation 
code then you should try using the BOV reader. Before trying to open the data using 
VisIt’s BOV database reader plug-in, you will have to write a BOV-compatible header file 
to accompany your data files so VisIt knows how to read the binary data file.

Example BOV header file:

TIME: 1.23456
DATA_FILE: file0000.dat
# The data size corresponds to NX,NY,NZ in the above example code.
DATA_SIZE: 10 10 10
# Allowable values for DATA_FORMAT are: BYTE, INT, FLOAT, DOUBLE
DATA_FORMAT: FLOAT
VARIABLE: what_I_call_the_data
# Endian representation of the computer that created the data.
# Intel is LITTLE, many other processors are BIG.
DATA_ENDIAN: LITTLE
# Centering refers to how the data is distributed in a cell. If you
# give “zonal” then it’s 1 data value per zone. Otherwise the data
# will be centered at the nodes.
CENTERING: zonal
# BRICK_ORIGIN lets you specify a new coordinate system origin for
# the mesh that will be created to suit your data.

Listing 2-1:  bov.c: C-Language example for creating data that the BOV plug-in can read.

Listing 2-2:  fbov.f: Fortran language example for creating data that the BOV plug-in can read.
10 Survey of database reader plugins



Creating compatible files
BRICK_ORIGIN: 0. 0. 0.
# BRICK_SIZE lets you specify the size of the brick.
BRICK_SIZE: 10. 10. 10.

Additional BOV options:

# BYTE_OFFSET: is optional and lets you specify some number of
# bytes to skip at the front of the file. This can be useful for
# skipping the 4-byte header that Fortran tends to write to files.
# If your file does not have a header then DO NOT USE BYTE_OFFSET.
BYTE_OFFSET: 4

# DIVIDE_BRICK: is optional and can be set to “true” or “false”.
# When DIVIDE_BRICK is true, the BOV reader uses the values stored
# in DATA_BRICKLETS to divide the data into chunks that can be 
# processed in parallel.
DIVIDE_BRICK: true

# DATA_BRICKLETS: is optional and requires you to specify 3 integers
# that indicate the size of the bricklets to create when you have
# also specified the DIVIDE_BRICK option. The values chosen for
# DATA_BRICKLETS must be factors of the numbers used for DATA_SIZE.
DATA_BRICKLETS: 5 5 5

# DATA_COMPONENTS: is optional and tells the BOV reader how many
# components your data has. 1=scalar, 2=complex number, 3=vector,
# 4 and beyond indicate an array variable. You can use “COMPLEX”
# instead of “2” for complex numbers.
DATA_COMPONENTS: 1

Take the above example BOV header file template and save it to a new text file with a 
“.bov” file extension. Next, edit the file and change some of the values to make it relevant 
to the data file that you want to open. Once you’ve completed editing the “.bov” file, open 
it in VisIt. If you see that the Plots menu is enabled and the Mesh and Pseudocolor 
plot menus are enabled then you are halfway to success. If you can create a Pseudocolor 
plot, click the Draw button, and have VisIt process your data until there is a picture in the 
visualization window then this approach works for you and you can repeat it for your other 
data files. If the picture is not quite what you expected then you can fine-tune the values in 
the “.bov” file until you get the picture that you want to see. The most common cause of 
errors is failing to set the DATA_SIZE and DATA_FORMAT keywords to the right values 
for your data file.

3.2 X-Y Curve file format

VisIt is used to examine and analyze a wide variety of data in 2D and 3D on many 
different types of meshes. In addition to those capabilities, VisIt can also visualize and 
process 1D curves, sometimes known as X-Y plots. VisIt’s Lineout mode can extract data 
from a higher dimensional dataset and draw the resulting data as an X-Y plot, or a Curve 
plot as it is known in VisIt terms. VisIt can also import X-Y data and use it to create Curve 
Survey of database reader plugins 11



Creating compatible files
plots. The Curve file format, which is barely more than a list of X-Y pairs, is outlined 
below:

#curv1name
x0 y0
x1 y1
x2 y2
...
#curve2name
xn yn
xn1 yn1
...

As shown in the example Curve file, the Curve file format can contain data for more than 1 
set of X-Y pairs. The name of each pair is indicated in a ‘#’ comment line. The X-Y pairs 
follow until the end of the file or until a new curve is declared using another ‘#’ comment 
line. If you write data to the Curve file format then the file extension should be “.curve” to 
ensure that VisIt recognizes it as a Curve file.

4.0 Writing Silo files

If you are writing a conversion utility or if you have a simulation code written in C, C++, 
or Fortran then writing out Silo files is a good choice for getting your data into VisIt. This 
section will illustrate how to use the Silo library to write out various types of scientific 
data. Since the Silo library provides bindings for multiple languages, including C, Fortran, 
and Python, the source code examples that demonstrate a particular topic will be given in 
more than 1 programming language, when appropriate. One goal of this section is to 
provide examples that are complete enough so that they can be readily adapted into 
working source code. In fact, most of the examples in this chapter are available as working 
programs in the accompanying “Getting your data into VisIt” code distribution. This 
section will not necessarily explain all of the various arguments to function calls in the 
Silo library. You can refer to the Silo User’s Guide for more information.

4.1 Using the Silo library

VisIt is always built with support for reading Silo databases so Silo can be a good file 
format in which to store your data. This subsection includes information about using Silo 
such as including the appropriate header files and linking with the Silo library.

4.1.1 Including Silo

When using any library in a program, you must tell the compiler about the symbols 
provided by the library. Here is what you need to include in your source code in order to 
use Silo:

C-Language:
12 Writing Silo files



Creating compatible files
#include <silo.h>

Fortran language:

include “silo.inc”

4.1.2 Linking with Silo

Before you can build a program that uses Silo, you must locate the Silo include files and 
the Silo library. Silo is not distributed as part of the VisIt source code or binary 
installations so you must obtain it separately unless you are developing on the Windows 
platform. A link to the most up-to-date version of the Silo library’s source code can be 
found on the VisIt Web site at http://www.llnl.gov/visit/source.html.

Once you download the Silo source code, building and installing it is usually only a matter 
of running its configure script and running make. You can find information about 
configuring Silo with support for HDF5 in VisIt’s BUILD_NOTES file, also available on 
the VisIt Web site.

After you’ve configured, built, and installed the Silo library, your program will have to be 
built against the Silo library. Building against the Silo library is usually accomplished by a 
simple adaptation of your Makefile and the inclusion of silo.h in your C-language source 
code. If Silo has been installed in /usr/local/silo then you would add the following to your 
Makefile:

LDFLAGS=$(LDFLAGS) -L/usr/gapps/silo/lib -lsilo -lm
CPPFLAGS=$(CPPFLAGS) -I/usr/gapps/silo/include

If you discover that only libsilo.a exists in your Silo library directory then you may not be 
able to generate Silo files using the HDF5 file format. If you find that your Silo library 
directory contains a file called libsiloh5.a then you can use that version of the Silo library 
to create HDF5-style Silo files. You might still want to manually check your libsilo.a for 
HDF5 support using this command in your UNIX shell: “nm libsilo.a | grep 
hdf5”. If you see any output containing the word “hdf5” then you can use libsilo.a to 
create HDF5 files. If your Silo library does support HDF5 files then you must also locate 
your HDF5 installation directory so you can link HDF5 into your program to satisfy 
HDF5 calls for the Silo library. Your Makefile would look something like this:

HDF5DIR= Fill in the right path to your HDF5 installation
HDF5LIBS=$(HDF5DIR)/lib/libhdf5.a -lz
LDFLAGS=$(LDFLAGS) -L/usr/gapps/silo/lib -lsilo $(HDF5LIBS) -lm
CPPFLAGS=$(CPPFLAGS) -I/usr/gapps/silo/include

If your Makefile does not use CPPFLAGS then you might try adding the -I directive to 
CFLAGS, F77FLAGS, or whichever make variables are relevant for your Makefile.
Writing Silo files 13



Creating compatible files
4.1.3 Using Silo on Windows

When you build an application using the Silo library on Windows, you can use the 
precompiled Silo DLL and import library that comes with the VisIt source code 
distribution for Windows. The VisIt1.5.4 source code distribution for Windows is called 
visitdev1.5.4.exe. Other versions of VisIt would, of course, include a different version 
number in the filename. When you install the VisIt source code distribution for Windows, 
you get all of VisIt’s project files, include files, and source code. In addition, certain 
precompiled libraries such as Silo are included. 

If you want to build an application against the Silo library provided with VisIt, add the 
path to silo.h to your project file. If you build using a source code distribution for VisIt 
1.5.4 that was installed in the default location, the path would be: 
C:\VisItDev1.5.4\include\silo. 

After setting the Silo include directory to your project file, make sure that the Silo’s import 
library is in your linker path. You can add C:\VisItDev1.5.4\lib\Release our 
C:\VisItDev1.5.4\lib\Debug to your project to ensure that your linker can find Silo’s import 
library. Next, add silohdf5.lib to the list of libraries that are linked with your program. 
That should be enough to get your program to build.

Before running your program, be sure to copy silohdf5.dll, hdf5dll.dll, sziplib.dll, and 
zlib.dll from C:\VisItDev1.5.4\bin\Release or C:\VisItDev1.5.4\bin\Debug (depending on 
whether your program is compiled with debugging information) into the directory where 
your program will execute. Note that you must configure your program to use a 
Multithreaded DLL version of the Microsoft runtime library or using the precompiled Silo 
library may result in fatal errors.

4.2 Inspecting Silo files

Silo includes a command line utility called browser that can access the contents of Silo 
files. To run browser, type “browser” into a terminal window followed by the name of a 
Silo file that you want to inspect. Once the browser application opens the Silo file, type 
“ls” to see the contents of the Silo file. From there, typing the name of any of the objects 
shown in the object listing will print information about that object to the console. 

4.3 Silo files and parallel codes

Before we delve into examples about how to use the Silo library, let’s first examine how 
parallel simulation codes process their data in a distributed-memory environment. Many 
parallel simulation codes will divide the entire simulated mesh into submeshes, called 
domains, which are assigned to processors that calculate the fields of interest on their 
domain. Often, the most efficient I/O strategy for the simulation code is to make each 
processor write its domain to a separate file. The examples that follow assume parallel 
simulations will write 1 file per processor. It is possible for multiple processors to append 
14 Writing Silo files



Creating compatible files
their data to a single Silo file but it requires synchronization and that technique is beyond 
the scope of the examples that will be presented.

4.4 Creating a new Silo file

The first step to saving data to a Silo file is to create the file and obtain a handle that will be 
used to reference the file. The handle will be passed to other Silo function calls in order to 
add new objects to the file. Silo creates new files using the DBCreate function, which 
takes the name of the new file, access modes, a descriptive comment, and the underlying 
file type as arguments. 

In addition to being a library, Silo is a self-describing data model, which can be 
implemented on top of many different underlying file formats. Silo includes drivers that 
allow it to read data from several different file formats, the most important of which are: 
PDB (A legacy LLNL file format) format, and HDF5 format. Silo files stored in HDF5 
format often provide performance advantages so the following code to open a Silo file will 
create HDF5-based Silo files. You tell Silo to create HDF5-based Silo files by passing the 
DB_HDF5 argument to the DBCreate function. If your Silo library does not have built-in 
HDF5 support then you can pass DB_PDB instead to create PDB-based Silo files.

#include <silo.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{

DBfile *dbfile = NULL;
/* Open the Silo file */
dbfile = DBCreate(“basic.silo”, DB_CLOBBER, DB_LOCAL,

“Comment about the data”, DB_HDF5);
if(dbfile == NULL)
{

fprintf(stderr, “Could not create Silo file!\n”);
return -1;

}
/* Add other Silo calls here. */
/* Close the Silo file. */
DBClose(dbfile);
return 0;

}

progam main
implicit none
include “silo.inc”
integer dbfile, ierr

c The 11 and 22 arguments represent the lengths of strings

Listing 2-3:  basic.c: C-Language example for creating a new Silo file.

Listing 2-4:  fbasic.f: Fortran language example for creating a new Silo file..
Writing Silo files 15



Creating compatible files
ierr = dbcreate(“fbasic.silo”, 11, DB_CLOBBER, DB_LOCAL, 
. “Comment about the data”, 22, DB_HDF5, dbfile)
if(dbfile.eq.-1) then

write (6,*) ‘Could not create Silo file!\n’
goto 10000

endif
c Add other Silo calls here.
c Close the Silo file.

ierr = dbclose(dbfile)
10000 stop

end

In addition to using the DBCreate function, the previous examples also use the 
DBClose function. The DBClose function ensures that all data is written to the file and 
then closes the Silo file. You must call the DBClose function when you want to close a 
Silo file or your file may not be complete.

4.5 Dealing with time

Silo files are a flexible container for storing many types of data. Silo’s ability to store data 
hierarchically in directories can allow you to store multiple time states of your simulation 
data within a single data file. However, since Silo is primarily an I/O library for storing 
files that contain a single time step’s worth of data, VisIt only recognizes one time state per 
Silo file. Consequently, when writing out data, programs that use Silo will write a new Silo 
file for each time step. By convention, the new file will contain an index indicating either 
the simulation cycle or a simple integer counter. 

/* SIMPLE SIMULATION SKELETON */
void write_vis_dump(int cycle)
{

DBfile *dbfile = NULL;
/* Create a unique filename for the new Silo file*/
char filename[100];
sprintf(filename, “output%04d.silo”, cycle);
/* Open the Silo file */
dbfile = DBCreate(filename, DB_CLOBBER, DB_LOCAL,

“simulation time step”, DB_HDF5);
/* Add other Silo calls to write data here. */
/* Close the Silo file. */
DBClose(dbfile);

}
int main(int, char **)
{

int cycle = 0;
read_input_deck();
do

Listing 2-5:  time.c: C-Language example for dealing with time.
16 Writing Silo files



Creating compatible files
{
simulate_one_timestep();
write_vis_dump(cycle);
cycle = cycle + 1;

} while(!simulation_done());
return 0;

}

The above code listing will write out Silo files with names such as: output0000.silo, 
output0001.silo, output0002.silo, ... Each file contains the data from a particular 
simulation time state. It may seem like the data are less related because they are stored in 
different files but the fact that the files are related in time is subtly encoded in the name of 
each of the files. When VisIt recognizes a pattern in the names of the files such as 
“output????.silo”, in this case, VisIt automatically groups the files into a time-varying 
database. If you choose names for your Silo files that cannot be grouped by recognizing a 
numeric pattern in the trailing part of the file name then you must use a .visit file to tell 
VisIt that your files are related in time. For more information about .visit files, consult the 
VisIt User’s Manual.

4.6 Option lists

Many of Silo’s more complex functions accept an auxiliary argument called an option list. 
An option list is a list of option/value pairs and it is used to specify additional metadata 
about the data being stored. Each Silo function that accepts an option list has its options 
enumerated in the Silo User’s Manual. This manual will cover only a subset of available 
options. Option lists need not be passed to the Silo functions that do support them. In fact, 
most of the source code examples in this manual will pass NULL instead of passing a 
pointer to an option list. Omitting the option list from the Silo function call in this way is 
not harmful; it only means that certain pieces of additional metadata will not be stored 
with the data.

Option lists are created using the DBMakeOptlist function. Once an option list object 
is created, you can add options to it using the DBAddOption function. Option lists are 
freed using the DBFreeOptlist function.

4.6.1 Cycle and time

We’ve established that a notion of time can be encoded into filenames using ranges of 
numbers in each filename. VisIt can use the numbers in the names of related files to guess 
cycle number, a metric for how many times a simulation has iterated. It is possible to use 
Silo’s option list feature to directly encode the cycle number and the simulation time into 
the stored data.

Listing 2-6:  optlist.c: C-Language example for saving cycle and time using an option list..
Writing Silo files 17



Creating compatible files
/* Create an option list to save cycle and time values. */
int cycle = 100;
double dtime = 1.23456789;
DBoptlist *optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_DTIME, &time);
DBAddOption(optlist, DBOPT_CYCLE, &cycle);
/* Write a mesh using the option list. */
DBPutQuadmesh(dbfile, "quadmesh", coordnames, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, optlist);
/* Free the option list. */
DBFreeOptlist(optlist);

c Create an option list to save cycle and time values.
integer cycle /100/
double precision dtime /1.23456789/
integer err, ierr, optlistid
err = dbmkoptlist(2, optlistid)
err = dbaddiopt(optlistid, DBOPT_CYCLE, cycle)
err = dbadddopt(optlistid, DBOPT_DTIME, dtime)

c Write a mesh using the option list.
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2, 

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims, 

. DB_FLOAT, DB_COLLINEAR, optlistid, ierr)
c Free the option list.

err = dbfreeoptlist(optlistid)

4.7 Writing a rectilinear mesh

A rectilinear mesh is a 2D or 3D mesh where all coordinates are aligned with the axes. 
Each axis of the rectilinear mesh can have different, non-uniform spacing, allowing for 
details to be concentrated in certain regions of the mesh. Rectlinear meshes are specified 
by lists of coordinate values for each axis. Since the mesh is aligned to the axes, it is only 
necessary to specify one set of X and Y values to generate all of the coordinates for the 
entire mesh. Figure 2-8 contains an example of a 2D rectilinear mesh. The Silo function 
call to write a rectlinear mesh is called DBPutQuadmesh.

Listing 2-7:  foptlist.f: Fortran language example for saving cycle and time using an option list..
18 Writing Silo files



Creating compatible files
/* Write a rectilinear mesh. */
float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55,  5.};
int dims[] = {4, 5};
int ndims = 2;
float *coords[] = {x, y};
DBPutQuadmesh(dbfile, “quadmesh”, NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, NULL);

c Write a rectilinear mesh
integer err, ierr, dims(2), ndims, NX, NY
parameter (NX = 4)
parameter (NY = 5)
real x(NX), y(NY)
data dims/NX, NY/
data x/0., 1., 2.5, 5./

Figure 2-8:  Rectilinear mesh and its X,Y node coordinates.

X-coordinates

Y-coordinates

Listing 2-9:  rect2d.c: C-Language example for writing a 2D rectilinear mesh.

Listing 2-10:  frect2d.f: Fortran language example for writing a 2D rectilinear mesh.
Writing Silo files 19



Creating compatible files
data y/0., 2., 2.25, 2.55, 5./
ndims = 2
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2, 

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims, 

. DB_FLOAT, DB_COLLINEAR, DB_F77NULL, ierr)

The previous code examples demonstrate how to write out a 2D rectilinear mesh using 
Silo’s DBPutQuadmesh function (called dbputqm in Fortran). There are three pieces of 
important information passed to the DBPutQuadmesh function. The first important 
piece information is the name of the mesh being created. The name that you choose will 
be the name that you use when writing a variable to a Silo file and also the name that you 
will see in VisIt’s plot menus when you want to create a Mesh plot in VisIt. After the 
name, you provide the coordinate arrays that contain the X and Y point values that 
ultimately form the set of X,Y coordinate pairs that describe the mesh. The C-interface to 
Silo requires that you pass pointers to the coordinate arrays in a single pointer array. The 
Fortran interface to Silo requires you to pass the names of the coordinate arrays, followed 
by the actual coordinate arrays, with a value of DB_F77NULL for any arrays that you do 
not use. The final critical pieces of information that must be passed to the 
DBPutQuadmesh function are the dimensions of the mesh, which correspond to the 
number of nodes, or coordinate values, along the mesh in a given dimension. The 
dimensions are passed in an array, along with the number of dimensions, which must be 2 
or 3. Figure 2-11 shows an example of a 3D rectilinear mesh for the upcoming code 
examples.

X-coordinates

Y-coordinates

Z-coordinates

Figure 2-11:  Rectilinear mesh and its X,Y,Z coordinates
20 Writing Silo files



Creating compatible files
/* Write a rectilinear mesh. */
float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55,  5.};
float z[] = {0., 1., 3.};
int dims[] = {4, 5, 3};
int ndims = 3;
float *coords[] = {x, y, z};
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, NULL);

integer err, ierr, dims(3), ndims, NX, NY, NZ
parameter (NX = 4)
parameter (NY = 5)
parameter (NZ = 3)
real x(NX), y(NY), z(NZ)
data x/0., 1., 2.5, 5./
data y/0., 2., 2.25, 2.55, 5./
data z/0., 1., 3./
ndims = 3
data dims/NX, NY, NZ/
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2,

. "yc", 2, "zc", 2, x, y, z, dims, ndims,

. DB_FLOAT, DB_COLLINEAR, DB_F77NULL, ierr)

4.8 Writing a curvilinear mesh

A curvilinear mesh is similar to a rectlinear mesh. The main difference between the two 
mesh types is how coordinates are specified. Recall that in a rectilinear mesh, the 
coordinates are specified individually for each axis and only a small subset of the nodes in 
the mesh are provided. The coordinate arrays are used to assemble a point for each node in 
the mesh. In a curvilinear mesh, you must provide an X,Y,Z value for every node in the 
mesh. Providing the coordinates for every point explicitly allows you to specify more 
complex geometries than are possible using rectilinear meshes. Note how the mesh 
coordinates on the mesh in Figure 2-14 allow it to assume shapes that are not aligned to 
the coordinate axes.

Listing 2-12:  rect3d.c: C-Language example for writing a 3D rectilinear mesh.

Listing 2-13:  frect3d.f: Fortran language example for writing a 3D rectilinear mesh.
Writing Silo files 21



Creating compatible files
The fine line between a rectilinear mesh and a curvilinear mesh comes down to how the 
coordinates are specified. Silo dicates that the coordinates be specified with an array of X-
coordinates, an array of Y-coordinates, and an optional array of Z-coordinates. The 
difference, of course, is that in a curvilinear mesh, there are explicit values for each node’s 
X,Y,Z points. Silo uses the same DBPutQuadmesh function to write out curvilinear 
meshes. The coordinate arrays are passed the same as for the rectilinear mesh, though the 
X,Y,Z arrays now point to larger arrays. You can pass the DB_NONCOLLINEAR flag to 
the DBPutQuadmesh function in order to indicate that the coordinate arrays contain 
values for every node in the mesh.

/* Write a curvilinear mesh. */
#define NX 4
#define NY 3
float x[NY][NX] = {{0., 1., 3., 3.5}, {0., 1., 2.5, 3.5}, 

{0.7, 1.3, 2.3, 3.5}};
float y[NY][NX] = {{0., 0., 0., 0.}, {1.5, 1.5, 1.25, 1.5}, 

{3., 2.75, 2.75, 3.}};
int dims[] = {NX, NY};
int ndims = 2;
float *coords[] = {(float*)x, (float*)y};
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

Figure 2-14:  Curvilinear mesh and its X,Y node coordinates

Listing 2-15:  curv2d.c: C-Language example for writing a 2D curvilinear mesh.
22 Writing Silo files



Creating compatible files
DB_FLOAT, DB_NONCOLLINEAR, NULL);

c Write a curvilinear mesh.
integer err, ierr, dims(2), ndims, NX, NY
parameter (NX = 4)
parameter (NY = 3)
real x(NX,NY), y(NX,NY)
data x/0., 1., 3., 3.5, 

.       0., 1., 2.5, 3.5,    

.       0.7, 1.3, 2.3, 3.5/
data y/0., 0., 0., 0., 

.       1.5, 1.5, 1.25, 1.5,

.       3., 2.75, 2.75, 3./
ndims = 2
data dims/NX, NY/
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2, 

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims, 

. DB_FLOAT, DB_NONCOLLINEAR, DB_F77NULL, ierr)

Figure 2-17 shows a simple 3D curvilinear mesh that is 1 cell thick in the Z-dimension. 
The number of cells in a dimension is 1 less than the number of nodes in the same 
dimension. for structured meshes. As you increase the number of nodes in the Z-
dimension, you must also add more X and Y coordinate values because the X,Y,Z values 
for node coordinates must be fully specified for a curvilinear mesh.

Listing 2-16:  fcurv2d.f: Fortran language example for writing a 2D curvilinear mesh.

Figure 2-17:  3D Curvilinear mesh and its X,Y,Z coordinates
Writing Silo files 23



Creating compatible files
/* Write a curvilinear mesh. */
#define NX 4
#define NY 3
#define NZ 2
float x[NZ][NY][NX] = {

{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}},
{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}}

};
float y[NZ][NY][NX] = {

{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}},
{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}}

};
float z[NZ][NY][NX] = {

{{0.,0.,0.,0.},{0.,0.,0.,0.},{0.,0.,0.,0.}},
{{1.,1.,1.,1.},{1.,1.,1.,1.},{1.,1.,1.,1.}}

};
int dims[] = {NX, NY, NZ};
int ndims = 3;
float *coords[] = {(float*)x, (float*)y, (float*)z};
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_NONCOLLINEAR, NULL);

c Write a curvilinear mesh
integer err, ierr, dims(3), ndims, NX, NY, NZ
parameter (NX = 4)
parameter (NY = 3)
parameter (NZ = 2)
real x(NX,NY,NZ), y(NX,NY,NZ), z(NX,NY,NZ)
data x/0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3.,

. 0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3./
data y/0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5,

. 0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5/
data z/0.,0.,0.,0., 0.,0.,0.,0., 0.,0.,0.,0,

. 1.,1.,1.,1., 1.,1.,1.,1., 1.,1.,1.,1./
ndims = 3
data dims/NX, NY, NZ/
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2, 

. "yc", 2, "zc", 2, x, y, z, dims, ndims, 

. DB_FLOAT, DB_NONCOLLINEAR, DB_F77NULL, ierr)

Listing 2-18:  curv3d.c: C-Language example for writing a 3D curvilinear mesh.

Listing 2-19:  fcurv3d.f: Fortran language example for writing a 3D curvilinear mesh.
24 Writing Silo files



Creating compatible files
4.9 Writing a point mesh

A point mesh is a set of 2D or 3D points where the nodes also constitute the cells in the 
mesh. Silo provides the DBPutPointmesh function so you can write out particle 
systems represented as point meshes.  

/* Create some points to save. */
#define NPTS 100
int i, ndims = 2;
float x[NPTS], y[NPTS];
float *coords[] = {(float*)x, (float*)y};
for(i = 0; i < NPTS; ++i)
{

float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
x[i] = t * cos(angle);
y[i] = t * sin(angle);

}
/* Write a point mesh. */
DBPutPointmesh(dbfile, "pointmesh", ndims, coords, NPTS,

DB_FLOAT, NULL);

c Create some points to save.
integer err, ierr, i, ndims, NPTS
parameter (NPTS = 100)

Figure 2-20:  2D point mesh

Listing 2-21:  point2d.c: C-Language example for writing a 2D point mesh.

Listing 2-22:  fpoint2d.f: Fortran language example for writing a 2D point mesh.
Writing Silo files 25



Creating compatible files
real x(NPTS), y(NPTS), t, angle
do 10000 i = 0,NPTS-1

t = float(i) / float(NPTS-1)
angle =  3.14159 * 10. * t
x(i+1) = t * cos(angle);
y(i+1) = t * sin(angle);

10000 continue
ndims = 2

c Write a point mesh.
err = dbputpm (dbfile, "pointmesh", 9, ndims, x, y,

. DB_F77NULL, NPTS, DB_FLOAT, DB_F77NULL, ierr)

Writing a 3D point mesh is very similar to writing a 2D point mesh with the exception that 
for a 3D point mesh, you must specify a Z-coordinate. Figure 2-23 shows what happens 
when we extend our 2D point mesh example into 3D.

/* Create some points to save. */
#define NPTS 100
int i, ndims = 3;
float x[NPTS], y[NPTS], z[NPTS];
float *coords[] = {(float*)x, (float*)y, (float*)z};
for(i = 0; i < NPTS; ++i)

Figure 2-23:  3D point mesh

Listing 2-24:  point3d.c: C-Language example for writing a 3D point mesh.
26 Writing Silo files



Creating compatible files
{
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
x[i] = t * cos(angle);
y[i] = t * sin(angle);
z[i] = t;

}
/* Write a point mesh. */
DBPutPointmesh(dbfile, "pointmesh", ndims, coords, NPTS,

DB_FLOAT, NULL);

c Create some points to save
integer err, ierr, i, ndims, NPTS
parameter (NPTS = 100)
real x(NPTS), y(NPTS), z(NPTS), t, angle
do 10000 i = 0,NPTS-1

t = float(i) / float(NPTS-1)
angle =  3.14159 * 10. * t
x(i+1) = t * cos(angle);
y(i+1) = t * sin(angle);
z(i+1) = t

10000 continue
ndims = 3

c Write a point mesh
err = dbputpm (dbfile, "pointmesh", 9, ndims, x, y, z,

. NPTS, DB_FLOAT, DB_F77NULL, ierr)

Listing 2-25:  fpoint3d.f: Fortran language example for writing a 3D point mesh.
Writing Silo files 27



Creating compatible files
4.10 Writing an unstructured mesh

Unstructured meshes are collections of different types of zones and are useful because 
they can represent more complex mesh geometries than structured meshes can. This 
section explains the Silo functions that are used to write out an unstructured mesh.

Silo supports the creation of 2D unstructured meshes composed of arbitrary polyhedral 
cells. However, of the myriad of possible polyhedral cells, VisIt’s Silo reader plug-in will 
currently only accept cells that are triangles or quadrilaterals. Unstructured meshes are 
specified in terms of a set of nodes and then a zone list consisting of lists of nodes, called 
connectivity information, that make up the zones in the mesh. When creating connectivity 
information, be sure that the nodes in your zones are specified so that when you iterate 
over the nodes in the zone that a counter-clockwise pattern is observed. Silo provides the 
DBPutZonelist function to store out the connectivity information. The coordinates for 
the unstructured mesh itself is written out using the DBPutUcdmesh function.

/* Node coordinates */
float x[] = {0., 2., 5., 3., 5., 0., 2., 4., 5.};
float y[] = {0., 0., 0., 3., 3., 5., 5., 5., 5.};
float *coords[] = {x, y};
/* Connectivity */
int nodelist[] = {

2,4,7,   /* tri zone 1 */
4,8,7,   /* tri zone 2 */

Figure 2-26:  2D unstructured mesh composed of triangles and 
quadrilaterals. The node numbers are labelled red and 
the zone numbers are labelled blue.

Listing 2-27:  ucd2d.c: C-Language example for writing a 2D unstructured mesh.
28 Writing Silo files



Creating compatible files
1,2,7,6, /* quad zone 3 */
2,3,5,4, /* quad zone 4 */
4,5,9,8  /* quad zone 5 */

};
int lnodelist = sizeof(nodelist) / sizeof(int);
/* shape type 1 has 3 nodes (tri), shape type 2 is quad */
int shapesize[] = {3, 4};
/* We have 2 tris and 3 quads */
int shapecounts[] = {2, 3};
int nshapetypes = 2;
int nnodes = 9;
int nzones = 5;
int ndims = 2;
/* Write out connectivity information. */
DBPutZonelist(dbfile, "zonelist", nzones, ndims, nodelist, lnodelist,

1, shapesize, shapecounts, nshapetypes);
/* Write an unstructured mesh. */
DBPutUcdmesh(dbfile, "mesh", ndims, NULL, coords, nnodes, nzones,

"zonelist", NULL, DB_FLOAT, NULL);

integer err, ierr, ndims, nshapetypes, nnodes, nzones
c Node coordinates

real x(9) /0., 2., 5., 3., 5., 0., 2., 4., 5./
real y(9) /0., 0., 0., 3., 3., 5., 5., 5., 5./

c Connectivity
integer LNODELIST
parameter (LNODELIST = 18)
integer nodelist(LNODELIST) /2,4,7,

.  4,8,7,

.  1,2,7,6,

.  2,3,5,4,

.  4,5,9,8/
c Shape type 1 has 3 nodes (tri), shape type 2 is quad

integer shapesize(2) /3, 4/
c We have 2 tris and 3 quads

integer shapecounts(2) /2, 3/
nshapetypes = 2
nnodes = 9
nzones = 5
ndims = 2

c Write out connectivity information.
err = dbputzl(dbfile, "zonelist", 8, nzones, ndims, nodelist,

. LNODELIST, 1, shapesize, shapecounts, nshapetypes, ierr)
c Write an unstructured mesh

err = dbputum(dbfile, "mesh", 4, ndims, x, y, DB_F77NULL,
. "X", 1, "Y", 1, DB_F77NULL, 0, DB_FLOAT, nnodes, nzones,
. "zonelist", 8, DB_F77NULL, 0, DB_F77NULL, ierr)

Listing 2-28:  fucd2d.f: Fortran language example for writing a 2D unstructured mesh.
Writing Silo files 29



Creating compatible files
3D unstructured meshes are 
created much the same way as 2D 
unstructured meshes are created. 
The main difference is that 
whereas in 2D, you use triangles 
and quadrilateral zone types, in 
3D, you use hexahedrons, 
pyramids, prisms, and 
tetrahedrons to compose your 
mesh. The procedure for creating 
the node coordinates is the same 
with the exception that 3D meshes 
also require a Z-coordinate. The 
procedure for creating the zone list 
(connectivity information) is the 
same except that you specify cells 
using a larger number of nodes 
because they are 3D. The order in 
which the nodes are specified is 
also more important for 3D shapes 
because if the nodes are not given 
in the right order, the zones can 
become tangled. The proper zone 
ordering for each of the four supported 3D zone shapes is shown in Figure 2-29.

Figure 2-30 shows an example of a simple 3D unstructured mesh consisting of 2 
hexahedrons, 1 pyramid, 1 prism, and 1 tetrahedron.

0

4
5

4

1 3

3

6

2 2

0

7

3

1

4

5

2 1

1

2

30

0

Tetrahedron Pyramid

Prism Hexahedron

Figure 2-29:  Node ordering for Silo’s 3D unstructured zone 
types

Figure 2-30:  Node numbers on the left and the mesh, colored by zone type, on the right. 
Hexhadrons (red), Pyramid (blue), Prism (yellow), Tetrahedron (green).
30 Writing Silo files



Creating compatible files
/* Node coordinates */
float x[] = {0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4.};
float y[] = {0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0.};
float z[] = {2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0.};
float *coords[] = {x, y, z};
/* Connectivity */
int nodelist[] = {

1,2,3,4,5,6,7,8,    /* hex,     zone 1 */
5,6,7,8,9,10,11,12, /* hex,     zone 2 */
9,10,11,12,13,      /* pyramid, zone 3 */
2,3,16,15,6,7,      /* prism,   zone 4 */
2,15,14,6           /* tet,     zone 5 */

};
int lnodelist = sizeof(nodelist) / sizeof(int);
/* shape type 1 has 8 nodes (hex) */
/* shape type 2 has 5 nodes (pyramid) */
/* shape type 3 has 6 nodes (prism) */
/* shape type 4 has 4 nodes (tet) */
int shapesize[] = {8,5,6,4};
/* We have 2 hex, 1 pyramid, 1 prism, 1 tet */
int shapecounts[] = {2,1,1,1};
int nshapetypes = 4;
int nnodes = 16;
int nzones = 5;
int ndims = 3;
/* Write out connectivity information. */
DBPutZonelist(dbfile, "zonelist", nzones, ndims, nodelist, lnodelist,

1, shapesize, shapecounts, nshapetypes);
/* Write an unstructured mesh. */
DBPutUcdmesh(dbfile, "mesh", ndims, NULL, coords, nnodes, nzones,

"zonelist", NULL, DB_FLOAT, NULL);

integer err, ierr, ndims, nzones
integer NSHAPETYPES, NNODES
parameter (NSHAPETYPES = 4)
parameter (NN = 16)

c Node coordinates
real x(NN) /0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4./
real y(NN) /0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0./
real z(NN) /2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0./

c Connectivity
integer LNODELIST
parameter (LNODELIST = 31)
integer nodelist(LNODELIST) /1,2,3,4,5,6,7,8,

. 5,6,7,8,9,10,11,12,

. 9,10,11,12,13,

Listing 2-31:  ucd3d.c: C-Language example for writing a 3D unstructured mesh.

Listing 2-32:  fucd3d.f: Fortran language example for writing a 3D unstructured mesh.
Writing Silo files 31



Creating compatible files
. 2,3,16,15,6,7,

. 2,15,14,6/
c Shape type 1 has 8 nodes (hex)
c Shape type 2 has 5 nodes (pyramid)
c Shape type 3 has 6 nodes (prism)
c Shape type 4 has 4 nodes (tet)

integer shapesize(NSHAPETYPES) /8, 5, 6, 4/
c We have 2 hex, 1 pyramid, 1 prism, 1 tet

integer shapecounts(NSHAPETYPES) /2, 1, 1, 1/
nzones = 5
ndims = 3

c Write out connectivity information.
err = dbputzl(dbfile, "zonelist", 8, nzones, ndims, nodelist,

. LNODELIST, 1, shapesize, shapecounts, NSHAPETYPES, ierr)
c Write an unstructured mesh

err = dbputum(dbfile, "mesh", 4, ndims, x, y, z,
. "X", 1, "Y", 1, "Z", 1, DB_FLOAT, NN, nzones,
. "zonelist", 8, DB_F77NULL, 0, DB_F77NULL, ierr)

4.10.1 Adding axis labels and axis units

It is possible to add additional 
annotations to your meshes 
that you store to Silo files 
using Silo’s option list 
mechanism. This subsection 
covers how to change the axis 
titles and units that will be 
used when VisIt plots your 
mesh. By default, VisIt uses 
“X-Axis”, “Y-Axis”, and “Z-
Axis” when labelling the 
coordinate axes. You can 
override the default labels 
using an option list. Option 
lists are created with the 
DBMakeOptlist function 
and freed with the 
DBFreeOptlist function. 
All of the Silo functions for 
writing meshes that we’ve 
demonstrated so far can 
accept option lists that contain custom axis labels and units. Refer to the Silo User’s 
Manual for more information on addition options that can be passed via option lists.

Figure 2-33:  Custom mesh labels and units along the X and Y axes
32 Writing Silo files



Creating compatible files
Adding customized labels and units for a mesh by using option lists ensures that VisIt uses 
your customized labels and units instead of the default values. Figure 2-33 shows how the 
labels and units in the previous examples show up in VisIt’s visualization window.

/* Create an option list to contain labels and units. */
DBoptlist *optlist = DBMakeOptlist(4);
DBAddOption(optlist, DBOPT_XLABEL, (void *)"Pressure");
DBAddOption(optlist, DBOPT_XUNITS, (void *)"kP");
DBAddOption(optlist, DBOPT_YLABEL, (void *)"Temperature");
DBAddOption(optlist, DBOPT_YUNITS, (void *)"Degrees Celsius");
/* Write a quadmesh with an option list. */
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, optlist);
/* Free the option list. */
DBFreeOptlist(optlist);

c Create an option list to contain labels and units.
integer err, ierr, optlistid
err = dbmkoptlist(4, optlistid)
err = dbaddcopt(optlistid, DBOPT_XLABEL, "Pressure", 8)
err = dbaddcopt(optlistid, DBOPT_XUNITS, "kP", 2)
err = dbaddcopt(optlistid, DBOPT_YLABEL, "Temperature", 11)
err = dbaddcopt(optlistid, DBOPT_YUNITS, "Celsius", 7)

c Write a quadmesh with an option list.
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2, 

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims, 

. DB_FLOAT, DB_COLLINEAR, optlistid, ierr)
c Free the option list

err = dbfreeoptlist(optlistid)

4.11 Writing a scalar variable

Silo provides several different functions for writing variables; one for each basic type of 
mesh: quadmesh (rectilinear and curvilinear), unstructured mesh, and point mesh. Each of 
these functions can be used to write either zone-centered or node-centered data. This 
section concentrates on how to write scalar variables; vector and tensor variable 
components can be written as scalar variables and reassembled into vectors and tensors 
using expressions, covered on page 45. This section’s code examples use the rectilinear, 
curvilinear, point, and unstructured meshes that have appeared in previous code examples.

Listing 2-34:  rect2d.c: C-Language example for associating new axis labels and units with a mesh.

Listing 2-35:  frect2d.f: Fortran language example for associating new axis labels and units with a 
mesh
Writing Silo files 33



Creating compatible files
4.11.1 Zone centering vs. Node centering

VisIt supports two types of variable centering: zone-centering and node-centering. A 
variable’s centering indicates how its values are attached to the mesh on which the variable 
is defined. When a variable is zone-centered, each zone is assigned a single value. If you 
were to plot a zone-centered value in VisIt, each zone would be drawn using a uniform 
color and picking anywhere in the zone would yield the same value. Arrays containing 
values that are to be zone-centered on a mesh must contain the same number of elements 
as there are zones in the mesh. Node-centered arrays, on the other hand, contain a value 
for every node in the mesh. When you plot a node-centered value in VisIt, VisIt 
interpolates the values from the nodes across the zone’s surface, usually producing a 
smooth gradient of values across the zone.

4.11.2 API Commonality

Each of the provided functions for writing scalar variables does have certain arguments in 
common. For example, all of the functions must be provided the name of the variable to 
write out. The name that you pick is the name that will appear in VisIt’s plot menus (see 
Figure 2-37). Be careful when you pick your variable names because you should avoid 
characters that include: punctuation marks, and spaces. Variable names should only 
contain letters and numbers and they should begin with a letter. These guidelines are in 
place to assure that your data files will have the utmost compatibility with VisIt’s 
expression language, which is defined in the VisIt User’s Manual.

All variables must be defined on a mesh. If you examine the code examples in this section, 
each Silo function that writes out a variable will be passed the name of the mesh on which 
the variable is to be defined.

Each of the Silo function calls will accept a pointer to the array that contains the variable’s 
data. The data can be stored in several internal formats: char, short, int, long, 
float, and double. Since Silo’s variable writing functions use a pointer to pass the 
data, you can pass a pointer that points to data in any of the mentioned types. In addition, 

Figure 2-36:  Zone-centering (left) and Node-centering (right)
34 Writing Silo files



Creating compatible files
you must pass a flag that indicates to Silo the type of data stored in the array whose 
address you’ve passed. 

Most of the remaining arguments to Silo’s variable writing functions are specific to the 
types of meshes on which the variable is defined so the rest of this section will provide 
examples for writing out variables that are defined on various mesh types.

4.11.3 Rectilinear and curvilinear meshes

Recall from sections “Writing a rectilinear mesh” on page 18 and “Writing a curvilinear 
mesh” on page 21 that the procedure for creating rectilinear and curvilinear meshes was 
similar and the chief difference between the two mesh types was in how their coordinates 
were specified. While a rectilinear mesh’s coordinates could be specified quite compactly 
as separate X,Y,Z arrays made up of unique values along a coordinate axis, the curvilinear 
mesh required X,Y,Z coordinate arrays that contained the X,Y,Z values for every node in 
the mesh. Regardless of how the coordinates were specified, both mesh types contain 
(NX-1)*(NY-1)*(NZ-1) zones and NX*NY*NZ nodes. This means that the code to write 
a variable on a rectilinear mesh will be identical to the code to write a zone-centered 
variable on a curvilinear mesh! Silo provides the DBPutQuadvar1 function to write 
scalar variables for both rectilinear and curvilinear meshes,

Figure 2-37:  Variables in VisIt’s plot menus
Writing Silo files 35



Creating compatible files
/* The data must be (NX-1) * (NY-1) since it is zonal. */
float var1[] = {

0.,  1.,  2.,
3.,  4.,  5.,
6.,  7.,  8.,
9., 10., 11.

};
double var2[] = {

0.00, 1.11, 2.22,
3.33, 4.44, 5.55,
6.66, 7.77, 8.88,
9.99, 10.1, 11.11

};
int var3[] = {

0,  1,  2,
3,  4,  5,
6,  7,  8,
9, 10, 11

};
char var4[] = {

0,  1,  2,
3,  4,  5,

Figure 2-38:  Zone-centered variables. Clock-wise from upper left, 
float, double-precision, integer, char

Listing 2-39:  quadvar2d.c: C-Language example for writing zone-centered variables.
36 Writing Silo files



Creating compatible files
6,  7,  8,
9, 10, 11

};
/* Note dims are 1 less than mesh’s dims in each dimension. */
int dims[]={3, 4};
int ndims = 2;
DBPutQuadvar1(dbfile, "var1", "quadmesh", var1, dims,

ndims, NULL, 0, DB_FLOAT, DB_ZONECENT, NULL);
/* Write a double-precision variable. */
DBPutQuadvar1(dbfile, "var2", "quadmesh", (float*)var2, dims,

ndims, NULL, 0, DB_DOUBLE, DB_ZONECENT, NULL);
/* Write an integer variable */
DBPutQuadvar1(dbfile, "var3", "quadmesh", (float*)var3, dims,

ndims, NULL, 0, DB_INT, DB_ZONECENT, NULL);
/* Write a char variable */
DBPutQuadvar1(dbfile, "var4", "quadmesh", (float*)var4, dims,

ndims, NULL, 0, DB_CHAR, DB_ZONECENT, NULL);

integer err, ierr, dims(2), ndims, NX, NY, ZX, ZY
parameter (NX = 4)
parameter (NY = 5)
parameter (ZX = NX-1)
parameter (ZY = NY-1)
real             var1(ZX,ZY)
double precision var2(ZX,ZY)
integer          var3(ZX,ZY)
character        var4(ZX,ZY)
data var1/0., 1., 2.,

. 3.,  4.,  5.,

. 6.,  7.,  8.,

. 9., 10., 11./
data var2/0.,1.11,2.22,

. 3.33, 4.44, 5.55,

. 6.66, 7.77, 8.88,

. 9.99, 10.1, 11.11/
data var3/0,1,2,

. 3, 4, 5,

. 6, 7, 8,

. 9, 10, 11/
data var4/0,1,2,

. 3, 4, 5,

. 6, 7, 8,

. 9, 10, 11/
data dims/ZX, ZY/
ndims = 2
err = dbputqv1(dbfile, "var1", 4, "quadmesh", 8, var1, dims, 

. ndims, DB_F77NULL, 0, DB_FLOAT, DB_ZONECENT, DB_F77NULL, ierr)
c Write a double-precision variable

err = dbputqv1(dbfile, "var2", 4, "quadmesh", 8, var2, dims,
. ndims, DB_F77NULL, 0, DB_DOUBLE, DB_ZONECENT, 
. DB_F77NULL, ierr)

Listing 2-40:  fquadvar2d.f: Fortran language example for writing zone-centered variables.
Writing Silo files 37



Creating compatible files
c Write an integer variable
err = dbputqv1(dbfile, "var3", 4, "quadmesh", 8, var3, dims,
. ndims, DB_F77NULL, 0, DB_INT, DB_ZONECENT, DB_F77NULL, ierr)

c Write a char variable
err = dbputqv1(dbfile, "var4", 4, "quadmesh", 8, var4, dims,

. ndims, DB_F77NULL, 0, DB_CHAR, DB_ZONECENT, DB_F77NULL, ierr)

Both of the previous code examples produce a data file with 4 different scalar arrays as 
shown in Figure 2-38. Note that in both of the previous code examples, the same 
DBPutQuadvar1 function (or dbputqv1 in Fortran) function was used to write out 
data arrays of differing types.

The DBPutQuadvar1 function can also be used to write out node centered variables. 
There are two differences that you must observe when writing a node-centered variable as 
opposed to writing a zone-centered variable. First, the data array that you pass to the 
DBPutQuadvar1 function must be larger by 1 in each of its dimensions and you must 
pass DB_NODECENT instead of DB_ZONECENT.

/* The data must be NX * NY since it is nodal. */
#define NX 4
#define NY 5
float nodal[] = {

0.,   1.,  2., 3.,
4.,   5.,  6., 7.,
8.,   9., 10., 11.,
12., 13., 14., 15.,
16., 17., 18., 19.

};
/* Nodal variables have same #values as #nodes in mesh */
int dims[]={NX, NY};
int ndims = 2;
DBPutQuadvar1(dbfile, "nodal", "quadmesh", nodal, dims,

ndims, NULL, 0, DB_FLOAT, DB_NODECENT, NULL);

c The data must be NX * NY since it is nodal.
integer err, ierr, dims(2), ndims, NX, NY
parameter (NX = 4)
parameter (NY = 5)
real    nodal(NX, NY)
data dims/NX, NY/
data nodal/0.,   1.,  2., 3.,

. 4.,   5.,  6., 7.,

. 8.,   9., 10., 11.,

. 12., 13., 14., 15.,

. 16., 17., 18., 19./

Listing 2-41:  quadvar2d.c: C-Language example for writing node-centered variables.

Listing 2-42:  fquadvar2d.f: Fortran language example for writing node-centered variables.
38 Writing Silo files



Creating compatible files
ndims = 2
c Nodal variables have same #values as #nodes in mesh

err = dbputqv1(dbfile, "nodal", 5, "quadmesh", 8, nodal,
. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT,
. DB_F77NULL, ierr)

Writing variables to 3D curvilinear and rectilinear meshes follows the same basic rules as 
writing variables for 2D meshes. For zone-centered variables, you must have (NX-
1)*(NY-1)*(NZ-1) data values and for node-centered variables, you must have 
NX*NY*NZ data values. Figure 2-43 shows what the data values look like for the Silo 
files produced by the examples to come.

#define NX 4
#define NY 3
#define NZ 2
/* Write a zone-centered variable. */
void write_zonecent_quadvar(DBfile *dbfile)
{

int i, dims[3], ndims = 3;
int ncells = (NX-1)*(NY-1)*(NZ-1);
float *data = (float *)malloc(sizeof(float)*ncells);
for(i = 0; i < ncells; ++i)

data[i] = (float)i;
dims[0] = NX-1; dims[1] = NY-1; dims[2] = NZ-1;
DBPutQuadvar1(dbfile, "zonal", "quadmesh", data, dims,

ndims, NULL, 0, DB_FLOAT, DB_ZONECENT, NULL);
free(data);

}
/* Write a node-centered variable. */

Figure 2-43:  Zone-centered variable in 3D and a node-centered variable in 3D (shown 
with a partially transparent plot)

Listing 2-44:  quadvar3d.c: C-Language example for writing variables on a 3D mesh.
Writing Silo files 39



Creating compatible files
void write_nodecent_quadvar(DBfile *dbfile)
{

int i, dims[3], ndims = 3;
int nnodes = NX*NY*NZ;
float *data = (float *)malloc(sizeof(float)*nnodes);
for(i = 0; i < nnodes; ++i)

data[i] = (float)i;
dims[0] = NX; dims[1] = NY; dims[2] = NZ;
DBPutQuadvar1(dbfile, "nodal", "quadmesh", data, dims,

ndims, NULL, 0, DB_FLOAT, DB_NODECENT, NULL);
free(data);

}

c Write a zone-centered variable.
subroutine write_zonecent_quadvar(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer err, ierr, dims(3), ndims, i,j,k,index, ZX,ZY,ZZ
parameter (ZX = 3)
parameter (ZY = 2)
parameter (ZZ = 1)
integer    zonal(ZX, ZY, ZZ)
data dims/ZX, ZY, ZZ/
index = 0
do 10020 k=1,ZZ
do 10010 j=1,ZY
do 10000 i=1,ZX

zonal(i,j,k) = index
index = index + 1

10000 continue
10010 continue
10020 continue

ndims = 3
err = dbputqv1(dbfile, "zonal", 5, "quadmesh", 8, zonal, dims, 

. ndims, DB_F77NULL, 0, DB_INT, DB_ZONECENT, DB_F77NULL, ierr)
end

c Write a node-centered variable.
subroutine write_nodecent_quadvar(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer err, ierr, dims(3), ndims, i,j,k,index, NZ, NY, NZ
parameter (NX = 4)
parameter (NY = 3)
parameter (NZ = 2)
real    nodal(NX, NY, NZ)
data dims/NX, NY, NZ/
index = 0
do 20020 k=1,NZ
do 20010 j=1,NY

Listing 2-45:  fquadvar3d.f: Fortran language example for writing variables on a 3D mesh.
40 Writing Silo files



Creating compatible files
do 20000 i=1,NX
nodal(i,j,k) = float(index)
index = index + 1

20000 continue
20010 continue
20020 continue

ndims = 3
err = dbputqv1(dbfile, "nodal", 5, "quadmesh", 8, nodal, dims, 

. ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL, ierr)
end

4.11.4 Point meshes

Point meshes, which were meshes composed of a set of points can, like other mesh types, 
have values associated with each point. Silo provides the DBPutPointVar1 function 
that you can use to write out a scalar variable stored on a point mesh. Nodes and the zones 
are really the same thing in a point mesh so you can consider zone-centered scalars to be 
the same thing as node-centered scalars.

/* Create some values to save. */
int i;
float var[NPTS];

Figure 2-46:  Scalar variable defined on a point mesh

Listing 2-47:  pointvar3d.c: C-Language example for writing variables on a 3D point mesh.
Writing Silo files 41



Creating compatible files
for(i = 0; i < NPTS; ++i)
var[i] = (float)i;

/* Write the point variable. */
DBPutPointvar1(dbfile, "pointvar", "pointmesh", var, NPTS, 

DB_FLOAT, NULL);

c Create some values to save. 
integer err, ierr, i, NPTS
parameter (NPTS = 100)
real var(NPTS)
do 10010 i = 1,NPTS

var(i) = float(i-1)
10010 continue
c Write the point variable

err = dbputpv1(dbfile, "pointvar", 8, "pointmesh", 9,
. var, NPTS, DB_FLOAT, DB_F77NULL, ierr)

4.11.5 Unstructured meshes

Writing a variable on an unstructured mesh is done following a procedure similar to that 
for writing a variable on a point mesh. As with other mesh types, a scalar variable defined 
on an unstructured grid can be zone-centered or node-centered. If the variable is zone-
centered then the data array required to store the variable on the unstructured mesh must 
be a 1-D array with the same number of elements as the mesh has zones. If the variable to 
be stored is node-centered then the array containing the variable must be a 1-D array with 
the same number of elements as the mesh has nodes. Thinking of the data array as a 1-D 
array simplifies indexing since the number used to identify a particular node is the same 

Listing 2-48:  fpointvar3d.f: Fortran language example for writing variables on a 3D point mesh.

Figure 2-49:  A 2D unstructured mesh with a zonal variable (left) and a nodal variable (right).
42 Writing Silo files



Creating compatible files
index that would be used to access data in the variable array (assuming 0-origin in C and 
1-origin in Fortran). Since the data array is always 1-D for an unstructured mesh, the code 
to store variables on 2D and 3D unstructured meshes is identical. Figure 2-49 shows a 2D 
unstructured mesh with both zonal and nodal variables. Silo provides the 
DBPutUcdvar1 function for writing scalar variables on unstructured meshes.

float nodal[] = {1.,2.,3.,4.,5.,6.,7.,8.,9.};
float zonal[] = {1.,2.,3.,4.,5.};
int nnodes = 9;
int nzones = 5;
/* Write a zone-centered variable. */
DBPutUcdvar1(dbfile, "zonal", "mesh", zonal, nzones, NULL, 0,

DB_FLOAT, DB_ZONECENT, NULL);
/* Write a node-centered variable. */
DBPutUcdvar1(dbfile, "nodal", "mesh", nodal, nnodes, NULL, 0,

DB_FLOAT, DB_NODECENT, NULL);

integer err, ierr, NNODES, NZONES
parameter (NNODES = 9)
parameter (NZONES = 5)
real nodal(NNODES) /1.,2.,3.,4.,5.,6.,7.,8.,9./
real zonal(NZONES) /1.,2.,3.,4.,5./

c Write a zone-centered variable.
err = dbputuv1(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES,

. DB_F77NULL, 0, DB_FLOAT, DB_ZONECENT, DB_F77NULL, ierr)
c Write a node-centered variable.

err = dbputuv1(dbfile, "nodal", 5, "mesh", 4, nodal, NNODES,
. DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL, ierr)

Listing 2-50:  ucdvar2d.c: C-Language example for writing variables on an unstructured mesh.

Listing 2-51:  fucdvar2d.f: Fortran language example for writing variables on an unstructured mesh.
Writing Silo files 43



Creating compatible files
4.11.6 Adding variable units

All of the examples for writing scalar variables presented so 
far have focused on the basics of writing a variable array to a 
Silo file. Silo’s option list mechanism allows a variable object 
to be annotated with various extra information. In the case of 
scalar variables, the option list passed to DBPutQuadvar1 
and DBPutUcdvar1 can contain the units that describe the 
variable being stored. Refer to the Silo User’s Manual for a 
complete list of the options accepted by the 
DBPutQuadvar1 and DBPutUcdvar1 functions. When a 
scalar variable has associated units, the units appear in the 
variable legend in VisIt’s visualization window (see Figure 2-
52).

If you want to add units to the variable that you write, you 
must create an option list to pass to the function writing your variable. You may recall that 
option lists are created with the DBMakeOptlist function and freed with the 
DBFreeOptlist function. In order to add units to the option list, you must add the 
DBOPT_UNITS option.

/* Create an option list and add “g/cc” units to it. */
DBoptlist *optlist = DBMakeOptlist(1);
DBAddOption(optlist, DBOPT_UNITS, (void*)"g/cc");
/* Write a variable that has units. */
DBPutUcdvar1(dbfile, "zonal", "mesh", zonal, nzones, NULL, 0,

DB_FLOAT, DB_ZONECENT, optlist);
/* Free the option list. */
DBFreeOptlist(optlist);

c Create an option list and add “g/cc” units to it.
integer err, optlistid
err = dbmkoptlist(1, optlistid)
err = dbaddcopt(optlistid, DBOPT_UNITS, "g/cc", 4)

c Write a variable that has units.
err = dbputuv1(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES,
. DB_F77NULL, 0, DB_FLOAT, DB_ZONECENT, optlistid, ierr)

c Free the option list.
err = dbfreeoptlist(optlistid)

Figure 2-52:  Plot legend 
with units

Listing 2-53:  ucdvar2d.c: C-Language example for writing a variables with units.

Listing 2-54:  fucdvar2d.f: Fortran language example for writing a variables with units.
44 Writing Silo files



Creating compatible files
4.12 Single precision vs. Double precision

After having written some variables to a Silo file, you’ve no doubt learned that you can 
pass a pointer to data of many different representations and precisions (char, int, float, 
double, etc.). When you pass data to a Silo function, you also must pass a flag that tells 
Silo how to interpret the data stored in your data array. For example, if you have single 
precision floating point data then you would tell Silo to traverse the data as such using the 
DB_FLOAT type flag in the function call to DBPutQuadvar1. Many of the functions in 
the Silo library require a type flag to indicate the type of data being passed to Silo. In fact, 
even the functions to write mesh coordinates can accept different data types. This means 
that you can use double-precision to specify your mesh coordinates, which can be 
immensely useful when dealing with very large or very small objects. 

/* The x,y arrays contain double-precision coordinates. */
double x[NY][NX], y[NY][NX];
int dims[] = {NX, NY};
int ndims = 2;
/* Note that x,y pointers are cast to float to conform to API. */
float *coords[] = {(float*)x, (float*)y};
/* Tell Silo that the coordinate arrays are actually doubles. */
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_DOUBLE, DB_NONCOLLINEAR, NULL);

4.13 Writing expressions

You can plot derived quantities in VisIt by creating expressions that involve variables from 
your database. Sometimes, it is useful to include expression definitions in your Silo file so 
they are available to VisIt without you first having to create them. Silo provides the 
DBPutdefvars function so you can write your expressions to a Silo file. Expression 
names should be valid VisIt expression names, as defined in the VisIt User’s Manual. 
Likewise, the expression definitions should contain only expressions that are supported by 
the VisIt expression language.

While VisIt’s expression language can be useful for calculating a multitude of expressions, 
it can be particularly useful for grouping vector or tensor components into vector and 
tensor variables. If you store vector or tensor components as scalar variables in your Silo 
file then you can easily create expressions that assemble the components into real vector 
or tensor variables without significantly increasing your file’s storage requirements. 
Writing out vector and tensor variables as expressions involving scalar variables also 
prevents you from having to use more complicated Silo functions in order to write out the 
vector or tensor data.

Listing 2-55:  C-Language example for writing a mesh with double-precision coordinates.

Listing 2-56:  defvars.c: C-Language example for writing out expression definitions.
Writing Silo files 45



Creating compatible files
/* Write some expressions to the Silo file. */
const char *names[] = {"velocity", "speed"};
const char *defs[] = {"{xc,yc,zc}", "magnitude(velocity)"};
int types[] = {DB_VARTYPE_VECTOR, DB_VARTYPE_SCALAR};
DBPutDefvars(dbfile, "defvars", 2, names, types, defs, NULL);

integer err, ierr, types(2), lnames(2), ldefs(2)
integer numexpressions, oldlen

c Initialize some 20 character length strings
character*20 names(2) /’velocity            ’,

. ’speed               ’/
character*20 defs(2)  /’{xc,yc,zc}          ’,

. ’magnitude(velocity) ’/
c Store the length of each string

data lnames/8, 5/
data ldefs/10, 19/
data types/DB_VARTYPE_VECTOR, DB_VARTYPE_SCALAR/

c Set the maximum string length to 20 since that’s how long 
c our strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(20)

c Write out the expressions
numexpressions = 2
err = dbputdefvars(dbfile, "defvars", 7, numexpressions,

. names, lnames, types, defs, ldefs, DB_F77NULL, ierr)
c Restore the previous value for maximum string length

err = dbset2dstrlen(oldlen) 

In the previous Fortran example for writing expressions, there are more functions involved 
than just the dbputdefvars function. It is critical to set the maximum 2D string length 
for strings in the Silo library, using the dbset2dstrlen function, so the Fortran 
interface to Silo will be able to correctly traverse the string data passed to it from Fortran. 
In the previous example, we used 20 characters for both the expression names and 
definitions. We call dbset2dstrlen to set the maximum allowable 2d string length to 
20 characters before we pass our arrays of 20 character strings to the dbputdefvars 
function. In addition, we must also pass valid lengths for the expression name and 
definition strings. The lengths should be at least 1 character long but no longer than the 
maximum allowable string length, which we set to 20 characters in the example program. 
Passing valid string lengths is important so the expressions that you save to your file do 
not contain any extra characters, such as trailing spaces.

4.14 Creating a master file for parallel

When a parallel program saves out its data files, often the most efficient method of I/O is 
for each processor to write its own piece of the simulation, or domain, to its own Silo file. 

Listing 2-57:  fdefvars.f: Fortran language example for writing out expression definitions.
46 Writing Silo files



Creating compatible files
If each processor writes its own Silo file then no communication or synchronization must 
take place to manage access to a shared file. However, once the simulation has completed, 
there are many files and all of them are required to reconstitute the simulated object. 
Plotting each domain file in VisIt would be very tedious so Silo provides functions to 
create what is known as a “master file”, which is a top-level file that effectively unifies all 
of the domain files into a whole. When you open a master file in VisIt and plot variables 
out of it, all domains are plotted.

Master files contain what are known as multimeshes, multivars, and multimaterials. These 
objects are lists of filenames that contain the appropriate domain variable. They also 
contain some meta-information about each of the domains that helps VisIt perform better 
in parallel. Strategies for using metadata to improve VisIt’s I/O performance will be 
covered shortly.

4.14.1 Creating a multimesh

A multimesh is an object that unites smaller domain-sized meshes into a whole mesh. The 
multimesh object contains a list of the filenames that contain a piece of the named mesh. 
When you tell VisIt to plot a multimesh, VisIt reads the named mesh in all of the required 
domain files and processes the mesh in each file, to produce the entire mesh.

The following example, shown in Figure 2-58, uses the mesh from the 2D rectilinear mesh 
example program and repeats it as 4 domains. Note that the mesh forming the domains is 
translated in X and Y so that the edges are shared. In the given example, the meshes that 
make up the entire mesh are stored in separate Silo files: multimesh.1, multimesh.2, 

Figure 2-58:  Multimesh colored by its domain number
Writing Silo files 47



Creating compatible files
multimesh.3, and multimesh.4. The mesh and any data that may be defined on it is stored 
in those files. Remember that storing pieces of a single mesh is commonplace when 
parallel processes write their own file. Plotting each of the smaller files individually in 
VisIt is not neccessary when a master file has been generated since plotting the multimesh 
object from the master file will cause VisIt to plot each of its constituent meshes. The code 
that will follow shows how to use Silo’s DBPutMultimesh function to write out a 
multimesh object that reassembles meshes from many domain files into a whole mesh.

The list of meshes or items in a multi-object generally take the form: path:item where path 
is the file system path to the item and item is the name of the object being referenced. Note 
that the path may be specified as a relative or absolute path using names valid for the file 
system containing the master file. However, we strongly recommend using only relative 
paths so the master file does not reference directories that exist only on one file system. 
Using relative paths makes the master files much more portable since they allow the data 
files to be moved. The path may also refer to subdirectories within the file being 
referenced since Silo files may contain directories that help to organize related data. The 
following examples assume that the domain files will exist in the same directory as the 
master file since the path includes only the names of the domain files.

void write_masterfile(void)
{

DBfile *dbfile = NULL;
char **meshnames = NULL;
int dom, nmesh = 4, *meshtypes = NULL;
/* Create the list of mesh names. */
meshnames = (char **)malloc(nmesh * sizeof(char *));
for(dom = 0; dom < nmesh; ++dom)
{

char tmp[100];
sprintf(tmp, "multimesh.%d:quadmesh", dom);
meshnames[dom] = strdup(tmp);

}
/* Create the list of mesh types. */
meshtypes = (int *)malloc(nmesh * sizeof(int));
for(dom = 0; dom < nmesh; ++dom)

meshtypes[dom] = DB_QUAD_RECT;
/* Open the Silo file */
dbfile = DBCreate("multimesh.root", DB_CLOBBER, DB_LOCAL,

"Master file", DB_HDF5); 
/* Write the multimesh. */
DBPutMultimesh(dbfile, "quadmesh", nmesh, meshnames, 

meshtypes, NULL);
/* Close the Silo file. */
DBClose(dbfile);
/* Free the memory*/
for(dom = 0; dom < nmesh; ++dom)

free(meshnames[dom]);
free(meshnames);

Listing 2-59:  multimesh.c: C-Language example for writing a multimesh.
48 Writing Silo files



Creating compatible files
free(meshtypes);
}

subroutine write_master()
implicit none
include "silo.inc"
integer err, ierr, dbfile, nmesh, oldlen
character*20 meshnames(4) /’multimesh.1:quadmesh’,

.                           ’multimesh.2:quadmesh’,

.                           ’multimesh.3:quadmesh’,

.                           ’multimesh.4:quadmesh’/
integer lmeshnames(4) /20,20,20,20/
integer meshtypes(4) /DB_QUAD_RECT, DB_QUAD_RECT,

.                      DB_QUAD_RECT, DB_QUAD_RECT/
c Create a new silo file

err = dbcreate("multimesh.root", 14, DB_CLOBBER, DB_LOCAL,
. "multimesh root", 14, DB_HDF5, dbfile)
if(dbfile.eq.-1) then

write (6,*) ’Could not create Silo file!\n’
return

endif
c Set the maximum string length to 20 since that’s how long our
c strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(20)

c Write the multimesh object.
nmesh = 4
err = dbputmmesh(dbfile, "quadmesh", 8, nmesh, meshnames,

. lmeshnames, meshtypes, DB_F77NULL, ierr)
c Restore the previous value for maximum string length

err = dbset2dstrlen(oldlen)
c Close the Silo file

err = dbclose(dbfile)
end

Sometimes it can be advantageous to have each processor write its files to a unique 
subdirectory (e.g. proc-0, proc-1, proc-2, ...). You can also choose for each processor to 
write its files to a common directory so all files for a given time step are contained in a 
single place (e.g. cycle0000, cycle0001, cycle0002, ...). Generally, you will want to tailor 
your strategy to the strengths of your file system to spread the demands of writing files 
across as many I/O nodes as possible in order to increase throughput. The organization 
strategies mentioned so far are only suggestions and you will have to determine the 
optimum method for storing domain files on your computer system. Moving your domain 
files to subdirectories can make it easier to navigate your file system and can provide 
benefits later such as VisIt not having to check permissions, etc on so many files. Code to 

Listing 2-60:  fmultimesh.f: Fortran language example for writing a multimesh.
Writing Silo files 49



Creating compatible files
create the list of mesh names where each processor writes its data to a different 
subdirectory that contains all files for a given time step might look like the following:

int cycle = 100;
for(dom = 0; dom < nmesh; ++dom)
{

char tmp[100];
sprintf(tmp, "proc-%d/multimesh.%04d:quadmesh", dom, cycle);
meshnames[dom] = strdup(tmp);

}

4.14.2 Creating a multivar

A multivar object is the variable equivalent of a multimesh object. Like the multimesh 
object, a multivar object contains a list of filenames that make up the variable represented 
by the multivar object. Silo provides the DBPutMultivar function for writing out 
multivar objects.

void write_multivar(DBfile *dbfile)
{

Figure 2-61:  Multivar displayed on its multimesh

Listing 2-62:  multivar.c: C-Language example for writing a multivar.
50 Writing Silo files



Creating compatible files
char **varnames = NULL;
int dom, nvar = 4, *vartypes = NULL;
/* Create the list of var names. */
varnames = (char **)malloc(nvar * sizeof(char *));
for(dom = 0; dom < nvar; ++dom)
{

char tmp[100];
sprintf(tmp, "multivar.%d:var", dom);
varnames[dom] = strdup(tmp);

}
/* Create the list of var types. */
vartypes = (int *)malloc(nvar * sizeof(int));
for(dom = 0; dom < nvar; ++dom)

vartypes[dom] = DB_QUADVAR;
/* Write the multivar. */
DBPutMultivar(dbfile, "var", nvar, varnames, vartypes, NULL);
/* Free the memory*/
for(dom = 0; dom < nvar; ++dom)

free(varnames[dom]);
free(varnames);
free(vartypes);

}

subroutine write_multivar(dbfile)
implicit none
include "silo.inc"
integer err, ierr, dbfile, nvar, oldlen
character*20 varnames(4) /’multivar.1:var     ’,

.                          ’multivar.2:var     ’,

.                          ’multivar.3:var     ’,

.                          ’multivar.4:var     ’/
integer lvarnames(4) /14,14,14,14/
integer vartypes(4) /DB_QUADVAR,DB_QUADVAR,

.                     DB_QUADVAR,DB_QUADVAR/
c Set the maximum string length to 20 since that’s how long 
c our strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(20)

c Write the multivar.
nvar = 4
err = dbputmvar(dbfile, "var", 3, nvar, varnames, lvarnames,

. vartypes, DB_F77NULL, ierr)
c Restore the previous value for maximum string length

err = dbset2dstrlen(oldlen)
end

Listing 2-63:  fmultivar.f: Fortran language example for writing a multivar.
Writing Silo files 51



Creating compatible files
4.14.3 EMPTY contributions

During the course of a calculation, sometimes only a subset of processors will contribute 
data. This means that they will not write data files. When some processors do not write 
data files, creating your multi-objects can become more complicated. Note that because of 
how VisIt represents its domain subsets, etc, you will want to keep the number of 
filenames in a multi-object equal to the number of processors that you are using (the 
maximum number of domains that you will generate). If the length of the list varies over 
time then VisIt’s subsetting controls may not behave as expected. To keep things simple, if 
you have N processors that write N files, you will always want N entries in your multi-
objects. If a processor does not contribute any data, insert the “EMPTY” keyword into the 
multi-object in place of the path and variable. The “EMPTY” keyword allows the size of 
the multi-object to remain fixed over time even as the number of processors that contribute 
data changes. Keeping the size of the multi-object fixed over time ensures that VisIt’s 
subsetting controls will continue to function as expected. Note that if you use the 
“EMPTY” keyword in a multivar object then the same entry in the multimesh object for 
the variable must also contain the “EMPTY” keyword.

/* Processors 3,4 did not contribute so use EMPTY. */
char *meshnames[] = {“proc-1/file000/mesh”, “proc-2/file000/mesh”,

“EMPTY”, “EMPTY”};
int meshtypes[] = {DB_QUAD_RECT, DB_QUAD_RECT,

DB_QUAD_RECT, DB_QUAD_RECT};
int nmesh = 4;
/* Write the multimesh. */
DBPutMultimesh(dbfile, "mesh", nmesh, meshnames, meshtypes, NULL);

5.0 Writing VTK files

VTK (Visualization Toolkit) files provide a simple, flexible way to import data into VisIt. 
VTK files can be written in human-readable ASCII form or in binary form. VTK files may 
also be created in the legacy VTK file format or in their newer XML-based format. The 
human-readable ASCII form for legacy VTK files is described in the VTK File Formats 
document found on the Web at http://public.kitware.com/VTK/pdf/file-formats.pdf. You 
can create code in any language to write data to the VTK file format if you follow the 
format guidelines in the VTK File Formats document.

In order to simplify the creation of legacy VTK files, which can be susceptible to 
formatting mistakes, VisIt provides the visit_writer library. The visit_writer 
library is implemented in C and can be called from the C, C++, and Python programming 
languages. The visit_writer library provides a handful of easy-to-use functions for 
producing VTK files. This section will show how to use the visit_writer library to 
create VTK files that can be used to import data into VisIt.

Listing 2-64:  C-Language example using the EMPTY keyword.
52 Writing VTK files



Creating compatible files
5.1 Getting started with visit_writer

The visit_writer library is included in source code form in VisIt’s source code 
distribution. The C-version of the library consists of 2 files called visit_writer.c and 
visit_writer.h that are stored in the tools/writer directory of VisIt’s source code tree.

5.1.1 Using visit_writer in C programs

When you use the visit_writer library, you can include the visit_writer.c file directly 
in the list of source files for your project. Source files that use functions from the 
visit_writer library must include the visit_writer.h header file. The 
visit_writer library has no external dependencies so no additional libraries are 
required to link programs that use the visit_writer library, provided the visit_writer.c 
source code file was included in the project.

5.1.2 Using visit_writer in Python programs

The Python version of the visit_writer library is implemented as a Python extension 
module, which is a dynamically loaded executable file containing the visit_writer 
functions. The compiled visit_writer extension module is not currently distributed 
in VisIt’s binary distributions so you will have to build it before you can use it in your 
Python programs. Fortunately, building the visit_writer module is easy if you allow 
Python to build it for you. To begin, open a terminal window and cd into VisIt’s source 
code tree and then into the tools/writer directory. Next, type the following Python code 
into a file called setup.py:

from distutils.core import setup, Extension
module1 = Extension(’visit_writer’,

include_dirs= [’.’],
sources = [’visit_writer.c’, ’py_visit_writer.c’])

setup (name = ’visit_writer’,
version = ’1.0’,
description = ’This module lets us write VTK files.’,
ext_modules = [module1])

Once you have created the setup.py file, run the following command in your terminal 
window to build the visit_writer Python extension module.

python setup.py build

Once Python builds the visit_writer extension module, you can install it by running 
the following command:

python setup.py install

After the visit_writer module has been built and installed, it should be available 
when you run Python. To test whether the module was successfully installed, run python 
and type: import visit_writer at the Python prompt. If Python does not complain then the 
module was successfully built and loaded. Whenever you want to use the visit_module in 
Writing VTK files 53



Creating compatible files
your Python scripts, you must first issue the import visit_writer directive. If you 
want to find out more information about a particular visit_writer function once 
you’ve imported the visit_writer module, you can type: print 
visit_writer.__doc__ to make Python print out the documentation string for the 
visit_writer module.

5.2 Regular meshes with data

A regular mesh, or Cartesian mesh, is an implicit mesh in which all zones have the same 
size and are axis-aligned (see Figure 2-65). Furthermore, in this context, all zones are 
squares or cubes with a side length of 1. The extents are determined by the number of 
zones in each dimension. A regular mesh is a type of rectilinear mesh where the zones are 
not permitted to differ in size. The visit_writer library provides the 
write_regular_mesh function for writing out regular meshes and data to VTK files.

#include <visit_writer.h>
#include <math.h>

int main(int argc, char *argv[])
{
#define NX 10
#define NY 20

Figure 2-65:  Regular mesh with data created using 
visit_writer

Listing 2-66:  vwregmesh.c: C-Language example for writing a regular mesh with data.
54 Writing VTK files



Creating compatible files
#define NZ 30
int i,j,k, index = 0;
int dims[] = {NX, NY, NZ};
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float zonal[NZ-1][NY-1][NX-1], nodal[NZ][NY][NX];
float *vars[] = {(float *)zonal, (float *)nodal};
/* Create zonal variable */
for(k = 0; k < NZ-1; ++k)

for(j = 0; j < NY-1; ++j)
for(i = 0; i < NX-1; ++i, ++index)

zonal[k][j][i] = (float)index;
/* Create nodal variable. */
for(k = 0; k < NZ; ++k)

for(j = 0; j < NY; ++j)
for(i = 0; i < NX; ++i)

nodal[k][j][i] = sqrt(i*i + j*j + k*k);
/* Use visit_writer to write a regular mesh with data. */
write_regular_mesh("vwregmesh.vtk", 0, dims, nvars, vardims, 

centering, varnames, vars);
return 0;

}

import visit_writer, math
NX = 10
NY = 20
NZ = 30
# Create a zonal variable
zonal = []
index = 0
for k in range(NZ-1):

for j in range(NY-1):
for i in range(NX-1):

zonal = zonal + [index]
index = index + 1

# Create a nodal variable
nodal = []
for k in range(NZ):

for j in range(NY):
for i in range(NX):

nodal = nodal + [math.sqrt(i*i + j*j + k*k)]
# Use visit_writer to write a regular mesh with data.
dims = (NX, NY, NZ)
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteRegularMesh("vwregmesh2.vtk", 0, dims, vars)

Listing 2-67:  vwregmesh.py: Python language example for writing a regular mesh with data.
Writing VTK files 55



Creating compatible files
5.3 Rectilinear meshes with data

Recall from “Writing a rectilinear mesh” on page 18 that a rectilinear mesh is a 2D or 3D 
mesh where all coordinates are aligned with the axes and coordinates along each axis can 
have different, non-uniform spacing. The visit_writer library provides the 
write_rectilinear_mesh function for writing rectilinear meshes. The following 
code examples will use the same 2D and 3D rectilinear meshes that were used for the Silo 
examples.

#include <visit_writer.h>

int main(int argc, char *argv[])
{
#define NX 4
#define NY 5

/* Rectilinear mesh coordinates. */
float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55,  5.};
float z[] = {0.};
int dims[] = {NX, NY, 1};
int ndims = 2;
/* Zonal and Nodal variable data. */
float zonal[NY-1][NX-1], nodal[NY][NX];

Figure 2-68:  2D rectilinear mesh with zonal variable

Listing 2-69:  vwrect2d.c: C-Language example for writing a rectilinear mesh with data.
56 Writing VTK files



Creating compatible files
/* Info about the variables to pass to visit_writer. */
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float *vars[] = {(float*)zonal, (float*)nodal};

/* Create a zonal variable. */
int i,j,index = 0;
for(j = 0; j < NY-1; ++j)

for(i = 0; i < NX-1; ++i, ++index)
zonal[j][i] = (float)index;

/* Create a nodal variable. */
index = 0;
for(j = 0; j < NY; ++j)

for(i = 0; i < NX; ++i, ++index)
nodal[j][i] = (float)index;

/* Pass the data to visit_writer to write a VTK file.*/
write_rectilinear_mesh("vwrect2d.vtk", 0, dims, x, y, z, nvars,
vardims, centering, varnames, vars);

return 0;
}

import visit_writer

NX = 4
NY = 5
x = (0., 1., 2.5, 5.)
y = (0., 2., 2.25, 2.55,  5.)
z = 0.

# Create a zonal variable
zonal = []
index = 0
for j in range(NY-1):

for i in range(NX-1):
zonal = zonal + [index]
index = index + 1

# Create a nodal variable
nodal = []
index = 0
for j in range(NY):

for i in range(NX):
nodal = nodal + [index]
index = index + 1

Listing 2-70:  vwrect2d.py: Python language example for writing a rectilinear mesh with data.
Writing VTK files 57



Creating compatible files
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteRectilinearMesh("vwrect2d.vtk", 0, x, y, z, vars)

5.4 Curvilinear meshes with data

A curvilinear mesh is similar to a rectlinear mesh; the main difference between the two 
mesh types is how coordinates are specified. Recall that in a rectilinear mesh, the 
coordinates are specified individually for each axis and only a small subset of the nodes in 
the mesh are provided. In a curvilinear mesh, you must provide an X,Y,Z value for every 
node in the mesh. The visit_writer library provides the 
write_curvilinear_mesh function to write out curvilinear meshes and any 
variables defined on them. Figure 2-71 shows an example of a 3D curvilinear mesh with a 
zonal variable.

#include <visit_writer.h>

#define NX 4
#define NY 3
#define NZ 2

int main(int argc, char *argv[])
{

Figure 2-71:  3D curvilinear mesh with zonal variable

Listing 2-72:  vwcurv3d.c: C-Language example for writing a curvilinear mesh with data.
58 Writing VTK files



Creating compatible files
/* Curvilinear mesh points stored x0,y0,z0,x1,y1,z1,...*/
float pts[] = {0, 0.5, 0, 1, 0, 0, 2, 0, 0,

3, 0.5, 0, 0, 1, 0, 1, 1, 0,
2, 1, 0, 3, 1, 0, 0, 1.5, 0,
1, 2, 0, 2, 2, 0, 3, 1.5, 0,
0, 0.5, 1, 1, 0, 1, 2, 0, 1,
3, 0.5, 1, 0, 1, 1, 1, 1, 1,
2, 1, 1, 3, 1, 1, 0, 1.5, 1,
1, 2, 1, 2, 2, 1, 3, 1.5, 1

};
int dims[] = {NX, NY, NZ};
/* Zonal and nodal variable data. */
float zonal[NZ-1][NY-1][NX-1], nodal[NZ][NY][NX];
/* Info about the variables to pass to visit_writer. */
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float *vars[] = {(float *)zonal, (float *)nodal};
int i,j,k, index = 0;

/* Create zonal variable */
for(k = 0; k < NZ-1; ++k)

for(j = 0; j < NY-1; ++j)
for(i = 0; i < NX-1; ++i, ++index)

zonal[k][j][i] = (float)index;

/* Create nodal variable. */
index = 0;
for(k = 0; k < NZ; ++k)

for(j = 0; j < NY; ++j)
for(i = 0; i < NX; ++i, ++index)

nodal[k][j][i] = index;

/* Pass the data to visit_writer to write a binary VTK file. */
write_curvilinear_mesh("vwcurv3d.vtk", 1, dims, pts, nvars,

vardims, centering, varnames, vars);

return 0;
}

import visit_writer

NX = 4
NY = 3
NZ = 2

# Curvilinear mesh points stored x0,y0,z0,x1,y1,z1,...
pts = (0, 0.5, 0, 1, 0, 0, 2, 0, 0,

3, 0.5, 0, 0, 1, 0, 1, 1, 0,

Listing 2-73:  vwcurv3d.py: Python language example for writing a curvilinear mesh with data.
Writing VTK files 59



Creating compatible files
2, 1, 0, 3, 1, 0, 0, 1.5, 0,
1, 2, 0, 2, 2, 0, 3, 1.5, 0, 
0, 0.5, 1, 1, 0, 1, 2, 0, 1,
3, 0.5, 1, 0, 1, 1, 1, 1, 1,
2, 1, 1, 3, 1, 1, 0, 1.5, 1,
1, 2, 1, 2, 2, 1, 3, 1.5, 1)

# Create a zonal variable
zonal = []
index = 0
for k in range(NZ-1):

for j in range(NY-1):
for i in range(NX-1):

zonal = zonal + [index]
index = index + 1

# Create a nodal variable
nodal = []
index = 0
for k in range(NZ):

for j in range(NY):
for i in range(NX):

nodal = nodal + [index]
index = index + 1

# Pass data to visit_writer to write a binary VTK file.
dims = (NX, NY, NZ)
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteCurvilinearMesh("vwcurv3d.vtk", 0, dims, pts, vars)
60 Writing VTK files



Creating compatible files
5.5 Point meshes with data

A point mesh is a set of 2D or 3D points where the nodes also constitute the cells in the 
mesh. The visit_writer library provides the write_point_mesh function to 
write out point meshes and data to VTK files.

#include <visit_writer.h>

#define NPTS 100

int main(int argc, char *argv[])
{

/* Create some points and data to save. */
int i;
float pts[NPTS][3], data[NPTS];
int nvars = 2;
int vardims[] = {1, 3};
const char *varnames[] = {"data", "ptsvec"};
float *vars[] = {(float *)pts, data};

for(i = 0; i < NPTS; ++i)
{

/* Make a point. */
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;

Figure 2-74:  Point mesh with scalar data and vector data

Listing 2-75:  vwpoint3d.c: C-Language example for writing a point mesh with data.
Writing VTK files 61



Creating compatible files
pts[i][0] = t * cos(angle);
pts[i][1] = t * sin(angle);
pts[i][2] = t;
/* Make a scalar */
data[i] = t * cos(angle);

}

/* Pass the mesh and data to visit_writer. */
write_point_mesh("vwpoint3d.vtk", 1, NPTS, (float*)pts, nvars,

vardims, varnames, vars);

return 0;
}

import visit_writer, math
NPTS = 100
pts = []
data = []
for i in range(NPTS):

# Make a point
t = float(i) / float(NPTS-1)
angle = 3.14159 * 10. * t
pts = pts + [t * math.cos(angle), t * math.sin(angle), t]
# Make a scalar
data = data + [t * math.cos(angle)]

# Pass the mesh and data to visit_writer.
vars = (("data", 1, 1, pts), ("ptsvec", 3, 1, pts))
visit_writer.WritePointMesh("vwpoint3d.vtk", 1, pts, vars)

5.6 Unstructured meshes with data

Unstructured meshes are collections of different types of zones and are useful because 
they can represent more complex mesh geometries than the structured meshes can. 
Unstructured meshes are specified using the cell types and node orderings listed in 
“Writing an unstructured mesh” on page 28. This section explains how to use the 
visit_writer library’s write_unstructured_mesh function to write out 
unstructured meshes and data.

Listing 2-76:  vwpoint3d.py: Python language example for writing a point mesh with data.
62 Writing VTK files



Creating compatible files
#include <visit_writer.h>

int main(int argc, char *argv[])
{

/* Node coordinates */
int nnodes = 9;
int nzones = 5;
float pts[] = {0., 0., 0., 2., 0., 0., 5., 0., 0.,

3., 3., 0., 5., 3., 0., 0., 5., 0., 
2., 5., 0., 4., 5., 0., 5., 5., 0.};

/* Zone types */
int zonetypes[] = {VISIT_TRIANGLE, VISIT_TRIANGLE,

VISIT_QUAD, VISIT_QUAD, VISIT_QUAD};

/* Connectivity */
int connectivity[] = {

1,3,6,    /* tri zone 1. */
3,7,6,    /* tri zone 2. */
0.,1,6,5, /* quad zone 3. */
1,2,4,3,  /* quad zone 4. */
3,4,8,7   /* quad zone 5. */

};

Figure 2-77:  2D unstructured mesh with zonal variable

Listing 2-78:  vwrucd2d.c: C-Language example for writing an unstructured mesh with data.
Writing VTK files 63



Creating compatible files
/* Data arrays */
float nodal[] = {1,2,3,4,5,6,7,8,9};
float zonal[] = {1,2,3,4,5};

/* Info about the variables we’re passing to visit_writer. */
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float *vars[] = {zonal, nodal};

/* Pass the mesh and data to visit_writer. */
write_unstructured_mesh("vwucd2d.vtk", 1, nnodes, pts, nzones,

zonetypes, connectivity, nvars, vardims, centering,
varnames, vars);

return 0;
}

import visit_writer

# Node coordinates
pts = (0., 0., 0., 2., 0., 0., 5., 0., 0.,

3., 3., 0., 5., 3., 0., 0., 5., 0., 
2., 5., 0., 4., 5., 0., 5., 5., 0.)

# Connectivity
connectivity = (

(visit_writer.triangle, 1,3,6),
(visit_writer.triangle, 3,7,6),
(visit_writer.quad, 0,1,6,5),
(visit_writer.quad, 1,2,4,3),
(visit_writer.quad, 3,4,8,7)

)

# Data arrays
nodal = (1,2,3,4,5,6,7,8,9)
zonal = (1,2,3,4,5)

# Pass the data to visit_writer
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteUnstructuredMesh("vwucd2d.vtk", 1, pts,

connectivity, vars)

5.7 Creating a master file for parallel (.visit file)

The visit_writer library creates legacy VTK files and the legacy VTK file format has 
no mechanism for storing more than a single mesh. Furthermore, legacy VTK files have 

Listing 2-79:  vwucd2d.py: Python language example for writing an unstructured mesh with data.
64 Writing VTK files



Creating compatible files
no concept of a master file or of multi-objects like Silo uses to unite domains into a whole. 
Fortunately, VisIt provides a construct called a .visit file that addresses this shortcoming. 
A .visit file is a text file, ending with the “.visit” extension, that contains the names of 
domain files that make up the whole. A .visit file can be created to group files for any file 
format that VisIt can read. Your parallel program can still write individual VTK files and 
you can create a .visit file before visualizing the files so VisIt knows to open all of the 
relevant files as opposed to you creating plots of each individual file. The following code 
example lists what a .visit file looks like if you have 4 VTK domain files that contain the 
same variables and all of them are to be plotted at once.

!NBLOCKS 4
proc-0.vtk
proc-1.vtk
proc-2.vtk
proc-3.vtk

The .visit file can be used for indicating which VTK files are part of a time-varying 
database in addition to indicating how to reassemble domain files into a whole. In the 
previous example, there were 4 domain files and only 1 time step. If you want to have 
more than 1 time step, just add more files to the list. The !NBLOCKS directive tells VisIt 
that every block of 4 files are related in a single time step. If you had two time steps then 
your .visit file might look like this:

!NBLOCKS 4
proc-0.0000.vtk
proc-1.0000.vtk
proc-2.0000.vtk
proc-3.0000.vtk
proc-0.0001.vtk
proc-1.0001.vtk
proc-2.0001.vtk
proc-3.0001.vtk
Writing VTK files 65



Creating compatible files
66 Writing VTK files



Chapter 3 Creating compatible files II 
Advanced topics
1.0 Overview

This chapter elaborates on some of the advanced topics involved in creating files that VisIt 
can read. Most applications should be able to write out all of their data using information 
contained in the previous chapter. This chapter introduces advanced topics such as 
incorporating metadata to accelerate VisIt’s performance as well as some less common 
data representations. Many of the examples in this chapter use the Silo library, which was 
introduced in the previous chapter. For more information on getting started with the Silo 
library, see “Writing Silo files” on page 12.

2.0 Writing vector data

The components of vector data are often stored to files as individual scalar variables and 
VisIt uses an expression to compose the scalars back into a vector field. If you use the Silo 
library, you can always choose instead to store your vector data as a multi-component 
variable. The previous chapter provided several examples that use the Silo library to write 
scalar variables on rectilinear, curvilinear, point, and unstructured meshes. The functions 
that were used to write the scalars were simplified forms of the functions that are used to 
write vector data. The scalar functions that were used to write data for a specific mesh type 
as well as the vector function equivalents are listed in the following table:

Mesh type Scalar function Vector function

Rectilinear mesh DBPutQuadvar1 DBPutQuadvar

Curvilinear mesh DBPutQuadvar1 DBPutQuadvar

Point mesh DBPutPointvar1 DBPutPointvar
Overview Getting Data into VisIt Manual 67



Creating compatible files II - Advanced topics
The differences between a scalar function and a vector function are small. In fact, the 
argument lists for a scalar function and a vector function are nearly identical in the Silo 
library’s C-Language interface. The chief difference is that the vector functions take two 
additional arguments and the meaning of one existing argument is modified. The first new 
argument is an integer indicating the number of components contained by the variable to 
be written. The next difference is that you must pass an array of pointers to character 
strings that represent the names of each individual component. Finally, the argument that 
was used to pass the data to the DBPutQuadvar1 function, now in the DBPutQuadvar 
function, accepts an array pointers to the various arrays that contain the variable 
components. For more complete information on each of the arguments to the functions 
that Silo uses to write multi-component data, refer to the Silo User’s Manual.

int i, dims[3], ndims = 3;
int nnodes = NX*NY*NZ;
float *comp[3];
char *varnames[] = {"nodal_comp0","nodal_comp1","nodal_comp2"};
comp[0] = (float *)malloc(sizeof(float)*nnodes);
comp[1] = (float *)malloc(sizeof(float)*nnodes);
comp[2] = (float *)malloc(sizeof(float)*nnodes);
for(i = 0; i < nnodes; ++i)
{

comp[0][i] = (float)i; /*vector component 0*/
comp[1][i] = (float)i; /*vector component 1*/
comp[2][i] = (float)i; /*vector component 2*/

}
dims[0] = NX; dims[1] = NY; dims[2] = NZ;
DBPutQuadvar(dbfile, "nodal", "quadmesh",

3, varnames, comp, dims,
ndims, NULL, 0, DB_FLOAT, DB_NODECENT, NULL);

free(comp[0]);
free(comp[1]);
free(comp[2]);

Silo’s Fortran interface does not provide functions to write out multi-component data such 
as vectors. If you use the Fortran interface to Silo, you will have to write out the vector 
components as separate scalar variables and then write an expression to your Silo file that 
composes the components into a single vector variable.

subroutine write_nodecent_quadvar(dbfile)

Unstructured mesh DBPutUcdvar1 DBPutUcdvar

Mesh type Scalar function Vector function

Listing 3-1:  vectorvar.c: C-Language example for writing vector data using Silo.

Listing 3-2:  fvectorvar.f: Fortran-Language example for writing vector data using Silo.
68 Writing vector data



Creating compatible files II - Advanced topics
implicit none
integer dbfile
include "silo.inc"
integer err, ierr, dims(3), ndims,i,j,k,index,NX,NY,NZ
parameter (NX = 4)
parameter (NY = 3)
parameter (NZ = 2)
real    comp0(NX,NY,NZ), comp1(NX,NY,NZ), comp2(NX,NY,NZ)
data dims/NX,NY,NZ/
index = 0
do 20020 k=1,NZ
do 20010 j=1,NY
do 20000 i=1,NX

comp0(i,j,k) = float(index)
comp1(i,j,k) = float(index)
comp2(i,j,k) = float(index)
index = index + 1

20000 continue
20010 continue
20020 continue

ndims = 3
err = dbputqv1(dbfile, "n_comp0", 11, "quadmesh", 8, comp0,

. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL,

. ierr)
err = dbputqv1(dbfile, "n_comp1", 11, "quadmesh", 8, comp1,

. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL,

. ierr)
err = dbputqv1(dbfile, "n_comp2", 11, "quadmesh", 8, comp2,

. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL,

. ierr)
end

subroutine write_defvars(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer     err, ierr, types(2), lnames(2), ldefs(2), oldlen
c Initialize some 20 character length strings
character*40 names(2) /’zonalvec                                ’,

.                       ’nodalvec                                ’/
character*40 defs(2)  /’{z_comp0,z_comp1,z_comp2}   ’,

.                       ’{n_comp0,n_comp1,n_comp2}   ’/
c Store the length of each string

data lnames/8, 8/
data ldefs/37, 37/
data types/DB_VARTYPE_VECTOR, DB_VARTYPE_VECTOR/

c Set the maximum string length to 40 since that’s how long our
c strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(40)

c Write out the expressions
err = dbputdefvars(dbfile, "defvars", 7, 2, names, lnames,

. types, defs, ldefs, DB_F77NULL, ierr)
c Restore the previous value for maximum string length
Writing vector data 69



Creating compatible files II - Advanced topics
err = dbset2dstrlen(oldlen)
end

3.0 Adding metadata for performance boosts

VisIt incorporates several performance boosting strategies that make use of metadata, if it 
is available. Most of the metadata applies to increasing parallel performance by reducing 
the amount of I/O and subsequent processing that is required. The I/O reductions are 
realized by not reading in and processing domains that will contribute nothing to the final 
image on the screen. In order to prevent domains from being read in, your multi-objects 
must have associated metadata for each of the domains that they contain. When a Silo 
multi-object contains metadata about all of its constituent domains, VisIt can make work-
saving decisions since it knows the properties of each domain without having to read in 
the data for each domain.

This section explains how to add metadata to your Silo multi-objects using option lists. 
Metadata attached to multi-objects allow VisIt to determine important data characteristics 
such as data extents or the spatial extents of the mesh without having to first read and 
process all domains. Such knowledge allows VisIt to restrict the number of domains that 
are processed, thus reducing the amount of work and the time required to display images 
on your screen.

3.1 Writing data extents

Providing data extents can help VisIt only read in and process those domains that will 
contribute to the final image. Many types of plots and operators use data extents for each 
domain, when they are provided, to perform a simple upfront test to determine if a domain 
contains the values which will be used. If a domain is not needed then VisIt will not read 
that domain because it is known beforehand that the domain does not contain the desired 
value.

An example of a plot that uses data extents in order to save work is VisIt’s Contour plot. 
The Contour plot creates contours (lines or surfaces where the data has the same value) 
through a dataset. Consider the example shown in Figure 3-3, where the entire mesh and 
scalar field are divided into four smaller domains where the data extents of each domain 
are stored to the file so VisIt can perform optimizations. Before the Contour plot executes, 
it tells VisIt the data values for which it will make contours. Suppose that that you wanted 
to see the areas where the value in the scalar field are equal to 11.5. The Contour plot takes 
that 11.5 contour value and compares it to the data extents for all of the domains to see 
which domains will be needed. If a domain will not be needed then VisIt will make no 
further effort to read the domain or process it, thus saving work and making the plot 
appear on the screen faster than it could if the data extents were not available in the file 
70 Adding metadata for performance boosts



Creating compatible files II - Advanced topics
metadata. In the above example, the value of 11.5 is only present in domain 3, which 
means that the Contour plot will only return a result if it processes data from domain 3. 

The other domains are not processed in this case because they do not contain the required 
value of 11.5. After the comparisons have been made, VisIt knows which domains will 

Figure 3-3:  Example Mesh and Pseudocolor plots with the data extents for each domain of the Pseudocolor 
plot’s scalar variable.

Domain 1

Min=0.0

Max=7.1

Domain 4

Min=5.0

Max=11.2

Domain 3

Min=7.1

Max=14.1

Domain 2

Min=5.0

Max=11.2

Figure 3-4:  Only process domain 3 (left) to yield the Contour plot of value 11.5 (right).

Only process domain 3 Contour plot in domain 3
Writing data extents 71



Creating compatible files II - Advanced topics
have to be processed and it can divide the set of domains (just domain 3 in this case) that 
will contribute to the visualization among processors so they can execute the plot and 
return data to VisIt’s viewer where it can be displayed.

To add the data extents for each processor to the metadata using Silo, you must add the 
data extents to the option list that you pass to the DBPutMultivar function call. Having 
the data extents for each domain readily available in the Multivar object ensures that VisIt 
will have enough information to determine which domains will be necessary for 
operations such as Contour without having to read all of the data to determine which 
domains contribute to the visualization. The data extents must be stored in a double 
precision array that has enough entries to accommodate the min and max values for each 
domain in the multivar object. The layout of the min and max values within that array are 
as follows: min_dom1, max_dom1, min_dom2, max_dom2, ..., 
min_domN, max_domN

const int two = 2;
double extents[NDOMAINS][2];
DBoptlist *optlist = NULL;
/* Calculate the per-domain data extents for this variable. */
/* Write the multivar. */
optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_EXTENTS_SIZE, (void *)&two);
DBAddOption(optlist, DBOPT_EXTENTS, (void *)extents);
DBPutMultivar(dbfile, "var", nvar, varnames, vartypes, optlist);
DBFreeOptlist(optlist);

double precision extents(2,NDOMAINS)
integer err, optlist

c Calculate the per-domain data extents for this variable.
c Write the multivar.

err = dbmkoptlist(2, optlist)
err = dbaddiopt(optlist, DBOPT_EXTENTS_SIZE, 2)
err = dbadddopt(optlist, DBOPT_EXTENTS, extents)
err = dbputmvar(dbfile, "var", 3, nvar, varnames, lvarnames,

. vartypes, optlist, ierr)
err = dbfreeoptlist(optlist)

Listing 3-5:  dataextents.c: C-Language example for writing data extents using Silo.

Listing 3-6:  fdataextents.f: Fortran language example for writing data extents using Silo.
72 Writing data extents



Creating compatible files II - Advanced topics
3.2 Writing spatial extents

If you provide spatial extents for each domain in your database then VisIt can use that 
information during spatial data reduction operations, such as slicing, to reduce the number 
of domains that must be read from disk and processed.

Spatial extents for a domain contain the minimum and maximum values of the coordinates 
within that domain, also called the domain’s bounding box. The spatial extents must be 
stored in a double precision array that has enough entries to accommodate the min and 
max coordinate values for each domain in the multimesh object. The layout of the min and 
max values within that array for 3D domains are as follows: xmin_dom1, 
ymin_dom1, zmin_dom1, xmax_dom1, ymax_dom1, zmax_dom1, ..., 
xmin_domN, ymin_domN, zmin_domN, xmax_domN, ymax_domN, 
zmax_domN. In the event that you have 2D domains then you can omit the z-components 
of the min and max values and tell Silo that there are 4 values per min/max tuple instead of 
the 6 values required to specify min and max values for 3D domains.

const int six = 6;
double spatial_extents[NDOMAINS][6];
DBoptlist *optlist = NULL;
/* Calculate the per-domain spatial extents for this mesh. */
for(int i = 0; i < NDOMAINS; ++i)
{

spatial_extents[i][0] = xmin; /* xmin for i’th domain */
spatial_extents[i][1] = ymin; /* ymin for i’th domain */
spatial_extents[i][2] = zmin; /* zmin for i’th domain */

Figure 3-7:  Only the red domains need to be processed to compute the slice plane if spatial extents 
are provided.

Listing 3-8:  spatialextents.c: C-Language example for writing 3D spatial extents using Silo.
Writing spatial extents 73



Creating compatible files II - Advanced topics
spatial_extents[i][3] = xmin; /* xmax for i’th domain */
spatial_extents[i][4] = ymax; /* ymax for i’th domain */
spatial_extents[i][5] = zmax; /* zmax for i’th domain */

}
/* Write the multimesh. */
optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_EXTENTS_SIZE, (void *)&six);
DBAddOption(optlist, DBOPT_EXTENTS, (void *)spatial_extents);
DBPutMultimesh(dbfile, "mesh", nmesh, meshnames, meshtypes, optlist);
DBFreeOptlist(optlist);

double precision spatial_extents(6,NDOMAINS)
integer optlist, err, dom

c Calculate the per-domain spatial extents for this mesh.
do 10000 dom=1,NDOMAINS

spatial_extents(1,dom) = xmin
spatial_extents(2,dom) = ymin
spatial_extents(3,dom) = zmin
spatial_extents(4,dom) = xmin
spatial_extents(5,dom) = ymax
spatial_extents(6,dom) = zmax

10000 continue
c Write the multimesh

err = dbmkoptlist(2, optlist)
err = dbaddiopt(optlist, DBOPT_EXTENTS_SIZE, 6)
err = dbadddopt(optlist, DBOPT_EXTENTS, spatial_extents)
err = dbputmmesh(dbfile, "quadmesh", 8, nmesh, meshnames,

. lmeshnames, meshtypes, optlist, ierr)
err = dbfreeoptlist(optlist)

4.0 Ghost zones

Ghost zones are zones external to a domain, which correspond to zones in an adjacent 
domain. Ghost zones allow VisIt to ensure continuity between domains containing zone-
centered data, making surfaces such as Contour plots continuous across domain 
boundaries instead of creating surfaces with ugly gaps at the domain boundaries. Ghost 
zones also allow VisIt to remove internal surfaces from the visualized data for plots such 
as Pseudocolor, which only wants to keep the surfaces that are external to the model. 
Removing internal surfaces results in fewer primitives that must be rendered on the 
graphics card and that increases interactivity with plots. See Figure 3-10 for examples of 
the problems that ghost zones allow VisIt to fix.

Listing 3-9:  fspatialextents.f: Fortran language example for writing 3D spatial extents using Silo.
74 Ghost zones



Creating compatible files II - Advanced topics
Ghost zones can be stored into the database so VisIt can read them when the data is 
visualized. Ghost zones can also be created on-the-fly for structured (rectilinear and 
curvilinear) meshes if multimesh adjacency information is provided. This section will 
show how to write ghost zones to the file. If you are interested in providing multimesh 
adjacency information so you can write smaller files and so VisIt can automatically create 
ghost zones then refer to the documentation for the DBPutMultimeshadj function in 
the Silo User’s Guide.

Figure 3-10:  VisIt can use ghost zones to ensure continuity and to remove internal surfaces

Without ghost zones

Without ghost zones

With ghost zones

With ghost zones
Ghost zones 75



Creating compatible files II - Advanced topics
4.1 Writing ghost zones to your files

You can write ghost zones to your files using the Silo library or you can instead write a 
multimesh adjacency object, covered in the Silo User’s Guide, that VisIt can use to 
automatically create ghost zones. This section will cover how to use the Silo library to 
store ghost zones explicitly in your files.

The first step in creating ghost zones is to add a layer of zones around the mesh in each 
domain of your database where a domain boundary exists. Each zone in the layer of added 
ghost zones must match the location and have the same data value as the zone in the 
domain that it is meant to mirror in order for VisIt to be able to successfully use ghost 
zones to remove domain decomposition artifacts. This means that you must change your 
code for writing out meshes and variables so your meshes have an addition layer of zones 
for each domain boundary that is internal to the model. Your variables must also contain 
valid data values in the ghost zones since providing a domain with knowledge of the data 
values of its neighboring domains is the entire point of adding ghost zones. Note that you 
should not add ghost zones on the surface of a domain where the surface is external to the 
model. When ghost zones are erroneously added to external surfaces of the model, VisIt 
removes the external faces and this can cause plots to be invisible.

Figure 3-11 shows two domains: domain1 (red) and domain2 (green). The boundary 
between (blue) the two domains is the interface that would exist between the domains if 
there were no ghost zones. When you add a layer of ghost zones, each domain intrudes a 

Domain 1 Domain 2

Domain boundaryGhost zones

Figure 3-11:  The zones that are both red and green are real zones in one domain and ghost zones 
in another.
76 Ghost zones



Creating compatible files II - Advanced topics
little into the other domain’s bounding box so the zones in one domain’s layer of ghost 
zones match the zones in the other domain’s external layer of zones. Of course, domains 
on both sides of the domain boundary have ghost zones to assure that the VisIt will know 
the proper zone-centered data values whether it approaches the domain boundary from the 
left or from the right. The first row of cells on either side of the domain boundary are ghost 
zones. For example, if you look at the upper left zone containing the “G” for ghost zone, 
the “G” is draw in the green part of the zone, while the red part of the zone contains no 
“G”. This means that the zone in question is a zone in domain1, the red domain, but that 
domain2 has a zone that exactly matches the location and values of the zone in the red 
domain. The corresponding zone in domain2 is a ghost zone.

/* Create each of the domain meshes. */
int dom = 0, xdom, ydom, zdom;
for(zdom = 0; zdom < NZDOMS; ++zdom)
for(ydom = 0; ydom < NYDOMS; ++ydom)
for(xdom = 0; xdom < NXDOMS; ++xdom, ++dom)
{

float xc[NX], yc[NY], zc[NZ];
float *coords[] = {xc, yc, zc};
int index = 0;
float xstart, xend, ystart, yend, zstart, zend;
int xzones, yzones, zzones, nzones;
int xnodes, ynodes, znodes;

/* Create a new directory. */
char dirname[100];
sprintf(dirname, "Domain%03d", dom);
DBMkDir(dbfile, dirname);
DBSetDir(dbfile, dirname);

/* Determine default start, end coordinates */
xstart = (float)xdom * XSIZE;
xend   = (float)(xdom+1) * XSIZE;
xzones = NX-1;
ystart = (float)ydom * YSIZE;
yend   = (float)(ydom+1) * YSIZE;
yzones = NY-1;
zstart = (float)zdom * ZSIZE;
zend   = (float)(zdom+1) * ZSIZE;
zzones = NZ-1;

xnodes = xzones + 1;
ynodes = yzones + 1;
znodes = zzones + 1;

/* Create the mesh coordinates. */
for(i = 0; i < xnodes; ++i)
{

Listing 3-12:  spatialextents.c: C-Language example for writing a 3D, domain-decomposed 
rectilinear mesh without ghost zones.
Ghost zones 77



Creating compatible files II - Advanced topics
float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend;

}
for(i = 0; i < ynodes; ++i)
{

float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend;

}
for(i = 0; i < znodes; ++i)
{

float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend;

}
/* Write a rectilinear mesh. */
dims[0] = xnodes;
dims[1] = ynodes;
dims[2] = znodes;
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, NULL);

/* Go back to the top directory. */
DBSetDir(dbfile, "..");

}

Once you have changed your mesh-writing code to add a layer of ghost zones, where 
appropriate, you must indicate that the extra layer of zones are ghost zones. If you use 
Silo’s DBPutQuadmesh function to write your mesh, you can indicate which zones are 
ghost zones by adding DBOPT_LO_OFFSET and DBOPT_HI_OFFSET to pass arrays 
containing high and low zone index offsets in the option list. If you are adding ghost zones 
to an unstructured mesh, you would instead adjust the lo_offset and hi_offset 
arguments that you pass to the DBPutZonelist2 function. The next code listing shows 
the additions made in order to support ghost zones in a domain-decomposed rectilinear 
mesh. The additions are underlined.

/* Determine the size of a zone. */
float cx, cy, cz;
cx = XSIZE / (float)(NX-1);
cy = YSIZE / (float)(NY-1);
cz = ZSIZE / (float)(NZ-1);
/* Create each of the domain meshes. */
int dom = 0, xdom, ydom, zdom;
for(zdom = 0; zdom < NZDOMS; ++zdom)
for(ydom = 0; ydom < NYDOMS; ++ydom)
for(xdom = 0; xdom < NXDOMS; ++xdom, ++dom)
{

float xc[NX], yc[NY], zc[NZ];
float *coords[] = {xc, yc, zc};

Listing 3-13:  ghostzonesinfile.c: C-Language example for writing a 3D, domain-decomposed 
rectilinear mesh with ghost zones.
78 Ghost zones



Creating compatible files II - Advanced topics
int index = 0;
float xstart, xend, ystart, yend, zstart, zend;
int xzones, yzones, zzones, nzones;
int xnodes, ynodes, znodes;
int hi_offset[3], lo_offset[3];
DBoptlist *optlist = NULL;

/* Create a new directory. */
char dirname[100];
sprintf(dirname, "Domain%03d", dom);
DBMkDir(dbfile, dirname);
DBSetDir(dbfile, dirname);

/* Determine default start, end coordinates */
xstart = (float)xdom * XSIZE;
xend   = (float)(xdom+1) * XSIZE;
xzones = NX-1;
ystart = (float)ydom * YSIZE;
yend   = (float)(ydom+1) * YSIZE;
yzones = NY-1;
zstart = (float)zdom * ZSIZE;
zend   = (float)(zdom+1) * ZSIZE;
zzones = NZ-1;

/* Set the starting hi/lo offsets. */
lo_offset[0] = 0;
lo_offset[1] = 0;
lo_offset[2] = 0;
hi_offset[0] = 0;
hi_offset[1] = 0;
hi_offset[2] = 0;

/* Adjust the start and end coordinates based on whether
* or not we have ghost zones.
*/
if(xdom > 0)
{

xstart -= cx;
lo_offset[0] = 1;
++xzones;

}
if(xdom < NXDOMS-1)
{

xend += cx;
hi_offset[0] = 1;
++xzones;

}
if(ydom > 0)
{

ystart -= cy;
lo_offset[1] = 1;
++yzones;

}
if(ydom < NYDOMS-1)
Ghost zones 79



Creating compatible files II - Advanced topics
{
yend += cy;
hi_offset[1] = 1;
++yzones;

}
if(zdom > 0)
{

zstart -= cz;
lo_offset[2] = 1;
++zzones;

}
if(zdom < NZDOMS-1)
{

zend += cz;
hi_offset[2] = 1;
++zzones;

}

xnodes = xzones + 1;
ynodes = yzones + 1;
znodes = zzones + 1;

/* Create the mesh coordinates. */
for(i = 0; i < xnodes; ++i)
{

float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend;

}
for(i = 0; i < ynodes; ++i)
{

float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend;

}
for(i = 0; i < znodes; ++i)
{

float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend;

}
/* Write a rectilinear mesh. */
dims[0] = xnodes;
dims[1] = ynodes;
dims[2] = znodes;
optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_HI_OFFSET, (void *)hi_offset);
DBAddOption(optlist, DBOPT_LO_OFFSET, (void *)lo_offset);
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, optlist);
DBFreeOptlist(optlist);

/* Go back to the top directory. */
DBSetDir(dbfile, "..");

}

80 Ghost zones



Creating compatible files II - Advanced topics
There are two changes to the code in the previous listing that allow it to write ghost zones. 
First of all, the code calculates the size of a zone in the cx, cy, cz variables and then 
uses those sizes along with the location of the domain within the model to determine 
which domain surfaces will receive a layer of ghost zones. The layer of ghost zones is 
added by altering the start and end locations of the coordinate arrays as well as 
incrementing the number of zones and nodes in the dimensions that will have added ghost 
zones. The knowledge of which surfaces get a layer of ghost zones is recorded in the 
lo_offset and hi_offset arrays. By setting lo_offset[0] to 1, Silo knows that 
the first layer of zones in the X dimension will all be ghost zones. Similarly, by setting 
high_offset[0] to 1, Silo knows that the last layer of zones in the X dimension are 
ghost zones. The lo_offset and hi_offset arrays are associated with the mesh by 
adding them to the option list that is passed to the DBPutQuadmesh function. The 
example program fghostzonesinfile.f demonstrates how to add ghost zones to a file using 
Silo’s Fortran interface.

5.0 Materials

Many simulations use materials to define the composition of regions so the response of the 
materials can be taken into account during the calculation. Materials are represented as a 
list of integers with associated material names such as: “steel”. Each zone in the mesh gets 
one or more material numbers to indicate its composition. When a zone has a single 
material number, it is said to be a “clean zone”. When there is more than one material 
number in a zone, it is said to be a “mixed zone”. When zones are mixed, they have a list 
of material numbers and a list of volume fractions (floating point numbers that sum to one) 
that indicate how much of each material is contained in a zone. VisIt provides the 
FilledBoundary and Boundary plots for plotting materials and VisIt provides the Subset 
window so you can selectively turn off certain materials.

Air

Water

Membrane

Figure 3-14:  A mesh with both clean and mixed material zones
Materials 81



Creating compatible files II - Advanced topics
1:

2:

3:

1

1

2

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_zone

2

5

5

6

6

9

9

10

10

10

11

11

1:

2:

3:

2

3

2

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_mat

1

2

3

2

1

2

3

1

2

3

2

1

1:

2:

3:

0.75

0.25

0.1875

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_vf

0.8125

0.625

0.375

0.4375

0.5625

0.3

0.7

0.2

0.4

0.4

0.45

0.55

1:

2:

3:

2

0

4

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_next

0

6

0

8

0

10

0

12

13

0

15

0

0 1 2 3

4 5 6 7

8 9 10 11

Zone numbers

3 3 2 2 1 1

3 3 2 2 1 1

3 3
2

3
2

1

2

1

Material numbers

Figure 3-15:  Mixed material example

3 -1 -3 1

3 -5 -7 1

3 -9 -11 -14

matlist The matlist array contains the material 
number for clean zones or an index into 
the mix arrays for mixed zones. 
Assuming array indices begin at 1, a mix 
array index is stored as the negative value 
of the desired mix array index. The mix 
arrays are 4 parallel arrays that contain 
the material numbers, volume fractions, 
zone numbers, and number of materials 
for each mixed zone.

zone 1

zone 10
82 Materials



Creating compatible files II - Advanced topics
The plot of the material object shown in Figure 3-14 and Figure 3-15 contains three 
materials: “Water” (1), “Membrane” (2), and “Air” (3). Materials use a matlist array to 
indicate which zone are clean and which are mixed. The matlist array is a zone-centered 
array of integers that contain the material numbers for the materials in the zone. If a zone 
has only one material then the matlist array entry for that zone will contain the 
material number of the material that fills the zone. If a zone contains more than one 
material then the matlist array entry for that zone will contain an index into the mixed 
material arrays. Indices into the mixed material arrays are equal to the negative value of 
the desired mixed material array entry. When creating your mixed material arrays, assume 
that array indices for the mixed material arrays begin at 1. When you begin assigning 
material information into the mixed material arrays, use one array index per material in the 
mixed material zone. The index that you use for the beginning index for the next mixed 
material zone is the current index minus the number of materials in the current zone. Study 
the matlist array in Figure 3-15. The first mixed material zone is zone 1 and since it is 
mixed, instead of containing a material number, the matlist array for zone 1 contains the 
starting index into the mixed material arrays, or -1. If you negate the -1, you arrive at index 
1, which is the starting index for zone 1 in the mixed material arrays. Since zone 1 will 
contain two materials, we use indices 1 and 2 in the mixed material arrays to store 
information for zone 1. The next available array for other zones wanting to add mixed 
materials to the mixed material arrays is element 3. Thus, when zone 2, which is also a 
mixed zone, needs to have its information added to the mixed material arrays, you store -3 
into the matlist array to indicate that zone 2’s values begin at zone 3 in the mixed material 
arrays.

The mixed material arrays are a set of 4 parallel arrays: mix_zone, mix_mat, mix_vf, 
and mix_next. All of the arrays have the number of elements but that number varies 
depending on how many mixed zones there are in the material object. The mix_zone 
array contains the index of the zone that owns the material information for the current 
array element. That is, if you examine element 14 in the mix_zone array, you will know 
that element 14 in all of the mixed material arrays contain information about zone 11. 

The mix_mat array contains the material numbers of the materials that occupy a zone. 
Material numbers correspond to the names of materials (e.g. 1 = Water) and should begin 
at 1 and increment from there. The range of material numbers used may contain gaps 
without causing any problems in VisIt. However, if you create databases that have many 
domains that vary over time, you’ll want to make sure that each domain has the same list 
of materials at every time step. It is not necessary to use a material number in the 
matlist array or in the mixed material arrays in order to include it in a material object. 
Look at element 11 in the mix_mat array in Figure 3-15. Element 11 contains material 1, 
element 12 contains material 2, and element 13 contains material 3. Since those three 
material numbers are supposed to all be present in zone 10, they are all added to the 
mix_mat array. The same array elements in the mix_vf array record the amount of each 
material in zone 10. The values in the mix_vf array for zone 10 are: 0.2, 0.4, 0.4 and 
those numbers mean that 20% of zone 10 is filled with material 1, 40% is filled with 
material 2, and 40% is filled with material 3. Note that all of the numbers for a zone in the 
mix_vf array must sum to 1., or 100%.
Materials 83



Creating compatible files II - Advanced topics
The mix_next array contains indices to the next element in the mixed material arrays 
that contains values for the mixed material zone under consideration. The mix_next 
array allows you to construct a linked-list of material numbers for a zone within the mixed 
material arrays. This means that the information for one zone’s mixed materials could be 
scattered through the mixed material arrays but in practice the mixed material information 
for one zone is usually contiguous within the mixed material arrays. The mix_next 
array contains the next index to use within the mixed material arrays or it contains a zero 
to indicate that no more information for the zone is available.

To write materials to a Silo file, you use the DBPutMaterial function. The 
DBPutMaterial function is covered in the Silo User’s Guide but it is worth noting here 
that it can be called to write either mixed materials or clean materials. The examples so far 
have illustrated the more complex case of writing out mixed materials. You can pass the 
matlist array and the mixed material arrays to the DBPutMaterial function or, in 
the case of writing clean materials, you can pass only the matlist array and NULL for 
all of the mixed material arrays. Note that when you write clean materials, your matlist 
array will contain only the numbers of valid materials. That is, the matlist array does 
not contain any negative mixed material array indices when you write out clean material 
objects.

/* Material arrays */
int nmats = 2, mdims[2];
int matnos[] = {1,2,3};
char *matnames[] = {"Water", "Membrane", "Air"};
int matlist[] = {

3, -1, -3, 1,
3, -5, -7, 1,
3, -9, -11, -14

};
float mix_vf[] = {

0.75,0.25,     0.1875,0.8125,
0.625,0.375,   0.4375,0.56250,
0.3,0.7,       0.2,0.4,0.4,      0.45,0.55

};
int mix_zone[] = {

1,1,  2,2,
5,5,  6,6,
9,9,  10,10,10,  11,11

};
int mix_mat[] = {

2,3,  2,1,
2,3,  2,1,
2,3,  1,2,3,  2,1

};
int mix_next[] = {

2,0,  4,0,
6,0,  8,0,
10,0, 12,13,0,  15,0

Listing 3-16:  mixedmaterials.c: C-Language example for writing mixed materials using Silo.
84 Materials



Creating compatible files II - Advanced topics
};
int mixlen = 15;

/* Write out the material */
mdims[0] = NX-1;
mdims[1] = NY-1;
optlist = DBMakeOptlist(1);
DBAddOption(optlist, DBOPT_MATNAMES, matnames);
DBPutMaterial(dbfile, "mat", "quadmesh", nmats, matnos, matlist,

mdims, ndims, mix_next, mix_mat, mix_zone, mix_vf, mixlen,
DB_FLOAT, optlist);

DBFreeOptlist(optlist);

subroutine write_mixedmaterial(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer NX, NY
parameter (NX = 5)
parameter (NY = 4)
integer err, ierr, optlist, ndims, nmats, mixlen
integer mdims(2) /NX-1, NY-1/
integer matnos(3) /1,2,3/

integer matlist(12) /3, -1, -3, 1,
. 3, -5, -7, 1,
. 3, -9, -11, -14/

real mix_vf(15) /0.75,0.25,     0.1875,0.8125,
. 0.625,0.375,   0.4375,0.56250,
. 0.3,0.7,       0.2,0.4,0.4,      0.45,0.55/

integer mix_zone(15) /1,1,  2,2,
. 5,5,  6,6,
. 9,9,  10,10,10,  11,11/

integer mix_mat(15) /2,3,  2,1,
. 2,3,  2,1,
. 2,3,  1,2,3,  2,1/

integer mix_next(15) /2,0,  4,0,
. 6,0,  8,0,
. 10,0, 12,13,0,  15,0/

ndims = 2
nmats = 3
mixlen = 15

c Write out the material
err = dbputmat(dbfile, "mat", 3, "quadmesh", 8, nmats, matnos,

. matlist, mdims, ndims, mix_next, mix_mat, mix_zone, mix_vf,

. mixlen, DB_FLOAT, DB_F77NULL, ierr)

Listing 3-17:  fmixedmaterials.f: Fortran language example for writing mixed materials using Silo.
Materials 85



Creating compatible files II - Advanced topics
end
86 Materials



Chapter 4 Creating a database reader 
plug-in
1.0 Overview

This chapter shows how to extend VisIt by writing a new database reader plug-in so you 
can use VisIt to access data files that you have already generated. Writing a database 
reader plug-in has several advantages over other approaches to importing data into VisIt 
such as writing a conversion program. First of all, if VisIt can natively read your file 
format then there is no need to convert files and consume extra disk space. Converting files 
may not even be possible if the data files are prohibitively large. Secondly, plug-ins offer 
the advantage of not having to alter a complex simulation code to write out data that VisIt 
can read. New plug-ins are free to read the simulation code’s native file format. While 
many approaches to importing data into VisIt require new, specialized, code, when you 
write a database plug-in, the code that you write is external to your simulation and it is not 
a convertor that you have to maintain. There is no doubt that there is some maintenance 
involved in writing a database reader plug-in for VisIt but there is always the option of 
contributing your plug-in back into the VisIt source code tree where the code maintenance 
burden is shared among the developer community.

This chapter first reviews the VisIt architecture and describes where plug-ins fit into that 
scheme. After plug-ins are discussed, the steps that you must follow in order to create a 
plug-in are outlined. After covering the basics, you can dive into the section that covers 
how to implement your plug-in. Finally, once you have a working plug-in, you can add 
advanced features.

2.0 Structure of VisIt

VisIt is a parallel, distributed application that consists of four component processes that 
work in tandem to produce your visualizations. The two components that you may already 
Overview Getting Data into VisIt Manual 87



Creating a database reader plugin
be familiar with are the client and the viewer. VisIt has GUI, Python interface, and Java 
clients that control the visualization operations performed by the viewer, which is the 
central state repository and graphics rendering component. The other components, which 
are not immediately visible, are the database server and the compute engine. The database 
server (sometimes called the meta-data server) is responsible for browsing the file system 
and letting you know which files can be opened. Once you decide on a file to open, the 
database server attempts to open that file, loading an appropriate database reader plug-in 
to do so. Once the database server has opened a file, it sends file metadata such as the list 
of available variables to the client and the viewer. The compute engine comes into play 
when you want to create a plot to process your data into a form that can be rendered on the 
screen. The compute engine, like the database server, loads a plug-in to read a data file and 
does the actual work of reading the problem-sized data from the file and translating it into 
Visualization Toolkit (VTK) objects that VisIt can process. Once the data has been read, it 
is fed through the visualization pipeline and returned to the viewer component where it 
can be displayed.

Local computer

Remote computer

Figure 4-1:  VisIt’s architecture

Parallel Compute Engine

Database server

Data

metadatametadata processed data

GUI Viewer
88 Structure of VisIt



Creating a database reader plugin
2.1 plug-ins

VisIt supports three types of plug-ins: plot plug-ins, operator plug-ins, and database reader 
plug-ins. This chapter explores database reader plug-ins as a method of importing data 
from new file formats into VisIt. A database reader plug-in is made of three shared 
libraries, which are dynamically loaded by the appropriate VisIt components when data 
from a file must be read. The VisIt components involved in reading data from a file are the 
database server and the compute engine. Each database reader plug-in has a database 
server component, a compute engine component, and an independent component, for a 
total of three shared libraries (libM, libE, libI).

The independent plug-in component, or libI plug-in component, is a very lightweight 
shared library containing little more than the name and version of a plug-in as well as the 
file extensions that should be associated with it. When the database server and compute 
engine initialize at runtime, one of their first actions is to scan VisIt’s plug-in directories 
for available libI plug-ins and then load all of the libI plug-ins to assemble an internal 
list of known plug-ins along with the table of file extensions for each file.

When VisIt needs to open a file, the filename is first passed to the database server, which 
tries to extract a file extension from the end of the filename so an appropriate plug-in can 
be selected from the list of available plug-ins. Once one or more matches are made, the 
database factory object in the database server loads the libM plug-in component for the 
first plug-in in the list of matching plug-ins. The libM plug-in component is the piece of 
the plug-in used by the database server and it is used to read the metadata from the file in 
question. If the plug-in cannot open the file then it should throw an exception to make the 
database factory attempt to open the file using the next matching plug-in. If there are no 
plug-ins that match the file’s file extension then a default database plug-in is used. If that 
plug-in cannot open the file then VisIt issues an error message. Once the libM plug-in has 
read the metadata from the file, that information is sent to the VisIt clients where it can be 
used to populate variable menus, etc.

When you add a plot in VisIt and click the Draw button, the first step that the compute 
engine takes to process your request is to open the file that contains the data. The 
procedure for opening the file that contains the data in the compute engine is the same as 
that for the database server. In fact, the same database factory code is used internally. 
However, the database factory in the compute engine loads the libE plug-in component. 
The libE and libM plug-in components are essentially the same except that, when 
possible, database server plug-in components do less work. Both the libE and libM 
plug-in components contain code to read a file’s metadata and both contain code to read 
variables and create meshes. The difference between the two plug-in types is that the code 
to read the variables and create meshes is only called from the libE plug-in component.
Structure of VisIt 89



Creating a database reader plugin
3.0 Starting your plug-in

Now that you know the basics of how VisIt uses database reader plug-ins in order to read 
different types of files, it is time to begin your plug-in. This section explains the different 
interfaces available for coding your plug-in and also covers the steps involved to create 
your plug-in code skeleton and run it for the first time.

3.1 Picking a database reader plug-in interface

Database reader plug-ins have 4 possible interfaces, which affect how files are mapped to 
plug-in file format objects. The 4 possible interfaces are shown in the table below:

In order to pick which plug-in interface is most appropriate for your particular file format, 
you must consider how your file format treats time and domains. If your file format 
contains multiple time states in each file then you have an MT file format; otherwise you 
have an ST file format. If your file format comes from a parallel simulation then you will 
often have some type of domain decomposition, which breaks up the entire simulation into 
smaller pieces called domains that are divided among processors. If your simulation has 
domains and the domains are written to a single file then you have an MD file format; 
otherwise, if your simulation processors wrote out their own files then you have an SD file 
format. When you consider both how your file format deals with time and how it deals 
with domains, you should be able to select which plug-in interface you will need when 
you write your database reader plug-in.

3.2 Using XMLEdit

Once you pick which database interface you will use to write your database plug-in, the 
next step is to use VisIt’s XMLEdit tool to get started with some interface definitions. 
XMLEdit is a graphical application that lets you create an XML file that describes some of 
the basic attributes for your database reader plug-in. The XML file contains information 
such as the name of the plug-in, its version, which interface is used, the plug-in’s list of file 
extensions, and any additional libraries or source code files that need to be included in the 
plug-in in order to build it.

SD MD

ST STSD - Single time state 
per file and it contains 
just 1 domain.

STMD - Single time state per 
file but each file contains 
multiple domains.

MT MTSD - Multiple time 
states per file and each 
file contains just 1 
domain

MTMD - Multiple time 
states per file and each file 
contains multiple domains.
90 Starting your plugin



Creating a database reader plugin
To get started with building your plug-in, the first step is to create a source code directory 
to contain all of the files that will be created to generate your plug-in. It is best that the 
directory name be the name of your file format or the name of your simulation. Once you 
have created a directory for your plug-in files, you can run VisIt’s XMLEdit program. To 
start XMLEdit on UNIX systems where VisIt is installed, open a command window and 
type xmledit. On Windows systems, XMLEdit should be available in the Start menu 
under VisIt’s plug-in development options.

Once XMLEdit is active you can see that it has a number of tabs that are devoted to 
various aspects of plug-in development. Most of the tabs are used for developing plot and 
operator plug-ins only so this section will focus on the actions that you need to take to 
create your database reader plug-in. First of all, you must type the name of your plug-in 
into the Name text field. The name should match the name of the source code directory 
that you created - be sure that you pick a name that can be used inside of C++ class names 
since the name is used to help generate the plug-in code skeleton that will form the basis 
of your database reader plug-in. Next, type in a label into the Label text field. The label 
for a database plug-in can contain a longer identifier that will be displayed when VisIt uses 
your plug-in to read files. The label may contain spaces and punctuation. Next, enter the 
version of your plug-in into the Version text field. The version for initial development 
should be: 1.0. Now, choose Database from the Plugin type combo box to tell XMLEdit 
that you want to build a database reader plug-in. Once you choose Database for your plug-

Figure 4-2:  XMLEdit plug-in tab
Starting your plugin 91



Creating a database reader plugin
in type, some additional options will become enabled. You can ignore these options for 
now since they contain reasonable default values.

The next step in creating your database plug-in using XMLEdit is to set the database type 
to STSD, STMD, MTSD, MTMD by selecting one of those options from the Database 
type combo box. Note that it is possible to instead choose to create a fully custom 

Figure 4-3:  XMLEdit plug-in tab with plug-in name and type selected

Figure 4-4:  XMLEdit plug-in tab with database type and extensions selected
92 Starting your plugin



Creating a database reader plugin
database type but do not choose that option since most formats do not need that level of 
customizeability. Once you have selected a database type for your plug-in, type in the list 
of file formats that you want to associate with your plug-in. You can enter as many space-
delimited file extensions as you want.

The information that you entered is the minimum amount of information required to create 
your database reader plug-in. Save your XMLEdit session to an XML file by selecting 
Save from the File menu. Be sure to use the same name as you used for the directory 
name that will contain your plug-in files and also be sure to save your XML file to that 
directory. At this point, you can skip ahead to generating your plug-in code skeleton or 
you can continue adding options to your XML file.

3.2.1 Makefile options

XMLEdit contains controls on its Makefile tab that allow you to add options to your XML 
file that will influence how your plug-in code is built when you go to compile it. For 
example, the Makefile tab includes options that allow you to specify compiler options 
such as CXXFLAGS, LDFLAGS, and LIBS. Adding options to these fields can be 
particularly useful if your plug-in uses an external library such as NETCDF or HDF5. You 
can add the include file and library file locations to ensure that the compiler will know 
where to look for your external library when your plug-in is built. You can also add extra 
files to the libE and libM plug-ins by adding a list of files to the Engine files and 
MDServer files text fields, respectively. If you change any of these options, shown in 
Figure 4-5, be sure to save your XML file before quitting XMLEdit.

Figure 4-5:  XMLEdit Makefile tab with compiler options and additional files specified.
Starting your plugin 93



Creating a database reader plugin
3.3 Generating a plug-in code skeleton

Once you save your work from XMLEdit, you will find an XML file containing the 
options that you provided in the directory where you store your plug-in files. VisIt 
provides more XML tools to generate the necessary code skeleton for your plug-in. The 
important tools when building a database plug-in are: xml2makefile, xml2info, 
xml2plugin. The xml2plugin program is actually a script that automates calling the 
required xml2* programs. In order to generate your plug-in code skeleton, open a 
command window, go to the directory containing your XML file, and run xml2plugin. 
On UNIX systems, the command that you will run is: 

xml2plugin -clobber FILE.xml 

Be sure to replace FILE.xml with the name of your own XML file. Once you run the 
xml2plugin program, if you look in your directory, you will see several new files.

For database reader plug-ins, there are essentially three classes of files that xml2plugin 
creates. First of all, xml2plugin creates the plug-in code skeleton, which includes the 
plug-in entry points that are used to load the plug-in dynamically at runtime. These files 
have “Info” in their name and they are generated by the xml2info program. If you 
change the name, version, or file extensions that your plug-in uses then you should re-run 
xml2info instead of running xml2plugin. The next set of files are the AVT file 
format source and header files. The AVT file format source code files are C++ source code 
files that you will complete using new code to read your file format. Finally, 
xml2makefile, created a Makefile for your plug-in so all you have to do in order to 
build your plug-in is type: make at the command prompt.

Figure 4-6:  Files generated by xml2plugin
94 Starting your plugin



Creating a database reader plugin
3.4 Building your plug-in

So far, we have created an XML file using the XMLEdit program and then used the XML 
file with VisIt’s XML tools to generate plug-in source code. The static portions of the 
generated source code is complete but there are still some pieces that you need to write 
yourself in order to make VisIt read your data files. The automatically generated files that 
are called avtXXXXFileFormat.C and avtXXXXFileFormat.h, where XXXX is the name of 
your plug-in, are incomplete. These two AVT files contain a derived class of one of the 
STSD, STMD, MTSD, MTMD file format classes that VisIt provides for reading different 
file types. Your job is to fill in the missing code in the methods for the AVT classes so they 
can read data from your file format and translate that data into VTK objects. By default, 
the AVT files contain some messages in the source code like “YOU MUST IMPLEMENT 
THIS”, which are meant to prevent the source code from compiling and to call attention to 
areas of the plug-in that you need to implement (See Figure 4-7).

The first step in building a plug-in is to make sure that the automatically generated source 
code compiles. Open the AVT files and look for instances of the “YOU MUST 
IMPLEMENT THIS” message and, when you find them, write down a note of where they 
appear. Comment out each of the messages in the C++ source code and add “return 
0;” statements (See Figure 4-8). By commenting out the offending messages, the 
automatically generated source code will compile when you attempt to compile the plug-
in. You will also have a list of some of the plug-in methods that you will have to write later 
when you really begin developing your plug-in.

Figure 4-7:  Example of a “YOU MUST IMPLEMENT THIS” message
Starting your plugin 95



Creating a database reader plugin
Once you have changed the AVT files so there are no stray messages about implementing 
a plug-in feature, go back to your command terminal and type the make command for 
your system (commonly make or gmake). The make command takes the automatically 
generated Makefile that was generated by xml2makefile and starts building your plug-
in against the installed version of VisIt. If you encounter compilation errors, such as 
syntax errors, then you most likely need to make further changes to your AVT files before 
trying to build your plug-in. A good C++ language reference can help you understand the 
types of errors that may be printed to your command window in the event that you have 
not successfully changed the AVT files. If your source code seems to compile but fails due 
to missing libraries such as NETCDF or HDF5 then you can edit your Makefile so it 
points to the right library installation locations.

Once your plug-in is built, it will be stored in a platform-specific subdirectory of the 
.visit directory in your home directory (~/.visit). If you type: find ~/.visit 
-name “*.so” into your command window, you will be able to locate the libE, 
libI, and libM files that make up your compiled plug-in (see Figure 4-9). If you 
develop for MacOS X, you should substitute “*.dylib” for “*.so” in the previous 
command because shared libraries on MacOS X have a “.dylib” file extension instead 
of a “.so” file extension. Note that when a parallel compute engine is available in the 
installed version of VisIt, you will get two libE plug-ins; one with a _ser suffix and one 
with a _par suffix. The libE files that have a _ser suffix are loaded by the serial 
compute engine and the _par libE file is loaded by the parallel compute engine and 
may contain parallel function calls, such as calls to the MPI library.

Figure 4-8:  Example of corrections made to a “YOU MUST 
IMPLEMENT THIS” message needed to make the source 
code compile
96 Starting your plugin



Creating a database reader plugin
When VisIt’s database server and compute engine execute, they look in your ~/.visit 
directory for available plug-ins and load any that are available. This means that even if you 
build plug-ins against the installed version of VisIt, it will still be able to find your private 
plug-ins.

It is recommended that while you develop your plug-ins, you only install them in your 
~/.visit directory so other VisIt users will not be affected. However, if you develop 
your plug-in on MacOS X, you will have to make sure that your plug-ins are installed 
publicly so that they can be loaded at runtime. You can also choose to install your plug-ins 
publicly once you have completed development. To install plug-ins publicly, first remove 
the files that were installed to your ~/.visit directory by typing the make clean 
command in your command window. Next, re-run the xml2makefile program like 
this: xml2makefile -public -clobber FILE.xml. Adding the -public 
argument on the command line causes make to install your plug-in files publicly so all 
VisIt users can access them.

3.5 Calling your plug-in for the first time

Once you have completed building your plug-in for the first time, all that you need to do is 
run VisIt and try to open one of your files. When you open one of your files, the database 
server should match the file extension of the file that you tried to open with the list of file 
extensions that your plug-in accepts, causing your plug-in to be loaded and used for 
opening the file. You can verify that VisIt used your plug-in by opening the File 
Information window (see Figure 4-10) in the VisIt GUI and looking for the name of your 
plug-in in the listed information. 

Figure 4-9:  Files are created in the .visit directory when a plug-in is built.
Starting your plugin 97



Creating a database reader plugin
Note that at this stage, the database server should be properly loading your database reader 
plug-in but since no code to actually read your files has yet been added to the AVT source 
code files, no plottable meshes or variables will be available.

4.0 Implementing your plug-in

Now that you have built a working plug-in framework, you are ready to begin adding code 
to your plug-in that will make it capable of opening your file format, reading data, and 
translating that data into VTK objects. This section explores the details of writing the AVT 
code for your database reader plug-in, providing necessary background and then diving 
into specific topics such as how to return data for a particular mesh type. Before starting, 
remember that building a plug-in is an incremental process and you should proceed in 
small steps, saving your work, building, and testing your plug-in each step of the way.

4.1 Required plug-in methods

Most of the code in a VisIt database plug-in is automatically generated and, for the most 
part, the only code that you need to modify is the AVT code. The AVT code contains a 
class definition and implementation for a derived type of the STSD, STMD, MTSD, or 
MTMD file format classes and your job as a plug-in developer is to write the required 
methods for your derived file format class so that VisIt can read your file. There are many 
methods in the file format class interface that you can override to make your plug-in 
perform specialized operations. The only methods that you absolutely must implement are 

Figure 4-10:  File Information window confirming use of your plug-in.
98 Implementing your plugin



Creating a database reader plugin
the PopulateDatabaseMetaData, GetMesh, GetVar, and GetVectorVar 
methods. The purpose of each of these plug-in methods is listed in the following table.

Method Purpose

PopulateData-
baseMetaData

VisIt calls the PopulateDatabaseMetaData 
method when file metadata is needed. File metadata 
is returned in a pass-by-reference avtData-
baseMetaData object. File metadata consists of 
the list of names of meshes, scalar variables, vector 
variables, tensor variables, label variables, array 
variables, expressions, cycles, and times contained in 
the file. These lists of variables and meshes let VisIt 
know the names of the objects that can be plotted 
from your file. The metadata is used primarily to 
populate the plot menus in the GUI and viewer com-
ponents. The PopulateDatabaseMetaData 
method is called by both the libM and libE plug-
ins.

GetMesh VisIt calls the GetMesh method in a libE plug-in 
when it needs to plot a mesh. This method is the first 
method to return “problem-sized” data, meaning that 
the mesh data can be as large as the data in your file. 
The GetMesh method must return a mesh object in 
the form of one of the VTK dataset objects 
(vtkRectilinearGrid, vtkStruc-
turedGrid, vtkUnstructuredGrid, 
vtkPolyData)

GetVar VisIt calls the GetVar method in a libE plug-in 
when it needs to read a scalar variable. Like the 
GetMesh method, this method returns “problem-
sized” data. GetVar reads data values from the file 
format, possibly performing calculations to alter the 
data, and stores the data into a derived type vtk-
DataArray object such as vtkFloatArray or 
vtkDoubleArray. If your file format does not 
need to return scalar data then you can leave the 
“return 0;” implementation that you added in 
order to get your plug-in to build.
Implementing your plugin 99



Creating a database reader plugin
4.2 Debugging your plug-in

Before beginning to write code for your plug-in, you should know a few techniques for 
debugging your plug-in since debugging VisIt can be tricky because of its distributed 
architecture.

4.2.1 Debugging logs

The first method debugging in VisIt is by using VisIt’s debug logs. When you run visit 
on the command line, you can optionally add the -debug 5 arguments to make VisIt 
write out debugging logs. The number of debugging logs can be 1, 2, 3, 4, or 5, with 
debugging log 5 being the most detailed. When VisIt’s components are told to run with 
debugging logs turned on, each component writes a set of debugging logs. For example, 
the database server component will write mdserver.1.log, 
mdserver.2.log,...,mdserver.5.log debugging logs if you pass -debug 5 on the VisIt 
command line. Since you are writing a database reader plug-in, you will want to look at 
the mdserver*.log and engine*.log files since those components load your libM and 
libE plug-ins.

The debugging logs will contain information written to them by the debugging statements 
in VisIt’s source code. If you want to add debugging statements to your AVT code then 
you can use the debug1, debug2, debug3, debug4, or debug5 streams as shown in 
the next code listing.

// NOTE - This code incomplete and is for example purposes only.

// Include this header for debug streams.
#include <DebugStream.h>

vtkDataSet *

GetVectorVar VisIt calls the GetVectorVar method in a libE 
plug-in when it needs to read a vector or tensor vari-
able. GetVectorVar performs the same function 
as GetVar but returns vtkFloatArray or vtk-
DoubleArray objects that have more than one 
value per tuple. A tuple is the equivalent of a value 
associated with a zone or node but it can store more 
than one value. If your file format does not need to 
return scalar data then you can leave the “return 
0;” implementation that you added in order to get 
your plug-in to build.

Method Purpose

Listing 4-11:  debugstream.C: C++-Language example for using debug streams.
100 Implementing your plugin



Creating a database reader plugin
avtXXXXFileFormat::GetMesh(const char *meshname)
{

// Write messages to different levels of the debug logs.
debug1 << "Hi from avtXXXXFileFormat::GetMesh" << endl;

debug4 << "Many database plug-ins prefer debug4" << endl;

debug5 << "Lots of detail from avtXXXXFileFormat::GetMesh"
<< endl;

return 0;
}

4.2.2 Dumping VTK objects to disk

In addition to the -debug argument, VisIt also supports a -dump argument. The -dump 
argument tells VisIt’s compute engine to write VTK files containing the data for every 
stage of the pipeline execution so you can view the changes to the data made by each AVT 
filter. While this option is more useful when writing plots and operators, you can use it to 
examine the data at the beginning of the pipeline since, at that stage, the data will contain 
the VTK object that was created by your database reader plug-in.

When you run VisIt with the -dump argument, many VTK files will be created since the 
data is saved at every stage in the execution of VisIt’s data processing pipeline. Each VTK 
file contains a number indicating the order of the filter in the pipeline that saved the data. 
Look for the filename of the form: before*0.vtk. The list of files created by using the -
dump argument is shown in Figure 4-12.

Figure 4-12:  Output of running with the -dump command line argument
Implementing your plugin 101



Creating a database reader plugin
4.3 Opening your file

When VisIt receives a list of files to open, it tries to determine which plug-in should be 
loaded to access the data in those files. The match is performed by comparing the file 
extension of the files against the known file extensions for all database reader plug-ins. 
Each plug-in in the list of matches is loaded and VisIt creates instances of the plug-in’s 
AVT file format classes that are then used to access the data in the files. When an AVT 
object is created, its constructor can open the data file and make sure that the file is of the 
apporiate type. If the file is not the right type, or if it contains errors, or if it cannot be 
accessed for some other reason, the constructor must throw an 
InvalidDBTypeException exception. When the InvalidDBTypeException 
exception is thrown from the constructor of an AVT file format derived type, VisIt’s 
database factory catches the exception and then tries to open the file with the next 
matching plug-in. This procedure continues until the file is opened by a suitable plug-in or 
the file cannot be opened at all.

// NOTE - This code incomplete and is for example purposes only.

#include <InvalidDBTypeException.h>

avtXXXXFileFormat::avtXXXXFileFormat(const char *filename)
: avtSTSDFileFormat(filename)

{
bool fileOpened = false;

// Open the file specified by the filename argument here using
// your file format API and set fileOpened accordingly.
YOU MUST IMPLEMENT THIS

// If your file format API could not open the file then throw
// an exception.
if (!fileOpened)
{

EXCEPTION1(InvalidDBTypeException,
"The file could not be opened");

}
}

If you use a file extension that is already used by other VisIt database reader plug-ins, your 
file format’s constructor should open the file to ensure that the file is of the right type. If 
your database reader plug-in uses a unique file extension then you have the option of 
deferring any file opens until later when metadata is required. This is the preferred 
approach because VisIt may create many instances of your file format class and doing less 
work in the constructor makes opening files faster.

Listing 4-13:  invaliddbtype.C: C++-Language example for a file format constructor that must throw 
an exception.
102 Implementing your plugin



Creating a database reader plugin
Once you decide whether your file format can defer opening a file or whether it must open 
the file in the constructor, you can begin adding code to your AVT class. Since opening 
files can be a costly operation, you might want to open a file and keep it open if you have a 
random access file format. If you open a file in one method and want to keep the file open 
so it is available to multiple plug-in methods, you will need to add a new class member to 
your AVT class to contain the handle to your open file. If your file format consists of 
sequential text then you might consider reading the file once and keeping the data in 
memory in a format that you can conveniently translate into VTK objects. Both 
approaches require the addition of a new class member - either a handle to the file or a 
pointer to data that was read from the file.

4.4 Returning file metadata

Once your you have decided how your plug-in will manage access to the file that it must 
read, the next step in writing your database reader plug-in is to implement the 
PopulateDatabaseMetaData method. The PopulateDatabaseMetaData 
method is called by VisIt’s database infrastructure when information about a file’s meshes 
and variables must be obtained. The PopulateDatabaseMetaData method is 
usually called only the first time that a file format’s metadata is being read, though some 
time-varying formats can have time-varying metadata, which requires that 
PopulateDatabaseMetaData is called each time VisIt requests data for a new time 
state. However, most file formats call PopulateDatabaseMetaData once.

The PopulateDatabaseMetaData method arguments can vary, depending on 
whether your file format is STSD, STMD, MTSD, or MTMD but in all cases the first 
argument is an avtDatabaseMetaData object. The avtDatabaseMetaData 
object is a class that is pervasively used in VisIt; it contains information about the files that 
you plot such as the number of domains, times, meshes, and variables that the files can 
provide. When you implement your plug-in’s PopulateDatabaseMetaData 
method, you must populate the avtDatabaseMetaData object with the list of meshes 
and variables, etc. that you want VisIt to be able to plot. You can hard-code a fixed list of 
meshes and variables if your file format always contains the same entities or you can open 
your file and provide a dynamic list of meshes and variables. This section covers how to 
add meshes and various variable types to the avtDatabaseMetaData object so your 
file format’s data will be exposed in VisIt. For a complete listing of the 
avtDatabaseMetaData object’s methods, see the avtDatabaseMetaData.h header 
file. It is worth noting that the following code examples create metadata objects and 
manually add them to the metadata object instead of using convenience functions. This is 
done because the convenience functions used in automatically generated plug-in code do 
not provide support for less often used metadata settings such as units and labels.

4.4.1 Returning mesh metadata

In order for you to be able to plot any data from your file format, your database reader 
plug-in must add at least one mesh to the avtDatabaseMetaData object that is passed 
into the PopulateDatabaseMetaData method. Adding information about a mesh to 
Implementing your plugin 103



Creating a database reader plugin
the avtDatabaseMetaData object is done by creating an avtMeshMetaData 
object, populating its important members, and adding it to the 
avtDatabaseMetaData. At a minimum, each mesh must have a name, spatial 
dimension, topological dimension, and a mesh type. The mesh’s name is the identifier that 
will be displayed in VisIt’s plot menus and it is also the name that will be passed later on 
into the plug-in’s GetMesh method. 

The spatial dimension attribute corresponds to how many dimensions are needed to 
specify the coordinates for the points that make up your mesh. If your mesh exists in a 2D 
plane then choose 2, otherwise choose 3. Note that when you create the points for your 
mesh later in the GetMesh method, you will always create points that contain X,Y,Z 
points.

The topological dimension attribute describes the number of logical dimensions used by 
your mesh, regardless of the dimension of the space that it sits in. For example, you may 
have a planar surface of triangles sitting in 3D space. Such a mesh would be topologically 
2D even though it sits in 3D space. The rule of thumb that VisIt follows is that if your 
mesh’s cells are points then you have a mesh that is topologically 0D, lines are 1D, 
surfaces are 2D, and volumes are 3D. This point is illustrated in Figure 4-14.

Once you have set the other basic attributes for your mesh object, consider which type of 
mesh you have. VisIt supports several different mesh types and the value that you provide 
in the metadata allows VisIt to tailor how it applies filters that process your data. If you 
have a mesh composed entirely of particles then choose AVT_POINT_MESH. If you have 
a structured mesh where the coordinates are specified by small vectors of values for each 
axis and the rest of the coordinates are implied then you probably have a rectilinear mesh 
and you should choose AVT_RECTILINEAR_MESH. If you have a structured mesh and 
every node has its own specific location in space then you probably have a curvilinear 
mesh and you should choose AVT_CURVILINEAR_MESH. If you have a mesh for which 
you specify a large list of nodes and then create cells using indices into that list of nodes 
then you probably have an unstructured mesh and you should choose 
AVT_UNSTRUCTURED_MESH for the mesh type. If you have a mesh that adaptively 
refines then choose AVT_AMR_MESH. Finally, if your mesh is specified using shapes such 
as cones and spheres that are unioned or differenced using boolean operations then you 

Figure 4-14:  Topological dimensions. One zone is highlighted blue.

Points, 0D Lines, 1D Polygons, 2D Polyhedra, 3D
104 Implementing your plugin



Creating a database reader plugin
have a constructive solid geometry mesh and you should choose AVT_CSG_MESH for 
your mesh’s mesh type.

If your mesh consists of multiple domains then you will need to set the number of domains 
into the numBlocks member of the avtMeshMetaData object. Remember that the 
number of domains tells VisIt how many pieces make up your mesh and it is especially 
important to specify this number if your plug-in is derived from an MD file format 
interface. You may also choose to tell VisIt what the domains are called for your file 
format. Some file formats use the word: “domains” while others use “brick” or “block”. If 
you choose to set the name that VisIt uses for domains then that term will be used in parts 
of VisIt’s GUI such as the Subset window. Set the blockPieceName member of the 
avtMeshMetaData object to a suitable term that describes a domain in the context of 
your simulation code. Alternatively, you can provide proper names by providing a vector 
of strings containing the names by setting the blockNames member. 

Now that the most important attributes of the avtMeshMetaData object have been 
specified, you can add extra information such as the names or units of the coordinate 
dimensions. Once all attributes are set to your satisfaction, you must add the 
avtMeshMetaData object to the avtDatabaseMetaData object.

// NOTE - This code incomplete and is for example purposes only.

Figure 4-15:  AVT mesh types (AVT_CSG_MESH not pictured).

AVT_POINT_MESH AVT_RECTILINEAR_MESH AVT_CURVILINEAR_MESH

AVT_UNSTRUCTURED_MESH AVT_AMR_MESH

Listing 4-16:  meshmetadata.C: C++-Language example for returning mesh metadata.
Implementing your plugin 105



Creating a database reader plugin
void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a point mesh to the metadata. Note that this example will
// always expose a mesh called “particles” to VisIt. A real
// plug-in may want to read a list of meshes from the data
// file.
avtMeshMetaData *mmd = new avtMeshMetaData;
mmd->name = "particles";
mmd->spatialDimension = 3;
mmd->topologicalDimension = 0;
mmd->meshType = AVT_POINT_MESH;
mmd->numBlocks = 1;
md->Add(mmd);

// Add other objects to the metadata object.
}

4.4.2 Returning scalar metadata

Once you have exposed a mesh to VisIt by adding mesh metadata to the 
avtDatabaseMetaData object, you can add scalar field metadata to the metadata. A 
scalar field is a set of floating point values defined for all cells or nodes of a mesh. You can 
expose as many scalar variables as you want on any number of meshes. The list of scalar 
fields that a plug-in exposes is often determined by the data file being processed. Like 
mesh metadata, scalar metadata requires a name so the scalar can be added to VisIt’s 
menus. The name that you choose is the same name that later is passed to the GetVar 
plug-in method. Once you select a name for your scalar variable, you must indicate the 
name of the mesh on which the variable is defined by setting the meshName member of 
the avtScalarMetaData object. Once you have set the name and meshName 
members, you can set the centering member. The centering member of the 
avtScalarMetaData object can be set to AVT_NODECENT or AVT_ZONECENT, 
indicating that the data is defined on the nodes or at the zone centers, respectively. If you 
want to indicate units that are associated with the scalar variable, set the hasUnits 
member to true and set the units string to the appropriate unit names.

// NOTE - This code incomplete and is for example purposes only.

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add a scalar to the metadata. Note that this plug-in will
// always expose a scalar called "temperature" to VisIt. A real
// plug-in may want to read a list of scalars from the data

Listing 4-17:  scalarmetadata.C: C++-Language example for returning scalar metadata.
106 Implementing your plugin



Creating a database reader plugin
// file.
avtScalarMetaData *smd = new avtScalarMetaData;
smd->name = "temperature";
smd->meshName = "mesh";
smd->centering = AVT_ZONECENT;
smd->hasUnits = true;
smd->units = "Celsius";
md->Add(smd);

// Add other objects to the metadata object.
}

4.4.3 Returning vector metadata

The procedure for returning vector metadata is similar to that for returning scalar 
metadata. In fact, if you change the object type that you create from 
avtScalarMetaData to avtVectorMetaData then you are almost done. After 
you set the basic vector metadata attributes, you must set the varDim member to 2 if you 
have a 2-component vector or 3 if you have a 3-component vector.

// NOTE - This code incomplete and is for example purposes only.

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add a vector to the metadata. Note that this plug-in will
// always expose a vector called "velocity" to VisIt. A real
// plug-in may want to read a list of vectors from the data
// file.
avtVectorMetaData *vmd = new avtVectorMetaData;
vmd->name = "velocity";
vmd->meshName = "mesh";
vmd->centering = AVT_ZONECENT;
vmd->hasUnits = true;
vmd->units = "m/s";
vmd->varDim = 3;
md->Add(vmd);

// Add other objects to the metadata object.
}

Listing 4-18:  vectormetadata.C: C++-Language example for returning vector metadata.
Implementing your plugin 107



Creating a database reader plugin
4.4.4 Returning material metadata

Like the other types of mesh variables that we have seen so far, a material is defined on a 
specific mesh. However, unlike the other variables types, materials can be used to name 
regions of the mesh and can also be used by VisIt to break the mesh down into smaller 
pieces that can be turned on and off using the Subset window. Material metadata is 
stored in an avtMaterialMetaData object and it consists of: the name of the material 
object, the mesh on which it is defined, the number of materials, and the names of the 
materials. If you had a material called “mat1” defined on “mesh” and “mat1” was 
composed of: “Steel”, “Wood”, “Glue”, and “Air” then the metadata object needed to 
expose “mat1” to VisIt would look like the following code listing:

// NOTE - This code incomplete and is for example purposes only.

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add a material to the metadata. Note that this plug-in will
// always expose a material called "mat1" to VisIt. A real
// plug-in may want to use from the data file to construct
// a material.
avtMaterialMetaData *matmd = new avtMaterialMetaData;
matmd->name = "mat1";
matmd->meshName = "mesh";
matmd->numMaterials = 4;
matmd->materialNames.push_back("Steel");
matmd->materialNames.push_back("Wood");
matmd->materialNames.push_back("Glue");
matmd->materialNames.push_back("Air");
md->Add(matmd);

// Add other objects to the metadata object.
}

4.4.5 Returning expressions

VisIt provides support for defining expressions to calculate new data based on the data in 
your file. VisIt provides the Expression window in the GUI for managing expression 
definitions. It can be convenient for users in certain fields, where custom expressions are 
used frequently, to store the expression definitions directly in the file format or to encode 
the custom expressions directly in the file metadata so they are always available when a 
given file is visualized. VisIt’s avtDatabaseMetaData object can contain custom 
expressions. Thus you can add custom expressions to the avtDatabaseMetaData 
object inside of your database reader plug-in. Custom expressions are added to the 

Listing 4-19:  materialmetadata.C: C++-Language example for returning material metadata.
108 Implementing your plugin



Creating a database reader plugin
avtDatabaseMetaData object by creating Expression (defined in Expression.h) 
objects and adding them by calling the avtDatabaseMetaData::AddExpression 
method. The Expression object lets you provide the name and definition of an 
expression as well as the expression’s expected return type (scalar, vector, tensor, etc.) and 
whether the expression should be hidden from the user. Hidden expressions can be useful 
if you build a complex expression that makes use of smaller sub-expressions that do not 
need to be exposed in the VisIt user interface.

// NOTE - This code incomplete and is for example purposes only.

#include <Expression.h>

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add scalars to the metadata object.

// Add expression definitions to the metadata object.
Expression *e0 = new Expression;
e0->SetName("speed");
e0->SetDefinition("{u,v,w}");
e0->SetType(Expression::VectorMeshVar);
e0->SetHidden(false);
md->AddExpression(e0);

Expression *e1 = new Expression;
e1->SetName("density");
e1->SetDefinition("mass/volume");
e1->SetType(Expression::ScalarMeshVar);
e1->SetHidden(false);
md->AddExpression(e1);

// Add other objects to the metadata object.
}

4.5 Returning a mesh

Once your database reader plug-in can successfully return metadata about one or more 
meshes, you can proceed to implementing your plug-in’s GetMesh method. When you 
make a plot in VisIt, the plot is set up using the file metadata returned by your plug-in. 
When you click the Draw button in the VisIt GUI, it causes a series of requests that make 
the compute engine load your libE plug-in and call its GetMesh method with the name 
of the mesh being used by the plot as well as the time state and domain numbers (MT or 
MD formats only).

Listing 4-20:  expressionmetadata.C: C++-Language example for returning expression metadata.
Implementing your plugin 109



Creating a database reader plugin
A database reader plug-in’s job is to read relevant data from a file format and translate the 
data into a VTK object that VisIt can process. The GetMesh method’s job is to read the 
mesh information from the file and create a VTK object that describes the mesh in the data 
file. VisIt can process many different mesh types (See Figure 4-15 on page 105) and you 
can return different types of VTK objects that best describe your mesh type. This section 
gives example code to show how you would take data read from your file format and turn 
it into VTK objects that describe your mesh. The details of reading data from your file 
format are omitted from the example code listings because those details change for each 
file format. The central message in this section is how to use data from a file format to 
construct different mesh types.

4.5.1 Determining which mesh to return

The GetMesh method is always passed a string containing the name of the mesh that 
should be returned from the plug-in. If your file format only ever has one mesh then you 
can ignore the meshname argument. However, if your file format can contain more than 
one mesh then you should check the name of the requested mesh before returning a VTK 
object so you create and return the correct mesh.

// NOTE - This code incomplete and is for example purposes only.

#include <InvalidVariableException.h>

vtkDataSet *
avtXXXXFileFormat::GetMesh(const char *meshname)
{

// Determine which mesh to return.
if (strcmp(meshname, "mesh") == 0)
{

// Create a VTK object for "mesh"
return mesh;

}
else if (strcmp(meshname, "mesh2") == 0)
{

// Create a VTK object for "mesh2"
return mesh2;

}
else
{

// No mesh name that we recognize.
EXCEPTION1(InvalidVariableException, meshname);

}

return 0;
}

Listing 4-21:  getmesh1.C: C++ Language example for which mesh to return in GetMesh.
110 Implementing your plugin



Creating a database reader plugin
If your database reader plug-in is derived from one of the MT or MD file format interfaces 
then the GetMesh method will have, in addition to the meshname argument, either a 
timestate argument, domain argument, or both. These extra arguments are both 
integers that VisIt passes to your plug-in so your plug-in can select the right mesh for the 
specified time state or domain. If your GetMesh method accepts a timestate argument 
then you can use it to return the mesh for the specified time state, which is in the range [0, 
NTS - 1], where NTS is the number of time states that your plug-in returned from its 
GetNTimesteps method. The range for the domain argument, if it is present, is 
[0,NDOMS - 1] where NDOMS is the number of domains that your file format added to 
the numBlocks member in the avtMeshMetaData object corresponding to the mesh 
named by the meshname argument.

4.5.2 Rectilinear meshes

A rectilinear mesh is a 2D or 3D mesh 
where all coordinates are aligned with 
the axes. Each axis of the rectilinear 
mesh can have different, non-uniform 
spacing, allowing for details to be 
concentrated in certain regions of the 
mesh. Rectlinear meshes are specified 
by lists of coordinate values for each 
axis. Since the mesh is aligned to the 
axes, it is only necessary to specify one 
set of X, Y, and Z values to generate all 
of the coordinates for the entire mesh.

Once you read the X,Y, and Z 
coordinates from your data file, you 
can use them to assemble a 
vtkRectilinearGrid object. The 
procedure for creating a 
vtkRectilinearGrid object and returning it from GetMesh is shown in the next 
code listing. The underlined portions of the code listing indicate incomplete code that you 
must replace with code to read values from your file format. The first such piece requires 
you to read the number of dimensions for your mesh from the file format and store the 
value into the ndims variable. Once you have done that, read the number of nodes in 
each of the X,Y,Z dimensions and store those values in the dims array. Finally, fill in the 
code for reading the X coordinate values into the xarray array and do the same for the Y 
and Z coordinate arrays. Once you have replaced the underlined code portions with code 
that reads values from your file format, your plug-in should be able to return a valid 
vtkRectilinearGrid object once you rebuild it.

// NOTE - This code incomplete and requires underlined portions

Figure 4-22:  Rectilinear mesh and its X,Y node 
coordinates.

X-coordinates

Y-coordinates

Listing 4-23:  getmesh_rect.C: C++ Language example for creating vtkRectilinearGrid in GetMesh.
Implementing your plugin 111



Creating a database reader plugin
// to be replaced with code to read values from your file format.

#include <vtkFloatArray.h>
#include <vtkRectilinearGrid.h>

vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int dims[3] = {1,1,1};
vtkFloatArray *coords[3] = {0,0,0};
    
// Read the ndims and number of X,Y,Z nodes from file.
ndims = NUMBER OF MESH DIMENSIONS;
dims[0] = NUMBER OF NODES IN X-DIMENSION;
dims[1] = NUMBER OF NODES IN Y-DIMENSION;
dims[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 IF 2D;

// Read the X coordinates from the file.
coords[0] = vtkFloatArray::New();
coords[0]->SetNumberOfTuples(dims[0]);
float *xarray = (float *)coords[0]->GetVoidPointer(0);
READ dims[0] FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
coords[1] = vtkFloatArray::New();
coords[1]->SetNumberOfTuples(dims[1]);
float *yarray = (float *)coords[1]->GetVoidPointer(0);
READ dims[1] FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
coords[2] = vtkFloatArray::New();
if(ndims > 2)
{

coords[2]->SetNumberOfTuples(dims[2]);
float *zarray = (float *)coords[2]->GetVoidPointer(0);
READ dims[2] FLOAT VALUES INTO zarray

}
else
{

coords[2]->SetNumberOfTuples(1);
coords[2]->SetComponent(0, 0, 0.);

}

//
// Create the vtkRectilinearGrid object and set its dimensions
// and coordinates.
//
vtkRectilinearGrid *rgrid = vtkRectilinearGrid::New(); 
rgrid->SetDimensions(dims);
rgrid->SetXCoordinates(coords[0]);
coords[0]->Delete();
rgrid->SetYCoordinates(coords[1]);
coords[1]->Delete();
112 Implementing your plugin



Creating a database reader plugin
rgrid->SetZCoordinates(coords[2]);
coords[2]->Delete();

return rgrid;
}

4.5.3 Curvilinear meshes

Curvilinear meshes are structured meshes as 
are rectilinear meshes. Whereas in a 
rectilinear mesh, a small set of independent 
X,Y,Z coordinate arrays are used to generate 
the coordinate values for each node in the 
mesh, in a curvilinear mesh, the node 
coordinates are explicitly given for each 
node in the mesh. This means that the sizes 
of the X,Y,Z coordinate arrays in a 
curvilinear mesh are all NX*NY*NZ where 
NX is the number of nodes in the X-
dimension, NY is the number of nodes in the 
Y-dimension, and NZ is the number of nodes 
in the Z-dimension. Providing the 
coordinates for every node permits you to 
create more complex geometries than are 
possible using rectilinear meshes (See 
Figure 4-24).

Curvilinear meshes are created using the vtkStructuredGrid class. The next code 
listing shows how to create a vtkStructuredGrid object once you have read the 
required information from your file format. The underlined portions of the code listing 
indicate incomplete code that you will need to replace with code that can read data from 
your file format. First, read the number of dimensions for your mesh from the file format 
and store the value into the ndims variable. Once you have done that, read the number of 
nodes in each of the X,Y,Z dimensions and store those values in the dims array. Finally, 
fill in the code for reading the X coordinate values into the xarray array and do the same 
for the Y and Z coordinate arrays. Once you have replaced the underlined code portions 
with code that reads values from your file format, your plug-in should be able to return a 
valid vtkStructuredGrid object once you rebuild it

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkPoints.h>
#include <vtkStructuredGrid.h>

Figure 4-24:  Curvilinear mesh and its X,Y node 
coordinates

Listing 4-25:  getmesh_curv.C: C++ Language example for creating vtkStructuredGrid in GetMesh.
Implementing your plugin 113



Creating a database reader plugin
vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int dims[3] = {1,1,1};
    
// Read the ndims and number of X,Y,Z nodes from file.
ndims = NUMBER OF MESH DIMENSIONS;
dims[0] = NUMBER OF NODES IN X-DIMENSION;
dims[1] = NUMBER OF NODES IN Y-DIMENSION;
dims[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 IF 2D;
int nnodes = dims[0]*dims[1]*dims[2];

// Read the X coordinates from the file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
float *zarray = 0;
if(ndims > 2)
{

zarray = new float[nnodes];
READ dims[2] FLOAT VALUES INTO zarray

}

//
// Create the vtkStructuredGrid and vtkPoints objects.
//
vtkStructuredGrid *sgrid  = vtkStructuredGrid::New(); 
vtkPoints         *points = vtkPoints::New();
sgrid->SetPoints(points);
sgrid->SetDimensions(dims);
points->Delete();
points->SetNumberOfPoints(nnodes);

//
// Copy the coordinate values into the vtkPoints object.
//
float *pts = (float *) points->GetVoidPointer(0);
float *xc = xarray;
float *yc = yarray;
float *zc = zarray;
if(ndims == 3)
{

for(int k = 0; k < dims[2]; ++k)
for(int j = 0; j < dims[1]; ++j)
for(int i = 0; i < dims[0]; ++i)
{

*pts++ = *xc++;
114 Implementing your plugin



Creating a database reader plugin
*pts++ = *yc++;
*pts++ = *zc++;

}
}
else if(ndims == 2)
{

for(int j = 0; j < dims[1]; ++j)
for(int i = 0; i < dims[0]; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = 0.;

}
}

// Delete temporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return sgrid;
}

4.5.4 Point meshes

Point meshes are collections of particle positions 
that can be displayed in VisIt as points or small 
glyphed icons. Point meshes can be returned from 
the GetMesh method as 
vtkUnstructuredGrid objects that contain 
the locations of the points and connectivity 
composed entirely of vertex cells.

The next code listing shows how to create a 
vtkUnstructuredGrid object once you have 
read the required information from your file 
format. The underlined portions of the code listing 
indicate incomplete code that you will need to 
replace with code that can read data from your file 
format. First, read the number of dimensions for 
your mesh from the file format and store the value into the ndims variable. Next, read 
the number of points that make up the point mesh into the nnodes variable. Finally, fill in 
the code for reading the X coordinate values into the xarray array and do the same for 
the Y and Z coordinate arrays. Once you have replaced the underlined code portions with 

Figure 4-26:  3D point mesh
Implementing your plugin 115



Creating a database reader plugin
code that reads values from your file format, your plug-in should be able to return a valid 
vtkUnstructuredGrid object once you rebuild it.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkPoints.h>
#include <vtkUnstructuredGrid.h>

vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int nnodes;
    
// Read the ndims and number of nodes from file.
ndims = NUMBER OF MESH DIMENSIONS;
nnodes = NUMBER OF NODES IN THE MESH;

// Read the X coordinates from the file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
float *zarray = 0;
if(ndims > 2)
{

zarray = new float[nnodes];
READ dims[2] FLOAT VALUES INTO zarray

}

//
// Create the vtkPoints object and copy points into it.
//
vtkPoints *points = vtkPoints::New();
points->SetNumberOfPoints(nnodes);
float *pts = (float *) points->GetVoidPointer(0);
float *xc = xarray;
float *yc = yarray;
float *zc = zarray;
if(ndims == 3)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;

Listing 4-27:  getmesh_point.C: C++ Language example for returning a point mesh from GetMesh.
116 Implementing your plugin



Creating a database reader plugin
*pts++ = *zc++;
}

}
else if(ndims == 2)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = 0.;

}
}

//
// Create a vtkUnstructuredGrid to contain the point cells.
//
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::New(); 
ugrid->SetPoints(points);
points->Delete();
ugrid->Allocate(nnodes);
vtkIdType onevertex;
for(int i = 0; i < nnodes; ++i)
{

onevertex = i;
ugrid->InsertNextCell(VTK_VERTEX, 1, &onevertex);

}

// Delete temporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return ugrid;
}

Implementing your plugin 117



Creating a database reader plugin
4.5.5 Unstructured meshes

Unstructured meshes are collections of cells of various 
geometries that are specified using indices into an 
array of points. When you write your GetMesh 
method, if your mesh is best described as an 
unstructured mesh then you can return a 
vtkUnstructuredGrid object.

Like some of the other mesh objects, the 
vtkUnstructuredGrid object also uses a 
vtkPoints object to contain its node array. In 
addition to the vtkPoints array, the 
vtkUnstructuredGrid object maintains a list of cells 
whose connectivity is determined by setting the cell 
type to one of VTK’s predefined unstructured cell 
types (VTK_VERTEX, VTK_LINE, 
VTK_TRIANGLE, VTK_QUAD, VTK_TETRA, 
VTK_PYRAMID, VTK_WEDGE, and 
VTK_HEXAHEDRON), shown in Figure 4-29. When you add a cell using one of the 
predefined unstructured cell types, you must also provide a list of node indices that are 
used as the nodes for the cell. The number of nodes that each cell contains is determined 
by its cell type.

Figure 4-28:  2D unstructured mesh 
composed of triangles 
and quadrilaterals. The 
node numbers are 
labelled red and the cell 
numbers are labelled 
blue.

VTK_HEXAHEDRON

3

5
4

4

0 0

3

5

1 1

4

6

2 2

7

2

0 0

1

1

23

3

VTK_TETRA VTK_PYRAMID

VTK_WEDGE

Figure 4-29:  Node ordering for some VTK unstructured cell types

VTK_QUAD

VTK_TRIANGLE

0 1

2

0 1

2

3

VTK_VERTEX

VTK_LINE
118 Implementing your plugin



Creating a database reader plugin
The next code listing shows how to create a vtkUnstructuredGrid object. The 
connectivity for an unstructured grid can be stored in a file format using a myriad of 
different approaches. The example code assumes that the connectivity will be stored in an 
integer array that contains the information for each cell, beginning with the cell type for 
the first cell, followed by a list of node indices that are used in the cell. After that, the cell 
type for the second cell appears, followed by its node indices, and so on. For example, if 
you wanted to store connectivity for cells 1 and 2 in the example shown in Figure 4-28 
then the connectivity array would contain: [VTK_TRIANGLE, 2, 4, 7, 
VTK_TRIANGLE, 4, 8, 7, ...]. Note that the node indices in the example begin at 
one so the example code will subtract one from all of the node indices to ensure that they 
begin at zero, the starting index for the vtkPoints array.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkPoints.h>
#include <vtkUnstructuredGrid.h>
#include <InvalidVariableException.h>

vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int nnodes, ncells, origin = 1;
    
// Read the ndims, nnodes, ncells, origin from file.
ndims = NUMBER OF MESH DIMENSIONS;
nnodes = NUMBER OF NODES IN THE MESH;
ncells = NUMBER OF CELLS IN THE MESH;
origin = GET THE ARRAY ORIGIN (0 or 1);

// Read the X coordinates from the file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
float *zarray = 0;
if(ndims > 2)
{

zarray = new float[nnodes];
READ dims[2] FLOAT VALUES INTO zarray

}

// Read in the connectivity array. This example assumes that

Listing 4-30:  getmesh_ugrid.C: C++ Language example for returning an unstructured mesh from 
GetMesh.
Implementing your plugin 119



Creating a database reader plugin
// the connectivity will be stored: type, indices, type,
// indices, ... and that there will be a type/index list
// pair for each cell in the mesh.
int *connectivity = 0;
ALLOCATE connectivity ARRAY AND READ VALUES INTO IT.

//
// Create the vtkPoints object and copy points into it.
//
vtkPoints *points = vtkPoints::New();
points->SetNumberOfPoints(nnodes);
float *pts = (float *) points->GetVoidPointer(0);
float *xc = xarray;
float *yc = yarray;
float *zc = zarray;
if(ndims == 3)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = *zc++;

}
}
else if(ndims == 2)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = 0.;

}
}

// Delete temporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

//
// Create a vtkUnstructuredGrid to contain the point cells.
//
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::New(); 
ugrid->SetPoints(points);
points->Delete();
ugrid->Allocate(ncells);
vtkIdType verts[8];
int *conn = connectivity
for(int i = 0; i < ncells; ++i)
{

int fileCellType = *conn++;
// You file’s cellType will likely not match so you 
// will have to translate fileCellType to a VTK
// cell type. 
120 Implementing your plugin



Creating a database reader plugin
int cellType = MAP fileCellType TO VTK CELL TYPE.

// Determine number of vertices for each cell type.
if(cellType == VTK_VERTEX)

nverts = 1;
else if(cellType == VTK_LINE)

nverts = 2;
else if(cellType == VTK_TRIANGLE)

nverts = 3;
else if(cellType == VTK_QUAD)

nverts = 4;
else if(cellType == VTK_TETRA)

nverts = 4;
else if(cellType == VTK_PYRAMID)

nverts = 5;
else if(cellType == VTK_WEDGE)

nverts = 6;
else if(cellType == VTK_HEXAHEDRON)

nverts = 8;
else
{

delete [] connectivity;
ugrid->Delete();
// Other cell type - need to add a case for it.
// In the meantime, throw exception or if you
// know enough, skip the cell.
EXCEPTION0(InvalidVariableException, meshname);

}

// Make a list of node indices that make up the cell.
for(int j = 0; j < nverts; ++j)

verts[j] = conn[j] - origin;
conn += nverts;

// Insert the cell into the mesh.
ugrid->InsertNextCell(cellType, nverts, verts);

}

delete [] connectivity;

return ugrid;
}

The previous code listing shows how to create an unstructured mesh in a 
vtkUnstructuredGrid object. The code listing contains underlined portions that you 
must replace with working code to read the relevant data from your file format. The first 
instance of code that must be replaced are the lines that read ndims, nnodes, ncells, 
and origin from the file format. The ndims variable should contain 2 or 3, depending 
on whether your data is 2D or 3D. The nnodes variable should contain the number of 
nodes that are used in the set of vertices that describe your unstructured mesh. The 
ncells variable should contain the number of cells that will be added to your 
Implementing your plugin 121



Creating a database reader plugin
unstructured mesh. The origin variable should contain 0 or 1, depending on whether 
your connectivity indices begin at 0 or 1. Once you have set those variables to the 
appropriate values, you must read in the X,Y, and Z coordinate arrays from the file format 
and store the values into the xarray, yarray, and zarray array variables. If your file 
format keeps X,Y,Z values together in a single array then you may be able to read the 
coordinate values directly into the vtkPoint object’s memory, skipping the step of 
copying the X,Y,Z coordinate components into the vtkPoint object.

After reading in the coordinate values from your file format, unstructured meshes require 
two more changes to the code in the listing. The next change requires you to allocate 
memory for a connectivity array, which stores the type of cells and the nodes indices 
of the nodes that are used in the cells. The final change that you must make to the source 
code in the listing is located further down in the loop that adds cells to the 
vtkUnstructuredGrid object. The cell type read from your file format will most 
likely not use the same enumerated type values that VTK uses for its cell types 
(VTK_VERTEX, VTK_LINE, ...) so you will need to add code to translate from your cell 
type designation to VTK cell type numbers. After making the necessary changes and 
rebuilding your plug-in, your plug-in’s GetMesh method should be capable of returning a 
valid vtkUnstructuredGrid object for VisIt to plot.

4.6 Returning a scalar variable

Now that you can successfully create a Mesh plot of the meshes from your file format, you 
can focus on other types of data such as scalars. If you exposed scalar variables in your 
plug-in’s PopulateDatabaseMetaData method then those variable names will 
appear in the plot menus for plots that can use scalar variables (e.g. the Pseudocolor plot). 
When you create a plot of a scalar variable and click the Draw button in the VisIt GUI, 
VisIt will tell your database reader plug-in to open your file, read the mesh, and then your 
plug-in’s GetVar method will be called with the name of the variable that you want to 
plot. The GetVar method, like the GetMesh method, takes a variable name as an 
argument. When you receive the variable name in the GetVar method you should access 
your file and read out the desired variable and return it in a VTK data array such as a 
vtkFloatArray or a vtkDoubleArray. A vtkFloatArray is a VTK object that 
encapsulates a dynamically allocated array of a given length. The length of the array that 
you allocate to contain your variable must match either the number of cells in your mesh 
or the number of nodes in your mesh. The length is determined by the scalar variable’s 
centering (cell-centered, node-centered).

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkFloatArray.h>

vtkDataArray *

Listing 4-31:  getvar.C: C++ Language example for returning data from GetVar.
122 Implementing your plugin



Creating a database reader plugin
avtXXXFileFormat::GetVar(const char *varname)
{

int nvals;
// Read the number of vaues contained in the array
// specified by varname.
nvals = NUMBER OF VALUES IN ARRAY NAMED BY varname;

// Allocate the return vtkFloatArray object. Note that
// you can use vtkFloatArray, vtkDoubleArray,
// vtkUnsignedCharArray, vtkIntArray, etc.
vtkFloatArray *arr = vtkFloatArray::New();
arr->SetNumberOfTuples(nvals);
float *data = (float *)arr->GetVoidPointer(0);
READ nvals FLOAT NUMBERS INTO THE data ARRAY.

return arr;
}

In the previous code listing, there are two underlined areas that need to have code added to 
them in order to have a completed GetVar method. The first change that you must make 
is to add code to read the size of the array to be created into the nvals variable. The value 
that is read into the nvals variable must be either the number of cells in the mesh on 
which the variable is defined if you have a cell-centered variable or it must be the number 
of nodes in the mesh. Once you have successfully set the proper value into the nvals 
variable, you can proceed to read values from your file format into the data array, which 
points to storage owned by the vtkFloatArray object that will be returned from the 
GetVar method. Once you have made these changes, you can rebuilt your plug-in and 
begin plotting scalar variables.

4.7 Returning a vector variable

If you exposed vector variables in your plug-in’s PopulateDatabaseMetaData 
method then those variable names will appear in the plot menus for plots that can use 
vector variables (e.g. the Vector plot). When you create a plot of a vector variable and 
click the Draw button in the VisIt GUI, VisIt will tell your database reader plug-in to open 
your file, read the mesh, and then your plug-in’s GetVectorVar method will be called 
with the name of the variable that you want to plot. The GetVectorVar method, like 
the GetMesh method, takes a variable name as an argument. When you receive the 
variable name in the GetVectorVar method you should access your file and read out 
the desired variable and return it in a VTK data array such as a vtkFloatArray or a 
vtkDoubleArray. A vtkFloatArray is a VTK object that encapsulates a 
dynamically allocated array of a given length. The length of the array that you allocate to 
contain your variable must match either the number of cells in your mesh or the number of 
nodes in your mesh. The length is determined by the scalar variable’s centering (cell-
centered, node-centered). In addition to setting the length, which like a scalar variable is 
tied to the number of cells or nodes, you must also set the number of vector components. 
Implementing your plugin 123



Creating a database reader plugin
In VisIt, vector variables always have three components. If the third component is not 
needed then all values in the third component should be set to zero.

The GetVectorVar code listing shows how to return a vtkFloatArray with 
multiple components from the GetVectorVar method. As with the code listing for 
GetVar, this code listing requires you to replace underlined lines of code with code that 
reads data from your file format and stores the results in the variables provided.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkFloatArray.h>
#include <InvalidVariableException.h>

vtkDataArray *
avtXXXFileFormat::GetVectorVar(const char *varname)
{

int nvals, ncomps = 3;

// Read the number of values contained in the array
// specified by varname.
nvals = NUMBER OF VALUES IN ARRAY NAMED BY varname;
ncomps = NUMBER OF VECTOR COMPONENTS IN ARRAY NAMED BY varname;

// Read component 1 from the file.
float *comp1 = new float[nvals];
READ nvals FLOAT VALUES INTO comp1

// Read component 2 from the file.
float *comp2 = new float[nvals];
READ nvals FLOAT VALUES INTO comp2

// Read component 3 from the file.
float *comp3 = 0;
if(ncomps > 2)
{

comp3 = new float[nvals];
READ nvals FLOAT VALUES INTO comp3

}

// Allocate the return vtkFloatArray object. Note that
// you can use vtkFloatArray, vtkDoubleArray,
// vtkUnsignedCharArray, vtkIntArray, etc.
vtkFloatArray *arr = vtkFloatArray::New();
arr->SetNumberOfComponents(3);
arr->SetNumberOfTuples(nvals);
float *data = (float *)arr->GetVoidPointer(0);
float *c1 = comp1;
float *c2 = comp2;
float *c3 = comp3;

Listing 4-32:  getvectorvar.C: C++ Language example for returning data from GetVectorVar.
124 Implementing your plugin



Creating a database reader plugin
if(ncomps == 3)
{

for(int i = 0; i < nvals; ++i)
{

*data++ = *c1++;
*data++ = *c2++;
*data++ = *c3++;

}
}
else if(ncomps == 2)
{

for(int i = 0; i < nvals; ++i)
{

*data++ = *c1++;
*data++ = *c2++;
*data++ = 0.;

}
}
else
{

delete [] comp1;
delete [] comp2;
delete [] comp3;
arr->Delete();
EXCEPTION1(InvalidVariableException, varname);

}

// Delete temporary arrays.
delete [] comp1;
delete [] comp2;
delete [] comp3;

return arr;
}

4.8 Using a VTK reader class

The implementations so far for the GetMesh, GetVar, and GetVectorVar plug-in 
methods have assumed that the database plug-in would do the work of interacting with the 
file format to read data into VTK form. Most of the work of reading a file and creating 
VTK objects from it can be handled at the VTK level if you wish. This means that it is 
possible to use an existing VTK reader class to read data into VisIt if you are willing to 
implement your plug-in methods so that they in turn call the VTK reader object’s methods. 
See VisIt’s VTK database reader plug-in for an example of how to call VTK reader objects 
from inside a VisIt database reader plug-in.
Implementing your plugin 125



Creating a database reader plugin
5.0 Advanced topics

If you’ve implemented your database reader plug-in using only the techniques outlined in 
this chapter so far then you likely have a database reader plug-in that works and correctly 
serves up its data to VisIt in VTK form. This part of the chapter explains some of the more 
advanced, though not necessarily required, techniques that you can use to enhance your 
plug-in. For instance, you can enhance your plug-in so it returns the correct simulation 
times from the data files. You can also add code to return data and spatial extents for your 
data, enabling VisIt to make more optimization decisions when processing files with 
multiple domains.

5.1 Returning cycles and times

Simulations often iterate for many thousands of cycles while they solve their systems of 
equations. Generally, each simulation cycle has an associated cycle number and time 
value. Many file formats save this information so it can be made available later to post-
processing tools such as VisIt. VisIt uses cycles and times to help you navigate through 
time in your database by providing the same time frame of reference that your simulation 
used. VisIt’s File panel can display times next to each time state in a database and can 
also show the current time value as you scroll through time using the time slider. Cycle 
and time values for the current time state are often displayed in the visualization window.

Figure 4-33:  Cycles and times values are used to help you navigate through time

Cycles and times in VisIt’s user interface
126 Advanced topics



Creating a database reader plugin
Returning cycle and time values from your plug-in is completely optional. In fact, 
returning cycle and time values for data such as CAD drawings does not make sense. 
Since returning cycles and times is optional in a VisIt database reader plug-in, you can 
choose to not implement the methods that return cycles and times. You can also implement 
code to return time but not cycles or vice-versa.

The mechanics of returning cycles and times are a little different depending on whether 
you have written an ST or an MT database reader plug-in. In any case, if your plug-in 
implements the methods to return cycles or times then those methods will be some of the 
first methods called when VisIt accesses your database reader plug-in. VisIt calls the 
methods to get cycles and times and if the returned values appear to be valid then they are 
added to the metadata for your file so they can be returned to the VisIt clients and used to 
populate windows such as the File Information window, shown in Figure 4-34.

5.1.1 Returning cycles and times in an ST plug-in

When VisIt creates plug-in objects to handle a list of files using an ST plug-in, there is one 
plug-in object per file in the list of files. Since each plug-in object can only ever be 
associated with one file, the programming interface for returning cycles and times for an 
ST plug-in provides methods that return a single value. The methods for returning cycles 
and times for an ST plug-in are:

virtual bool      ReturnsValidCycle() const { return true; }
virtual int       GetCycle(void);

Figure 4-34:  The File Information window can be used to inspect 
the cycles and times returned from your plug-in.
Advanced topics 127



Creating a database reader plugin
virtual bool      ReturnsValidTime() const { return true; }
virtual double    GetTime(void);

Implementing valid cycles and times can be done independently of one another and there 
is no requirement that you have to implement both or either of them, for that matter. The 
ReturnsValidCycle method is a simple method that you should expose if you plan to 
provide a custom GetCycle method in your database reader plug-in. If you provide 
GetCycle then the ReturnsValidCycle method should return true. The same 
pattern applies if you implement GetTime - except that you would also implement the 
ReturnsValidTime method. Replace the underlined sections of code in the listing 
with code to read the correct cycle and time values from your file format.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

int
avtXXXFileFormat::GetCycle(void)
{

int cycle = OPEN FILE AND READ THE CYCLE VALUE;
return cycle;

}

double
avtXXXFileFormat::GetTime(void)
{

double dtime = OPEN FILE AND READ THE TIME VALUE;
return dtime;

}

In the event that you implement the GetCycle method but no cycle value is available in 
the file, you can return the INVALID_CYCLE value to make VisIt discard your plug-in’s 
cycle number and guess the cycle number from the filename. If you want VisIt to 
successfully guess the cycle number from the filename then you must implement the 
GetCycleFromFilename method.

int
avtXXXXFileFormat::GetCycleFromFilename(const char *f) const
{
    return GuessCycle(f);
}

Listing 4-35:  cycletime_st.C: C++ Language example for returning cycles, times from ST plug-in.
128 Advanced topics



Creating a database reader plugin
5.1.2 Returning cycles and times in an MT plug-in

An MT database reader plug-in may return cycles and times for multiple time states so the 
programming interface for MT plug-ins allows you to return vectors of cycles and times. 
In addition, an MT database reader plug-in prefers to know upfront how many time states 
will be returned from the file format so in addition to GetCycles and GetTimes 
methods, there is a GetNTimesteps method that is among the first methods called from 
your database reader plug-in.

virtual void GetCycles(std::vector<int> &);
virtual void GetTimes(std::vector<double> &);
virtual int GetNTimesteps(void);

As with ST plug-ins, there is no requirement that an MT plug-in must provide a list of 
cycles or times. However, an MT plug-in must provide a GetNTimesteps method. If 
you are enhancing your database reader plug-in to return cycles and times then it is 
convenient to implement your GetNTimesteps method such that it just calls your 
GetCycles or GetTimes method and returns the length of the vector returned by those 
methods. This simplifies the implementation and ensures that the number of time states 
reported by your database reader plug-in matches the length of the cycle and time vectors 
returned from GetCycles and GetTimes. Replace the underlined sections of code in 
the listing with code to read the correct cycles and times from your file format.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

void
avtXXXFileFormat::GetCycles(std::vector<int> &cycles)
{

int ncycles, *vals = 0;
ncycles = OPEN FILE AND READ THE NUMBER OF CYCLES;
READ ncycles INTEGER VALUES INTO THE vals ARRAY;

// Store the cycles in the vector.
for(int i = 0; i < ncycles; ++i)

cycles.push_back(vals[i]);

delete [] vals;
}

void
avtXXXFileFormat::GetTime(std::vector<double> &times)
{

int ntimes;
double *vals = 0;

Listing 4-36:  cycletime_mt.C: C++ Language example for returning cycles, times from MT plug-in.
Advanced topics 129



Creating a database reader plugin
ntimes = OPEN FILE AND READ THE NUMBER OF TIMES;
READ ntimes DOUBLE VALUES INTO THE vals ARRAY;

// Store the times in the vector.
for(int i = 0; i < ntimes; ++i)

times.push_back(vals[i]);

delete [] vals;
}

int
avtXXXXFileFormat::GetNTimesteps(void)
{

std::vector<double> times;
GetTimes(times);
return times.size();

}

5.2 Auxiliary data

This section describes how to enable your MD database reader plug-in so it can provide 
auxiliary data such as data extents, spatial extents, and materials to VisIt if they are 
available in your file format. “Auxiliary data”, is the generic term for many types of data 
that VisIt’s pipeline can use to perform specific tasks such as I/O reduction or material 
selection. VisIt’s database reader plug-in interfaces provide a method called 
GetAuxiliaryData that you can implement if you want your plug-in to be capable of 
returning auxiliary data. Note however that if your plug-in is MTMD then you will have to 
cache your spatial and data extents in the plug-in’s variable cache in the 
PopulateDatabaseMetaData method instead of returning that information from the 
GetAuxiliaryData method. This subtle difference in how certain metadata is 
accessed by VisIt must be observed by an MTMD plug-in in order for it to return spatial 
and data extents.

The method arguments for the GetAuxiliaryData method may vary somewhat 
depending on whether your database reader plug-in is based on the STSD, STMD, MTSD, 
MTMD interfaces. There is an extra integer argument for the time state if your plug-in is 
MT and there is another integer argument for the domain if your plug-in is MD. Those 
differences aside, the GetAuxiliaryData method always accepts the name of a 
variable, a string indicating the type of data being requested, a pointer to optional data 
required by the type of auxiliary data being requested, and a return reference for a 
destructor function that will be responsible for freeing resources for the returned data. The 
variable name that VisIt passes to the GetAuxiliaryData method is the name of a 
variable such as those passed to the GetVar method when VisIt wants to read a variable’s 
data. 
130 Advanced topics



Creating a database reader plugin
5.2.1 Returning data extents

When an MD database reader plug-in provides data extents for each of its domains, VisIt 
has enough information to make important optimization decisions in filters that support 
data extents. For example, if you create a Contour plot using a specific contour value, VisIt 
can check the data extents for each domain before any domains are read from disk and 
determine the list of domains that contain the desired contour value. After determining 
which subset of the domains will contribute to the final image, VisIt’s compute engine 
then reads and processes only those domains, saving work and accelerating VisIt’s 
computations. For a more complete explanation of data extents, see “Writing data extents” 
on page 70.

In the context of returning data extents, VisIt first checks a plug-in’s variable cache for 
extents. If the desired extents are not available then VisIt calls the plug-in’s 
GetAuxiliaryData method with the name of the scalar variable for which data 
extents are required and also passes AUXILIARY_DATA_DATA_EXTENTS as the type 
argument, indicating that the GetAuxiliaryData method is being called to obtain the 
data extents for the specified scalar variable. If the data extents for the specified variable 
are not available then the GetAuxiliaryData method should return 0. If the data 
extents are available then the list of minimum and maximum values for the specified 
variable are assembled into an interval tree structure that VisIt uses for fast comparisons of 
different data ranges. Once the interval tree is constructed, as shown in the code listing, the 
GetAuxiliaryData method must return the interval tree object and set the destructor 
function argument to a function that can be called to later destroy the interval tree. To add 
support for data extents to your database reader plug-in, copy the GetAuxiliaryData 
method in the code listing and replace the underlined lines of code with code that reads the 
required information from your file format.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtIntervalTree.h>

// STMD version of GetAuxiliaryData.
void *
avtXXXXFileFormat::GetAuxiliaryData(const char *var,

int domain, const char *type, void *,
DestructorFunction &df)

{
void *retval = 0;

if(strcmp(type, AUXILIARY_DATA_DATA_EXTENTS) == 0)
{

// Read the number of domains for the mesh.
int ndoms = READ NUMBER OF DOMAINS FROM FILE;

Listing 4-37:  dataextents.C: C++ Language example for returning data extents.
Advanced topics 131



Creating a database reader plugin
// Read the min/max values for each domain of the
// "var" variable. This information should be in
// a single file and should be available without
// having to read the real data.
double *minvals = new double[ndoms];
double *maxvals = new double[ndoms];
READ ndoms DOUBLE VALUES INTO minvals ARRAY.
READ ndoms DOUBLE VALUES INTO maxvals ARRAY.

// Create an interval tree
avtIntervalTree *itree = new avtIntervalTree(ndoms, 1);
for(int dom = 0; dom < ndoms; ++dom)
{

double range[2];
range[0] = minvals[dom];
range[1] = maxvals[dom];
itree->AddElement(dom, range);

}
itree->Calculate(true);

// Delete temporary arrays.
delete [] minvals;
delete [] maxvals;

// Set return values
retval = (void *)itree;
df = avtIntervalTree::Destruct;

}

return retval;
}

5.2.2 Returning spatial extents

Another type of auxiliary data that VisIt supports for MD file formats are spatial extents. 
When VisIt knows the spatial extents for all of the domains that comprise a mesh, VisIt 
can optimize operations such as the Slice operator by first determining whether the slice 
will intersect a given domain. The Slice operator is thus able to use spatial extents to 
determine which set of domains must be read from disk and processed in order to produce 
the correct visualization. Spatial extents are used in this way by many filters to reduce the 
set of domains that must be processed.

When VisIt asks the database reader plug-in for spatial extents, the 
GetAuxiliaryData method is called with its type argument set to 
AUXILIARY_DATA_SPATIAL_EXTENTS. When VisIt creates spatial extents, they are 
stored in an interval tree structure as they are with data extents. The main difference is the 
input into the interval tree. When adding information about a specific domain to the 
interval tree, you must provide the minimum and maximum spatial values for the domain’s 
X, Y, and Z dimensions. The spatial extents for one domain are expected to be provided in 
132 Advanced topics



Creating a database reader plugin
the following order: xmin, xmax, ymin, ymax, zmin, zmax. To add support for spatial 
extents to your database reader plug-in, copy the GetAuxiliaryData method in the 
code listing and replace the underlined lines of code with code that reads the required 
information from your file format.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtIntervalTree.h>

// STMD version of GetAuxiliaryData.
void *
avtXXXXFileFormat::GetAuxiliaryData(const char *var,

int domain, const char *type, void *,
DestructorFunction &df)

{
void *retval = 0;

if(strcmp(type, AUXILIARY_DATA_SPATIAL_EXTENTS) == 0)
{

// Read the number of domains for the mesh.
int ndoms = READ NUMBER OF DOMAINS FROM FILE;

// Read the spatial extents for each domain of the
// mesh. This information should be in a single
// and should be available without having to 
// read the real data. The expected format for
// the data in the spatialextents array is to
// repeat the following pattern for each domain:
// xmin, xmax, ymin, ymax, zmin, zmax.
double *spatialextents = new double[ndoms * 6];
READ ndoms*6 DOUBLE VALUES INTO spatialextents ARRAY.

// Create an interval tree
avtIntervalTree *itree = new avtIntervalTree(ndoms, 3);
double *extents = spatialextents;
for(int dom = 0; dom < ndoms; ++dom)
{

itree->AddElement(dom, extents);
extents += 6;

}
itree->Calculate(true);

// Delete temporary array.
delete [] spatialextents;

// Set return values
retval = (void *)itree;
df = avtIntervalTree::Destruct;

}

Listing 4-38:  spatialextents.C: C++ Language example for returning spatial extents.
Advanced topics 133



Creating a database reader plugin
return retval;
}

5.2.3 Returning materials

Materials are another type of auxiliary data that database plug-ins can provide. A material 
classifies different pieices of the mesh into different named subsets that can be turned on 
and off using VisIt’s Subset window. In the simplest case, you can think of a material as 
a cell-centered variable, or matlist, defined on your mesh where each cell contains an 
integer that identifies a particular material such as “Steel” or “Air”. VisIt’s 
avtMaterial object is used to encapsulate knowledge about materials. The 
avtMaterial object contains the matlist array and a list of names corresponding to 
each unique material number in the matlist array. Materials can also be structured so that 
instead of providing just one material number for each cell in the mesh, you can provide 
multiple materials per cell with volume fractions occupied by each. So-called “mixed 
materials” are created using additional arrays, described in “Materials” on page 81. To add 
support for materials in your database reader plug-in’s GetAuxiliaryData method, 
replace the underlined lines in the code example with code that read the necessary values 
from your file format.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtMaterial.h>

// STMD version of GetAuxiliaryData.
void *
avtXXXXFileFormat::GetAuxiliaryData(const char *var,

int domain, const char *type, void *,
DestructorFunction &df)

{
void *retval = 0;

if(strcmp(type, AUXILIARY_DATA_MATERIAL) == 0)
{

int dims[3] = {1,1,1}, ndims = 1;
// Structured mesh case
ndims = MESH DIMENSION, 2 OR 3;
dims[0] = NUMBER OF ZONES IN X DIMENSION;
dims[1] = NUMBER OF ZONES IN Y DIMENSION;
dims[2] = NUMBER OF ZONES IN Z DIMENSION, OR 1 IF 2D;

// Unstructured mesh case
dims[0] = NUMBER OF ZONES IN THE MESH
ndims = 1;        

// Read the number of materials from the file. This

Listing 4-39:  matclean.C: C++ Language example for returning material data.
134 Advanced topics



Creating a database reader plugin
// must have already been read from the file when
// PopulateDatabaseMetaData was called.
int nmats = NUMBER OF MATERIALS;

// The matnos array contains the list of numbers that
// are associated with particular materials. For example,
// matnos[0] is the number that will be associated with
// the first material and any time it is seen in the
// matlist array, that number should be taken to mean
// material 1. The numbers in the matnos array must
// all be greater than or equal to 1.
int *matnos = new int[nmats];
READ nmats INTEGER VALUES INTO THE matnos ARRAY.

// Read the material names from your file format or
// make up names for the materials. Use the same
// approach as when you created material names in
// the PopulateDatabaseMetaData method.
char **names = new char *[nmats];
READ MATERIAL NAMES FROM YOUR FILE FORMAT UNTIL EACH
ELEMENT OF THE names ARRAY POINTS TO ITS OWN STRING.

// Read the matlist array, which tells what the material
// is for each zone in the mesh.
int nzones = dims[0] * dims[1] * dims[2];
int *matlist = new int[nzones];
READ nzones INTEGERS INTO THE matlist array.

// Optionally create mix_mat, mix_next, mix_zone, mix_vf
// arrays and read their contents from the file format.

// Use the information to create an avtMaterial object.
avtMaterial *mat = new avtMaterial(

nmats,
matnos,
names,
ndims,
dims,
0,
matlist,
0, // length of mix arrays
0, // mix_mat array
0, // mix_next array
0, // mix_zone array
0  // mix_vf array
);

// Clean up.
delete [] matlist;
delete [] matnos;
for(int i = 0; i < nmats; ++i)

delete [] names[i];
delete [] names;
Advanced topics 135



Creating a database reader plugin
// Set the return values.
retval = (void *)mat;
df = avtMaterial::Destruct;

}

return retval;
}

5.3 Returning ghost zones

Ghost zones are mesh zones that should not be visible in the visualization but may provide 
additional information such as values along domain boundaries. VisIt uses ghost zones for 
ensuring variable continuity across domain boundaries, for removing internal domain 
boundary faces, and for blanking out specific zones. This section covers the code that must 
be added to make your database reader plug-inin order for it to return ghost zones to VisIt.

5.3.1 Blanking out zones

Blanking out specific zones so they do not appear in a visualization is a common practice 
for creating holes in structured meshes so cells zones that overlap or tangle on top of one 
another can be removed from the mesh. If you want to create a mesh that contains voids 
where zones have been removed then you can add a special cell-centered array to your 
mesh before you return it from your plug-in’s GetMesh method. The code in the listing 
can be used to remove zones from any mesh type and works by looking through a mesh-
sized array containing on/off values for each zone and sets the appropriate values into the 
ghost zone array that gets added to the mesh object. Replace any underlined code with 
code that can read the necessary values from your file format.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtGhostData.h>
#include <vtkUnsignedCharArray.h>

vtkDataSet *
avtXXXXFileFormat::GetMesh(const char *meshname)
{

// Code to create your mesh goes here.
vtkDataSet *retval = CODE TO CREATE YOUR MESH;

// Now that you have your mesh, figure out which cells need
// to be removed.
int nCells = retval->GetNumberOfCells();
int *blanks = new int[nCells];
READ nCells INTEGER VALUES INTO blanks ARRAY.

Listing 4-40:  gz_blank.C: C++ Language example for returning a mesh with blanked out zones.
136 Advanced topics



Creating a database reader plugin
// Now that we have the blanks array, create avtGhostZones.
unsigned char realVal = 0, ghost = 0;
avtGhostData::AddGhostZoneType(ghost,

ZONE_NOT_APPLICABLE_TO_PROBLEM);
vtkUnsignedCharArray *ghostCells = vtkUnsignedCharArray::New();
ghostCells->SetName("avtGhostZones");
ghostCells->Allocate(nCells);
for(int i = 0; i < nCells; ++i)
{

if(blanks[i])
ghostCells->InsertNextValue(realVal);

else
ghostCells->InsertNextValue(ghost);

}
retval->GetCellData()->AddArray(ghostCells);
retval->SetUpdateGhostLevel(0);
ghostCells->Delete();

// Clean up
delete [] blanks;

return retval;
}

5.3.2 Ghost zones at the domain boundaries

When ghost zones are used to ensure continuity across domains, an extra layer of zones 
must be added to the mesh boundaries where the boundary is shared with another domain. 
Once you have done that step, the approach for providing ghost zones is the same as for 
blanking out cells using ghost zones if your blanks array contains zeroes for only the 
zones that appear on domain boundaries. The one minor difference is that you must 
substitute the DUPLICATED_ZONE_INTERNAL_TO_PROBLEM ghost zone type for the 
ZONE_NOT_APPLICABLE_TO_PROBLEM ghost zone type in the code example.

5.4 Parallelizing your reader

VisIt is a distributed program made up of multiple software processes that act as a whole. 
The software process that reads in data and processes it is the compute engine, which 
comes in serial and parallel versions. All of the libE plug-ins in VisIt also have both 
serial and parallel versions. The parallel libE plug-ins can contain specialized MPI 
communication to support the communication patterns needed by the algorithms used. If 
you want to parallelize your database reader plug-in then, in most cases, you will have to 
use the MD interface or convert from SD to MD. There are some SD formats that can 
adaptively decompose their data so each processor has work (see the ViSUS plug-in) but 
most database plug-ins that benefit from parallelism instead are implemented as MD plug-
ins. MD plug-ins are a natural fit for the parallel compute engine because they serve data 
that is already decomposed into domains. Some database reader plug-ins, such as the BOV 
Advanced topics 137



Creating a database reader plugin
plug-in, take single domain meshes and automatically decompose them into multiple 
domains for faster processing on multiple processors.

Deriving your plug-in from an MD interface is useful since it naturally tells VisIt to expect 
data from more than one domain when reading your file format. There are a number of 
parallel optimizations that can be made inside of your MD database reader plug-in. For 
example, you might have one processor read the metadata and broadcast it to all other 
processors so when you visualize your data with a large number of processors, they are not 
all trying to read the file that contains the metadata.

VisIt’s parallel compute engine can use one of two different load balancing schemes: static 
or dynamic. In static load balancing, each processor is assigned a fixed list of domains and 
each of those domains is processed one at a time in parallel visualization pipelines until 
the result is computed. When static load balancing is used, the same code is executed on 
all processors with different data and there are more opportunities for parallel, global 
communication. When VisIt’s parallel compute engine uses dynamic load balancing, the 
master process acts as an executive that assigns work as needed to each processor. When a 
processor needs work, it requests a domain from the executive and it processes the domain 
in its visualization pipeline until the results for the domain have been calculated. After 
that, the processor asks the executive for another domain. In dynamic load balancing, each 
processor can be working on very different operations so there is no opportunity to do 
global communication. VisIt attempts to do dynamic load balancing unless any one of the 
filters in its visualization pipeline requires global communication, in which case static 
load balancing must be used. This means that the places where global communication can 
occur are few.

VisIt’s database plug-in interfaces provide the ActivateTimestep method as a 
location where global, parallel communication can be performed safely. If your parallel 
database reader needs to do parallel communication such as broadcasting metadata to all 
processors, or figuring out data extents in parallel then that code must be added in the 
ActivateTimestep method.
138 Advanced topics



Chapter 5 Instrumenting a simulation 
code
1.0 Overview

Some simulation programs include a runtime graphics package, which creates 
visualizations of simulation results during execution. Runtime graphics have a number of 
advantages over writing out graphics files that can be visualized after the fact by a 
visualization tool. First of all, graphics files are written far less frequently than the 
simulation calculates its data because of time and disk space limitations. Secondly, 
runtime graphics packages have access to all of the variables that a simulation calculates, 
whereas a graphics file usually contains a small subset of the variables. Finally, by using 
runtime graphics, users can visualize simulation results as the simulation executes and the 
user can possibly intercede to change how the simulation runs.

VisIt provides a library that can be used by simulation codes in order to expose data to 
VisIt, allowing you to use VisIt as a runtime graphics package. This chaper explains in 
detail the steps required to instrument your C or Fortran simulation so that VisIt can access 
its data for the purpose of runtime graphics.

2.0 Architecture

Parallel simulations often use a technique called domain decomposition (see Figure 5-1) 
to break up the simulated problem into smaller pieces called domains. We’ve learned in 
earlier chapters how to store data from different domains in a variety of file formats such 
as Silo and VTK. Simulations often write out 1 domain file per processor, and VisIt 
Overview Getting Data into VisIt Manual 139



Instrumenting a simulation code
processes all of the individual domain files to produce a unified picture with contributions 
from all of the relevant domains. 

VisIt has a distributed architecture which allows various functions to be grouped into 
cooperating processes. VisIt’s compute engine is particularly relevant when discussing 
runtime graphics. The compute engine is responsible for reading data from files, 
generating plots from the data, and sending the plots to VisIt’s viewer where the plot can 
be displayed. In short, VisIt’s compute engine is the VisIt component that handles all of 
the data. Figure 5-2 depicts VisIt’s compute engine reading data files in parallel.

processor 3

processor 2

processor 1

processor 0

Data filesSimulation

Figure 5-1:  Simulation writing data files in parallel

processor 3

processor 2

processor 1

processor 0

Data filesCompute engineVisIt GUI and Viewer

Figure 5-2:  VisIt’s compute engine reads data files in parallel and sends data to the viewer 
component.
140 Architecture



Instrumenting a simulation code
VisIt users often import their data via files that have been written to disk, making data 
visualization and analysis a post-processing step. VisIt’s libsim simulation 
instrumentation library can be inserted into a simulation program to make the simulation 
act in many ways like a VisIt compute engine. The libsim library, coupled with some 
data access code that you must write and build into your simulation, gives VisIt’s data 
processing routines access to the simulation’s calculated data without the need for the 
simulation to write files to disk (see Figure 5-3). An instrumented simulation may begin 
its processing while periodically listening for connections from an instance of VisIt using 
libsim. When libsim detects that VisIt wants to connect to the simulation so its data 
can be visualized, libsim loads the VisIt Compute Engine Library (VCEL). VCEL is a 
dynamically loaded library that contains all of the VisIt compute engine’s data processing 
functions. Once VCEL is loaded, your simulation connects back to VisIt’s viewer so 
requests for plots and data can be made as though your simulation was a regular VisIt 
compute engine. 

When a request for data comes in from VisIt’s viewer, your simulation is asked to provide 
data via some data access code. Data access code consists of a set of callback functions 
that your simulation must provide in order to serve data to VisIt. Data access code is 
written in the same language as your simulation program and it serves as the “glue” that 
allows the VCEL to access your simulation’s data so it can be processed and plotted in 
VisIt. Though the initial portion of this chapter illustrates how to integrate libsim 
routines into your simulation, much of the rest of this chapter will be devoted to writing 
data access code.

processor 3

VisIt compute engine library

VSIL Data access code

data

processor 2

VisIt compute engine library

VSIL Data access code

data

Instrumented Simulation

Figure 5-3:  VisIt getting data from an instrumented parallel simulation

processor 1

VisIt compute engine library

VSIL Data access code

data

processor 0

VisIt compute engine library

libsim Data access code

data

VisIt GUI and Viewer
Architecture 141



Instrumenting a simulation code
3.0 Using libsim

The first step in instrumenting a simulation so it can serve up data to VisIt is to add the 
libsim library. The libsim library is responsible for listening for incoming VisIt 
connections, connecting to them, and for dynamically loading VCEL (the piece that 
allows the simulation to act as a VisIt compute engine). The libsim library can listen for 
input from incoming VisIt instances, establish connections to VisIt, and respond to 
console input or input from VisIt. As one might imagine, this implies that your 
simulation’s main loop will need to be changed so it calls critical routines from libsim. 
Restructuring the main loop will be covered shortly. 

3.1 Getting libsim

VisIt’s libsim library is located in the libsim/V1 directory, which is installed under the 
version and plaform directories when VisIt is installed. For example, if you are building 
against a Linux/Intel version of VisIt 1.5.4 installed in /usr/local/apps/visit then the full 
path to the libsim directory would be: /usr/local/apps/visit/1.5.4/linux-intel/libsim. Note 
that there may be multiple versions of the libsim library in the future so the current version 
1 libsim library is installed in a V1 subdirectory. The V1 subdirectory contains include 
and lib directories that give you easy access to the required C and Fortran include files 
and static libraries.

The files that you need in order to instrument a simulation vary depending on the language 
that you used to write your simulation.

3.2 Building in libsim support

When you write your simulation in C or C++, you must include 
VisItControlInterface_V1.h in your simulation’s source file. In addition, you 
must add libsim.a to the list of libraries against which your program is linked. When 
your simulation is written in Fortran, you must also take care to include 
visitfortransiminterface.inc in your Fortran simulation code to assure that 
the compiler knows the names of the functions that come from libsim. You must link 
your Fortran program against both libsim.a and libsimf.a.

#include <VisItControlInterface_V1.h>
int main(int argc, char **argv)

Language Include files

C/C++ VisItControlInterface_V1.h VisItDataInterface_V1.h

Fortran  visitfortransiminterface.inc

Listing 5-4:  Including libsim header file in C-Language simulation.
142 Using libsim



Instrumenting a simulation code
{
return 0;

}

program main
implicit none
include “visitfortransiminterface.inc”
stop
end

Using libsim on UNIX platforms, such as Linux, will most likely require you to link 
your simulation with the dynamic loader library (-ldl) because libsim uses the system’s 
dlopen function to dynamically load the VisIt Compute Engine Library.

3.3 Initialization

This section discusses the changes to the main program that are involved when 
instrumenting a simulation code with libsim. The following examples are cartoonish 
but they show how the main program evolves from something very simple into a main 
program that can serve as the skeleton of a simulation that can act as a VisIt compute 
engine. Once you adapt one of your programs to use libsim, it is easy to use that 
program as a template for future simulations. Additions to the example programs in this 
section will be underlined unless otherwise stated.

/* SIMPLE SIMULATION SKELETON */
void simulate_one_timestep()
{

/* Simulate 1 timestep. */
}
int main(int argc, char **argv)
{

read_input_deck();
do
{

simulate_one_timestep();
write_vis_dump();

} while(!simulation_done());
return 0;

}

Listing 5-5:  Including libsim header file in Fortran-Language simulation.

Listing 5-6:  sim1.c: C-Language simulation example before adding libsim
Using libsim 143



Instrumenting a simulation code
3.3.1 Setting up the environment and creating a .sim file

The first step in instrumenting a simulation with libsim is to call libsim’s 
initialization functions, starting with the VisItSetupEnvionment function. The 
VisItSetupEnvironment function adds important visit-related environment 
variables to the environment, ensuring that VisIt has the environment that it needs to find 
its plug-ins, etc.

Step 2 in instrumenting a simulation is to call the 
VisItInitializeSocketAndDumpSimFile function, which initializes the libsim 
library and writes out a .sim file to your .visit directory in your home directory. A .sim file 
is a small text file that contains details that tell VisIt how to connect to your running 
simulation. The .sim file contains such information as the name of the computer where 
your simulation is running, the port that should be used to connect to the simulation, and 
the key that should be returned when you successfully connect to the simulation. The first 
argument to the VisItInitializeSocketAndDumpSimFile function is the base 
name that will be used to construct a filename for the .sim file. The name for a .sim file is 
typically the specified file base with the time that the simulation started appended to it, 
allowing you to distinguish between multiple simulations that may be running 
concurrently. The second argument is a comment that can be used to further identify your 
simulation. The third argument contains the directory path to where your simulation was 
started, though it is mainly reserved for future use. The fourth argument, which is 
optional, contains the path and name to the simulation’s input file. The final argument, 
which is also optional, contains the name of an XML user interface file that VisIt can use 
to create a custom user interface for controlling your simulation.

/* SIMPLE SIMULATION SKELETON */
#include <VisItControlInterface_V1.h>
void simulate_one_timestep()
{

/* Simulate 1 timestep. */
}
int main(int argc, char **argv)
{

/* Initialize environment variables. */
VisItSetupEnvironment();
/* Write out .sim file that VisIt uses to connect. */
VisItInitializeSocketAndDumpSimFile("simname",

"Simulation Comment", "/path/to/where/sim/was/started",
NULL, NULL);

read_input_deck();
do
{

simulate_one_timestep();
write_vis_dump();

} while(!simulation_done());

Listing 5-7:  sim2.c: C-Language simulation example including libsim initialization
144 Using libsim



Instrumenting a simulation code
return 0;
}

3.3.2 Parallel initialization

Parallel programs often require global communication to ensure that all processors are 
working on the same activity. The libsim library requires periodic global 
communication to ensure that all processors service the same plot requests from VisIt’s 
viewer process. Using libsim in a parallel simulation requires a little bit of extra setup. 
The code in Listing 5-8 differs from the previous code listing in three important ways, 
each labelled in the listing using comments: CHANGE 1, CHANGE 2, CHANGE 3, 
respectively.

The first change in the code listing adds two broadcast functions that libsim will use 
when it needs to broadcast integers or strings. The two callback functions from the code 
listing can most likely be copied directly into your simulation. Note that the callback 
functions are conditionally compiled since they are not needed in a serial simulation. The 
first change also includes two static integer variables that will contain the number of 
processors that are used to run the simulation as well as the processor’s rank within that 
group of processors. Various routines that we’ll add in future code examples will use the 
par_rank, and par_size integers for control flow because processor 0 needs to 
behave a little differently from the rest of the processors because it communicates with 
VisIt’s viewer.

The second change in Listing 5-8 includes initialization of the MPI library, par_rank, 
par_size, and libsim. Once MPI is initialized, the processor rank and size is queried 
and stored in par_rank and par_size so they can be used to initialize libsim as 
well as later for control flow. Note that the broadcast functions defined in the first change 
are registered with libsim, using VisItSetBroadcastIntFunction and 
VisItSetBroadcastStringFunction, so libsim can broadcast integers and 
strings among processors. Once the broadcast callbacks are installed, par_rank and 
par_size are used to tell libsim how many processors there are and whether the 
simulation is parallel using the VisItSetParallel and VisItSetParallelRank 
functions.

/* SIMPLE PARALLEL SIMULATION SKELETON */
#include <VisItControlInterface_V1.h>
#include <mpi.h>
void simulate_one_timestep()
{

/* Simulate 1 timestep. */
}
/* CHANGE 1 */
#ifdef PARALLEL

Listing 5-8:  sim2p.c: C-Language simulation example including parallel libsim initialization
Using libsim 145



Instrumenting a simulation code
static int visit_broadcast_int_callback(int *value, int sender)
{

return MPI_Bcast(value, 1, MPI_INT, sender, MPI_COMM_WORLD);
}
static int visit_broadcast_string_callback(char *str, int len,

int sender)
{

return MPI_Bcast(str, len, MPI_CHAR, sender, MPI_COMM_WORLD);
}
#endif
static int par_rank = 0;
static int par_size = 1;

int main(int argc, char **argv)
{

/* Initialize environment variables. */
VisItSetupEnvironment();

/* CHANGE 2 */
#ifdef PARALLEL

/* Initialize MPI */
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &par_rank);
MPI_Comm_size (MPI_COMM_WORLD, &par_size);

/* Install callback functions for global communication. */
VisItSetBroadcastIntFunction(visit_broadcast_int_callback);
VisItSetBroadcastStringFunction(visit_broadcast_string_callback);
/* Tell libsim whether the simulation is parallel. */
VisItSetParallel(par_size > 1);
VisItSetParallelRank(par_rank);

#endif

/* Write out .sim file that VisIt uses to connect. Only do it
* on processor 0.
*/
/* CHANGE 3*/
if(par_rank == 0)
{

VisItInitializeSocketAndDumpSimFile("simname",
"Simulation Comment", "/path/to/where/sim/was/started",
NULL, NULL);

}
read_input_deck();
do
{

simulate_one_timestep();
write_vis_dump();

} while(!simulation_done());

#ifdef PARALLEL
MPI_Finalize();

#endif

return 0;
146 Using libsim



Instrumenting a simulation code
}

3.4 Restructuring the main loop

Given the example code from the previous example, the do..while loop that serves as 
the simulation’s main loop can be separated out into a new function called mainloop.

3.4.1 Creating a mainloop function

Moving the do..while loop into a separate mainloop function will help in the next 
stage where additional libsim functions will be called. If your simulation does not have 
a well-defined function for simulating one time step, as in the previous example code, then 
it is strongly recommended that you refactor your simulation so that code to simulate 1 
time can be called from mainloop using either a single function or a small block of 
code. The next examples assume that the simulation provides a function called: 
simulate_one_timestep that can be called over and over again to perform one 
cycle of the simulation.

/* SIMPLE SIMULATION SKELETON */
#include <VisItControlInterface_V1.h>
void simulate_one_timestep()
{

/* Simulate 1 timestep. */
}

void mainloop(void)
{

do
{

simulate_one_timestep();
write_vis_dump();

} while(!simulation_done());
}

int main(int argc, char **argv)
{

/* Initialize environment variables. */
VisItSetupEnvironment();
/* Write out .sim file that VisIt uses to connect. */
VisItInitializeSocketAndDumpSimFile("simname",

“Simulation Comment", 
"/no/useful/path/path/to/where/sim/was/started", NULL, NULL);

/* Read input problem setup, geometry, data. */
read_input_deck();

Listing 5-9:  sim3.c: C-Language simulation example with a mainloop function.
Using libsim 147



Instrumenting a simulation code
/* Call the main loop. */
mainloop();

return 0;
}

3.4.2 Adding libsim functions to mainloop

Now that the main loop of the program has been extracted from the main piece of the 
simulation, we can perform an even larger change on the mainloop function. The 
following code example keeps only the do..while loop and the call to 
simulate_one_timestep; everything else is new. The structure of the mainloop 
function will be very similar between simulations since most of the code is devoted to 
detecting input from VisIt using libsim and doing the right thing based on that input.

/* Is the simulation in run mode (not waiting for VisIt input) */
static int runFlag = 1;

void mainloop(void)
{

int blocking, visitstate, err = 0;

do
{

blocking = runFlag ? 0 : 1;
/* Get input from VisIt or timeout so the simulation can run. */
visitstate = VisItDetectInput(blocking, -1);

/* Do different things depending on the output from 
VisItDetectInput. */
if(visitstate <= -1)
{

fprintf(stderr, "Can’t recover from error!\n");
err = 1;

}
else if(visitstate == 0)
{

/* There was no input from VisIt, return control to sim. */
simulate_one_timestep();

}
else if(visitstate == 1)
{

/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection())

fprintf(stderr, "VisIt connected\n");
else

fprintf(stderr, "VisIt did not connect\n");
}

Listing 5-10:  sim4.c: C-Language simulation example with fully instrumented mainloop function.
148 Using libsim



Instrumenting a simulation code
else if(visitstate == 2)
{

/* VisIt wants to tell the engine something. */
runFlag = 0;
if(!VisItProcessEngineCommand())
{

/* Disconnect on an error or closed connection. */
VisItDisconnect();
/* Start running again if VisIt closes. */
runFlag = 1;

}
}

} while(!simulation_done() && err == 0);
}

There are several functions from libsim that are called in the new mainloop function. 
The first libsim function that we call is the VisItDetectInput function, which 
listens for inbound VisIt connections on a port that was allocated when libsim was 
initialized. The VisItDetectInput function can be called so that it blocks 
indefinitely, or so that it times out after a brief period. When the simulation starts up, 
VisItDetectInput is called in non-blocking mode so that it times out. When a 
timeout occurs, the VisItDetectInput function returns zero and we call the 
simulate_one_timestep function. Since the VisItDetectInput function will 
continue to time out until VisIt connects to it, this augmented main loop allows the 
simulation to keep iterating, while still periodically listening for inbound VisIt 
connections. 
Using libsim 149



Instrumenting a simulation code
When VisItDetectInput returns one, there is 
an inbound VisIt connection to which the 
simulation should try and connect. In this situation, 
we call the 
VisItAttemptToCompleteConnection 
function, which is responsible for two crucial 
actions. The first action is to dynamically load 
VCEL (VisIt Compute Engine Library), which is 
the piece of the puzzle that allows the simulation to 
perform compute engine operations. After loading 
VCEL, the 
VisItAttemptToCompleteConnection 
function tries to connect back to VisIt’s viewer. In 
the event of a successful connection, the viewer and 
the simulation will be connected and the simulation 
will appear in the GUI’s Compute Engines and 
Simulation windows (see Figure 5-11).

When VisItDetectInput returns two, VisIt’s 
viewer is sending commands to generate plots to 
the simulation. The simulation can handle 
commands from the viewer simply by calling the VisItProcessEngineCommand 
function. The VisItProcessEngineCommand function reads the commands coming 
from the viewer and uses them to make requests of VCEL, which ends up requesting data 
through your data access code and processing it. If the 
VisItProcessEngineCommand function fails for any reason, it usually means that 
either VisIt quit or the communication link between VisIt and the simulation was severred. 
When the simulation can no longer communicate with VisIt, it is important for it to call 
libsim’s VisItDisconnect function. The VisItDisconnect function resets 
libsim so it is ready to once again accept a new incoming VisIt connection. Note that 
after calling VisItDisconnect, we also set the runFlag variable to ensure that the 
simulation begins to again run autonomously.

3.4.3 Setting up mainloop for a parallel simulation

In VisIt’s parallel compute engine, only the first processor, processor 0, communicates in 
any way with VisIt’s viewer. When requests for plots come in, processor 0 broadcasts the 
requests to all of the other processors so all can begin working on the request. Instead of 
calling VisItProcessEngineCommand directly in a parallel simulation, you will 
have to add code to ensure that all slave processors also call 
VisItProcessEngineCommand when needed. Listing 5-12 shows how instead of 
calling VisItProcessEngineCommand directly, you can call it and broadcast the 
appropriate cues to other processors, ensuring they also process input from VisIt’s viewer. 
Note that command communication also requires calling the 

Figure 5-11:  Simulation window
150 Using libsim



Instrumenting a simulation code
VisItSetSlaveProcessCallback function and registering a slave process 
callback to be used in command communication.

#define VISIT_COMMAND_PROCESS 0
#define VISIT_COMMAND_SUCCESS 1
#define VISIT_COMMAND_FAILURE 2

/* Helper function for ProcessVisItCommand */
static void BroadcastSlaveCommand(int *command)
{
#ifdef PARALLEL

MPI_Bcast(command, 1, MPI_INT, 0, MPI_COMM_WORLD);
#endif
}
/* Callback involved in command communication. */
void SlaveProcessCallback()
{

int command = VISIT_COMMAND_PROCESS;
BroadcastSlaveCommand(&command);

}
/* Process commands from viewer on all processors. */
int ProcessVisItCommand(void)
{

int command;
if (par_rank == 0)
{

int success = VisItProcessEngineCommand();
if (success)
{

command = VISIT_COMMAND_SUCCESS;
BroadcastSlaveCommand(&command);
return 1;

}
else
{

command = VISIT_COMMAND_FAILURE;
BroadcastSlaveCommand(&command);
return 0;

}
}
else
{

/* Note: only through the SlaveProcessCallback callback
* above can the rank 0 process send a VISIT_COMMAND_PROCESS
* instruction to the non-rank 0 processes. */
while (1)
{

BroadcastSlaveCommand(&command);
switch (command)
{

Listing 5-12:  sim4p.c: C-Language simulation example with fully instrumented parallel mainloop 
function.
Using libsim 151



Instrumenting a simulation code
case VISIT_COMMAND_PROCESS:
VisItProcessEngineCommand();
break;

case VISIT_COMMAND_SUCCESS:
return 1;

case VISIT_COMMAND_FAILURE:
return 0;

}
}

}
}

/* Is the simulation in run mode (not waiting for VisIt input) */
static int runFlag = 1;

/* New function to contain the program’s main loop. */
void mainloop(void)
{

int blocking, visitstate, err = 0;

do
{

blocking = runFlag ? 0 : 1;
/* Get input from VisIt or timeout so the simulation can run. */
if(par_rank == 0)

visitstate = VisItDetectInput(blocking, -1);
MPI_Bcast(visitstate, 1, MPI_INT, 0, MPI_COMM_WORLD);

/* Do different things depending on the output from 
VisItDetectInput. */
if(visitstate >= -5 && visitstate <= -1)
{

fprintf(stderr, "Can’t recover from error!\n");
err = 1;

}
else if(visitstate == 0)
{

/* There was no input from VisIt, return control to sim. */
simulate_one_timestep();

}
else if(visitstate == 1)
{

/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection())
{

fprintf(stderr, "VisIt connected\n");
VisItSetSlaveProcessCallback(SlaveProcessCallback);

}
else

fprintf(stderr, "VisIt did not connect\n");
}
else if(visitstate == 2)
{

/* VisIt wants to tell the engine something. */
152 Using libsim



Instrumenting a simulation code
runFlag = 0;
if(!ProcessVisItCommand())
{

/* Disconnect on an error or closed connection. */
VisItDisconnect();
/* Start running again if VisIt closes. */
runFlag = 1;

}
}

} while(!simulation_done() && err == 0);
}

3.5 Using libsim in a Fortran simulation

So far, most of the examples for using libsim have been expressed in the C 
programming language. It is also possible to instrument Fortran simulations so they can 
serve their data up to VisIt. This subsection will list the entire code skeleton for a libsim-
instrumented Fortran simulation since the transitions that evolved a simple program into 
one that can connect to VisIt have already been demonstrated in C. The principles for 
instrumenting a Fortran program are the same. If you want to inspect the intermediate 
steps involved in converting a simple Fortran simulation program, examine the sample 
programs that accompany this book.

The primary source of differences between the following code listing and the code in 
Listing 5-10 result from Fortran’s treatment of string variables. Strings are not always 
null-terminated in Fortran as they are in C, so any libsim function that takes string 
arguments will require the length of each string argument to be passed as well. The length 
argument immediately follows any string argument in the argument list of a libsim 
function.

The Fortran interface to libsim differs in another significant way; it requires certain 
functions to be defined in order to link successfully. The libsim library uses callback 
functions, or functions that must be provided by your simulation, in order to perform 
certain operations. Since the Fortran programming language lacks pointers, it is not 
possible to pass the address of a function that will perform a certain action to libsim. 
The Fortran interface to libsim, called libsimf, gets around this limitation by 
registering internal callback functions, which reference Fortran functions that must be 
provided by your simulation. The data access functions requried to pass simulation data to 
VCEL are handled using the same method, thus instrumenting a Fortran simulation 
initially requires more steps than instrumenting a C simulation. The number of steps to 
instrument simulations in either language is ultimately the same. 

c-----------------------------------------------------------------

Listing 5-13:  fsim4.f: Fortran language simulation example with fully instrumented mainloop 
function.
Using libsim 153



Instrumenting a simulation code
c Program: main
c
c-----------------------------------------------------------------

program main
implicit none
include "visitfortransiminterface.inc"

ccc   local variables
integer err

err = visitsetupenv()
err = visitinitializesim("fsim4", 5,

. "Fortran prototype simulation connects to VisIt", 46,

. "/no/useful/path", 15,

. VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN,

. VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN)
call mainloop()
stop
end

c-----------------------------------------------------------------
c mainloop
c-----------------------------------------------------------------

subroutine mainloop()
implicit none
include "visitfortransiminterface.inc"

ccc   local variables
integer visitstate, result, runflag, blocking

c     main loop
runflag = 1
do 10

if(runflag.eq.1) then
blocking = 0 

else
blocking = 1

endif

visitstate = visitdetectinput(blocking, -1)

if (visitstate.lt.0) then
goto 1234

elseif (visitstate.eq.0) then
call simulate_one_timestep()

elseif (visitstate.eq.1) then
runflag = 0
result = visitattemptconnection()
if (result.eq.1) then

write (6,*) ’VisIt connected!’
else

write (6,*) ’VisIt did not connect!’
endif

elseif (visitstate.eq.2) then
runflag = 0
if (visitprocessenginecommand().eq.0) then
154 Using libsim



Instrumenting a simulation code
result = visitdisconnect()
runflag = 1

endif
endif

10    continue
1234  end

subroutine simulate_one_timestep()
c Simulate one time step

write (6,*) ’Simulating time step’
call sleep(1)
end

The above code listing lists the functions from libsimf that must be called from the 
program’s main function and main loop for a serial simulation. When instrumenting a 
Fortran simulation using libsimf, you must define the following functions in order to 
link your program successfully:

These functions are primarily for using libsim with a parallel simulation but they must 
always be defined. Extending a parallel Fortran simulation will be covered shortly. In 
addition, there are functions related to data access code that must also be defined in order 
to get your Fortran simulation to link successfuly. Look at the fsim4.f source code file 
for examples of which functions must also be defined. Those additional functions will be 
covered later in this chapter.

3.6 Using libsim in a parallel Fortran simulation

A parallel Fortran simulation’s mainloop function should look very similar to its serial 
counterpart in terms of how code is organized. Once you have adapted your simulation so 
it can be instrumented with libsim, it is possible to make further changes that allow 
each processor to serve data to VisIt in parallel. There are many changes that need to 
happen in order to instrument a parallel simulation so the process will be broken into 

Required subroutine/function Argument types

subroutine visitcommandcallback (cmd, lcmd, intdata,

floatdata, stringdata, lstringdata)

character*8 cmd, 
stringdata

integer     lcmd, 
lstringdata, intdata

real        floatdata

integer function visitbroadcastintfunction(value, sender) integer value, sender

integer function visitbroadcaststringfunction(str, lstr, sender) character*8 str

integer     lstr, sender

subroutine visitslaveprocesscallback ()
Using libsim 155



Instrumenting a simulation code
stages. The changes begin with telling VisIt the number of processors and the rank of the 
current processor within the group before the call to the visitinitializesim 
function. You can provide this information to VisIt by calling MPI’s MPI_COMM_RANK 
and MPI_COMM_SIZE functions and then passing the resulting rank and size data to the 
visitsetparallel and visitsetparallelrank functions. Once the rank and 
size data have been given to libsim, the next change is to ensure that only the master, or 
rank zero, process calls the visitinitializesim function from libsim. Only the 
master process should call the visitinitializesim function to ensure that only one 
“.sim1” file is created.

c--------------------------------------------------------------
c Program: main
c
c--------------------------------------------------------------

program main
implicit none
include "visitfortransiminterface.inc"
include "mpif.h"

ccc   local variables
integer err

ccc   PARALLEL state common block
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size
save /PARALLEL/

call MPI_INIT(err)

c Determine the rank and size of this MPI task so we can tell
c VisIt’s libsim about it.

call MPI_COMM_RANK(MPI_COMM_WORLD, par_rank, err)
call MPI_COMM_SIZE(MPI_COMM_WORLD, par_size, err)
if(par_size.gt.1) then

err = visitsetparallel(1)
endif
err = visitsetparallelrank(par_rank)

err = visitsetupenv()
c Have the master process write the sim file.

if(par_rank.eq.0) then
err = visitinitializesim("fscalarp", 8,

.     "Demonstrates scalar data access function", 40,

.     "/no/useful/path", 15,

.     VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN,

.     VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN)
endif

call mainloop()

call MPI_FINALIZE(err)

Listing 5-14:  fscalarp.f: Fortran language simulation example for parallel initialization.
156 Using libsim



Instrumenting a simulation code
stop
end

The next step in instrumenting a parallel Fortran simulation is to change the mainloop 
function. The first change that you must make is to ensure that only the master process 
calls visitdetectinput. Remember that only the master process talks to VisIt’s 
viewer process so the visitdetectinput function should not be called by slave 
processes. However, the slaves need to know the instructions that came from the viewer so 
we must insert an MPI broadcast function to ensure that all processes get the value sent 
from the viewer to the master process. In addition the 
visitprocessenginecommand function must be exchanged for a function that can 
call visitprocessenginecommand on all processes. For now, let’s call that new 
function processvisitcommand.

c-----------------------------------------------------------------
c mainloop
c-----------------------------------------------------------------

subroutine mainloop()
implicit none
include "mpif.h"
include "visitfortransiminterface.inc"

ccc   functions
integer processvisitcommand

ccc   local variables
integer visitstate, result, blocking, ierr

ccc   SIMSTATE common block
integer runflag, simcycle
real simtime
common /SIMSTATE/ runflag,simcycle,simtime
save /SIMSTATE/

ccc   PARALLEL state common block
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size

c     main loop
runflag = 1
simcycle = 0
simtime = 0
do 10

if(runflag.eq.1) then
blocking = 0 

else
blocking = 1

endif

c Detect input from VisIt on processor 0 and then broadcast
c the results of that input to all processors.

if(par_rank.eq.0) then

Listing 5-15:  fscalarp.f: Fortran language simulation example for parallel mainloop function.
Using libsim 157



Instrumenting a simulation code
visitstate = visitdetectinput(blocking, -1)
endif
call MPI_BCAST(visitstate,1,MPI_INTEGER,0,

. MPI_COMM_WORLD,ierr)

if (visitstate.lt.0) then
goto 1234

elseif (visitstate.eq.0) then
call simulate_one_timestep()

elseif (visitstate.eq.1) then
runflag = 0
result = visitattemptconnection()
if (result.eq.1) then

write (6,*) ’VisIt connected!’
else

write (6,*) ’VisIt did not connect!’
endif

elseif (visitstate.eq.2) then
runflag = 0
if (processvisitcommand().eq.0) then

result = visitdisconnect()
runflag = 1

endif
endif

10    continue
1234  end

Now that you have changed the mainloop function it is time to define the 
processvisitcommand function. The processvisitcommand function is used 
by the mainloop function as a replacement for the visitprocessenginecommand 
function. The new processvisitcommand function must call the 
visitprocessenginecommand function and it must do so in a way that ensures the 
function is called on all processors. Since the processvisitcommand function is 
completely new, you will probably be able to paste it into your simulation with few 
changes.

c-----------------------------------------------------------------
c processvisitcommand
c-----------------------------------------------------------------

integer function processvisitcommand()
implicit none
include "mpif.h"
include "visitfortransiminterface.inc"

ccc   PARALLEL state common block
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size

Listing 5-16:  fscalarp.f: Fortran language simulation example for parallel processvisitcommand 
function.
158 Using libsim



Instrumenting a simulation code
integer command, e, doloop, success, ret
integer VISIT_COMMAND_PROCESS
integer VISIT_COMMAND_SUCCESS
integer VISIT_COMMAND_FAILURE
parameter (VISIT_COMMAND_PROCESS = 0)
parameter (VISIT_COMMAND_SUCCESS = 1)
parameter (VISIT_COMMAND_FAILURE = 2)

if(par_rank.eq.0) then
success = visitprocessenginecommand()

if(success.gt.0) then
command = VISIT_COMMAND_SUCCESS
ret = 1

else
command = VISIT_COMMAND_FAILURE
ret = 0

endif

call MPI_BCAST(command,1,MPI_INTEGER,0,MPI_COMM_WORLD,e)
else

doloop = 1
2345      call MPI_BCAST(command,1,MPI_INTEGER,0,MPI_COMM_WORLD,e)

if(command.eq.VISIT_COMMAND_PROCESS) then
success = visitprocessenginecommand()

elseif(command.eq.VISIT_COMMAND_SUCCESS) then
ret = 1
doloop = 0

else
ret = 0
doloop = 0

endif
if(doloop.ne.0) then

goto 2345
endif

endif
processvisitcommand = ret
end

The alterations to the code that have been listed thus far are nearly enough to complete the 
changes required for a parallel Fortran simulation to use libsim. The main program and 
the mainloop function have been changed to support the extra processing that needs to 
happen to ensure that all processors properly receive instructions from VisIt’s viewer. 
However, there are some broadcast callback functions that must now be implemented to 
ensure that libsim can communicate with all processors. The callback functions: 
visitbroadcastintfunction, visitbroadcaststringfunction, and 
visitslaveprocesscallback have to date been stub functions that did not do any 
Using libsim 159



Instrumenting a simulation code
real work. When you instrument a parallel Fortran simulation, those callback functions 
need to perform broadcasts so libsim can properly communicate with all processors.

c--------------------------------------------------------------------
c visitbroadcastintfunction
c--------------------------------------------------------------------

integer function visitbroadcastintfunction(value, sender)
implicit none
include "mpif.h"
integer value, sender
integer IERR
call MPI_BCAST(value,1,MPI_INTEGER,sender,MPI_COMM_WORLD,ierr)
visitbroadcastintfunction = 0
end

c--------------------------------------------------------------------
c visitbroadcaststringfunction
c--------------------------------------------------------------------

integer function visitbroadcaststringfunction(str, lstr, 
sender)
implicit none
include "mpif.h"
character*8 str
integer lstr, sender
integer IERR
call MPI_BCAST(str,lstr,MPI_CHARACTER,sender,MPI_COMM_WORLD,

. ierr)
visitbroadcaststringfunction = 0
end

c--------------------------------------------------------------------
c visitslaveprocesscallback
c--------------------------------------------------------------------

subroutine visitslaveprocesscallback ()
implicit none
include "mpif.h"
integer c, ierr, VISIT_COMMAND_PROCESS
parameter (VISIT_COMMAND_PROCESS = 0)
c = VISIT_COMMAND_PROCESS
call MPI_BCAST(c,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
end

After making all of these changes, your parallel Fortran simulation should be ready to run 
for the first time as an application to which VisIt can connect. You will not be able to 
extract any data from your simulation just yet but you can begin to run connected to VisIt 
and once you have that working you can begin to expose your data to VisIt.

Listing 5-17:  fscalarp.f: Fortran language simulation example for parallel broadcast functions.
160 Using libsim



Instrumenting a simulation code
3.7 Running an instrumented simulation

Once you’ve added libsim functions to your simulation and created a mainloop 
function capable of connecting to VisIt, you can run your modified simulation. The current 
libsim implementation must be told where to locate VisIt’s shared libraries and plug-ins 
in order to have VCEL function properly. VisIt uses environment variables to locate its 
shared libraries and plug-ins. If you use a Linux version of VisIt 1.5.4 installed in 
/usr/local/apps/visit then use the following commands to ensure that VCEL can find the 
necessary VisIt libraries when it runs:

# Set VISIT to the directory where a version of VisIt is intalled
setenv VISIT /usr/local/apps/visit/1.5.4/linux-intel
env LD_LIBRARY_PATH=$VISIT/lib VISITPLUGINDIR=$VISIT/plugins ./sim

If you use a different version of VisIt or run VisIt on a platform other than Linux, make the 
appropriate substitutions in the VISIT environment variable before trying to run.

3.8 Connecting to an instrumented simulation from VisIt

Once you’ve successfully launched your simulation, you can attempt to connect to it using 
VisIt. Open a terminal window and run VisIt. When VisIt comes up, open the File 
selection window and browse to ~/.visit/simulations, the directory where .sim1 files are 
stored. You should see a file in that directory with a .sim1 file extension. The .sim1 file 
was created by your simulation when it started and called the 
VisItInitializeSocketAndDumpSimFile function from libsim. The .sim1 
file contains all of the information that VisIt needs to connect to your simulation. If you 
add the file to your selected files list and open it in VisIt’s Main window, VisIt will 
initiate contact with your simulation.

If your environment was not properly set when you ran your simulation, VisIt will not be 
able to connect to it and you might see error messages like the following: 

Simulating time step
Simulating time step
VisIt did not connect
Simulating time step
Simulating time step

Error messages such as those above appear in the terminal window where your simulation 
was launched and they result from your environment not being set properly. Be sure that 
the paths that you use for LD_LIBRARY_PATH and VISITPLUGINDIR are valid paths that 
contain VisIt files. The current VisIt implementation lacks some robustness with respect to 
connecting to simulations. If VisIt cannot connect to your simulation then the viewer 
process will be hung and you will have to kill it. Note that killing VisIt will not have any 
impact on your simulation.

At this stage in instrumenting your simulation, if it was able to successfully create a 
connection to VisIt then you will see the name of your simulation in the Compute 
Using libsim 161



Instrumenting a simulation code
engines window and the Simulations window. Furthermore, you will see the 
following messages in the window where you launched your simulation:

Simulating time step
Simulating time step
VisIt connected
Error opening plug-in file: /usr/gapps/visit/1.5.4/linux-
intel/plugins/databases/libESimV1Database_ser.so: undefined symbol: 
visitCallbacks
Error opening plug-in file: /usr/gapps/visit/1.5.4/linux-
intel/plugins/databases/libESimV1Database_ser.so: undefined symbol: 
visitCallbacks

The above messages indicate that VisIt successfully connected back to your simulation. 
Also notice that there are error messages about an undefined symbol called 
visitCallbacks. This is to be expected since visitCallbacks is part of the data 
access code that must be added to your simulation. Since no data access code has yet been 
added to your simulation, VCEL cannot find the visitCallbacks object that allows it 
to call your data access functions, which ultimately pass your simulation’s data to VCEL. 
Do not worry about the error messages because the next section explains how to write data 
access code for your simulation. In the meantime, note how quitting VisIt causes your 
simulation to resume calculations.

4.0 Writing data access code

If you have made it this far then you probably have a simulation that has been restructured 
to use libsim. Once a simulation has been instrumented using libsim, it should be 
possible for VisIt to connect to it. Adding the code to allow VisIt to connect to your 
simulation is only the first part of instrumenting your simulation. The next phase in 
instrumenting your simulation code is adding data access code to your simulation so 
VCEL, the VisIt Compute Engine Library, can access your simulation’s data.

Writing data access code is much like writing a database reader plug-in. It all starts with 
writing a function to provide metadata to VisIt so that it knows the names of the meshes 
and variables that are available for plotting. After your simulation is capable of telling 
VisIt about its variables, the next step is to write functions that can pass your mesh or data 
arrays to VisIt so they can be used in plots. If your data is not in a format that VisIt readily 
supports, you can create a more VisIt-friendly representation of the data in the data access 
functions and hand it off to VisIt.

4.1 The VisIt Data Interface

VisIt relies on the VisIt Data Interface (VDI), a C header file containing the structures and 
formats of the data that are supported. The VDI determines how all of the objects passed 
as data to VCEL are to be stored in memory. When you write a data access function for 
your simulation, you create objects of types defined in the VDI, populate their data, and 
162 Writing data access code



Instrumenting a simulation code
return them. From there, the objects are used to serve data up to VCEL where your plots 
are processed.

The VDI C-Language header file is called VisItDataInterface_V1.h and it 
defines the types and structures that are used when creating objects that pass data to VisIt. 
The header file is installed with the binary VisIt distribution. If a Linux version of VisIt 
1.5.4 was installed in /usr/local/apps/visit then the header file would be located in 
/usr/local/apps/visit/1.5.4/linux-intel/include/visit/libsim/V1/include. Of course, the actual 
path depends on where VisIt was installed, the version of VisIt that was installed, and the 
platform.

If you are writing your simulation in Fortran then the VisItDataInterface_V1.h 
header file will be of no consequence to you. Everything you need to instrument a Fortran 
simulation code is located in visitfortransiminterface.inc, the same file that 
you’ve already used to instrument your simulation so far. Fortran simulations do not create 
structures directly to pass their data to VisIt. Since the structures defined in 
VisItDataInterface_V1.h are more advanced than what can be easily expressed 
in Fortran, visitfortransiminterface.inc defines many functions that can be 
used to create objects of the right type. These functions are actually an intermediate layer, 
making up the libsimf library, that accept the data passed as arguments to the functions 
and package them up in the form of the structures defined in 
VisItDataInterface_V1.h before the data is passed to VisIt for processing. The 
differences will become apparent in the remainder of this chapter.

4.2 How data access functions are called

VisIt data access functions are made known to VisIt using a special object called: 
visitCallbacks. The visitCallbacks object is an instance of the 
VisIt_SimulationCallback structure and it contains pointers to the data access 
functions that are to be used by VisIt. When VisIt opens the .sim1 file corresponding to 
your running simulation, VisIt knows that the data will come from a simulation because 
the .sim1 file is opened by the SimV1 database reader plug-in. The SimV1 plug-in is a 
special VisIt database reader plug-in that uses the functions in the visitCallbacks 
object to access data from your simulation. When VCEL is loaded into your simulation 
and VisIt tells the simulation to make a plot, the request ends up in the SimV1 database 
reader plug-in. When the SimV1 plug-in wants to read metadata, for example, it looks for 
the visitCallbacks object and uses it to get the pointer to the function that you’ve 
provided in your simulation when VisIt wants to retrieve metadata. Once the function to 
call in order to get metadata has been determined, VisIt calls it, which ends up calling your 
function. Once your function returns a populated metadata object, the SimV1 plug-in 
transcribes the metadata from your metadata object into the avtDatabaseMetaData 
object that the SimV1 plug-in must populate. The basic procedure by which all of the 
other data access methods are called is similar.
Writing data access code 163



Instrumenting a simulation code
4.3 Compiler and platform issues

Instrumenting a simulation code on different plaforms, using different compilers and 
linkers can require different steps to be taken. This section notes some of the special 
methods that must be employed in order to get your instrumented simulation working.

4.3.1 Linking your simulation

The SimV1 database reader plug-in must look for the visitCallbacks object within 
the symbols exposed by your simulation in order to find it successfully. If the SimV1 plug-
in cannot find the visitCallbacks object then it fails to load and VisIt will not be able 
to retrieve data from your simulation. The current approach for resolving 
visitCallbacks in the SimV1 database reader plug-in relies on the dynamic linker, 
which often must have additional information in the simulation executable in order to 
properly perform the runtime linking. In short, the current approach means that you have 
to add a special linker flag when linking your simulation. If your Makefile uses LDFLAGS 
to contain command line arguments that are passed to the linker, then add this line to your 
Makefile after LDFLAGS has been defined.

LDFLAGS=$(LDFLAGS) -Wl,--export-dynamic

The --export-dynamic linker flag is a GNU-specific linker flag that tells the linker to export 
all public symbols to the dynamic symbol table. Adding this flag ensures that the runtime 
linker can resolve the references to visitCallbacks inside of the SimV1 database 
plug-in, using the visitCallbacks object that you provide in your simulation. If you 
do not use the --export-dynamic linker flag, or an equivalent, when linking your 
simulation then the SimV1 plug-in will fail to load and VisIt will not be able to access 
your simulation’s data.

4.3.2 The Windows platform

The libsim library has not been fully ported to the Windows platform at the time of this 
writing. Preliminary results suggest that the dynamic linker approach to resolving 
visitCallbacks in the SimV1 plug-in will not work. Work-arounds have been 
explored and have even been successful but no fully productized Windows port of 
libsim has yet been made available.

4.4 Making data access functions available

The previous sections have established the role and the importance of the 
visitCallbacks object in an instrumented simulation. Now that you know what the 
visitCallbacks object does, it is time to see how it is used to make data access 
functions available. The visitCallbacks object is nothing more than a C-Language 
structure that contains a set of function pointers that can be set to point to the data access 
functions that you provide within your simulation. If you want to make a data access 
function accessible to the SimV1 database reader plug-in so VisIt can read your data, 
164 Writing data access code



Instrumenting a simulation code
simply create a VisIt_SimulationCallback struct called visitCallbacks and set its 
GetMetaData function pointer to the address of the function that you wrote to provide 
metadata about your simulation.

#include <VisItDataInterface_V1.h>

VisIt_SimulationMetaData *VisItGetMetaData(void)
{

/* Create a metadata object with no variables. */
size_t sz = sizeof(VisIt_SimulationMetaData);
VisIt_SimulationMetaData *md = 

(VisIt_SimulationMetaData *)malloc(sz);
memset(md, 0, sz);
return md;

}
VisIt_SimulationCallback visitCallbacks =
{

&VisItGetMetaData,
NULL, /* GetMesh */
NULL, /* GetMaterial */
NULL, /* GetSpecies */
NULL, /* GetScalar */
NULL, /* GetCurve */
NULL, /* GetMixedScalar */
NULL /* GetDomainList */

};

Data access functions for Fortran simulations do not have to be made available explicitly 
because that is taken care of in visitfortransiminterface.c, the file that defines the Fortran-
callable wrapper functions for libsim and VDI. Instead of defining the data access 
function and including it in visitCallbacks, you only need to define it. In fact, all 
data access functions for Fortran simulations must be defined to successfully link your 
simulation.

integer function visitgetmetadata(handle)
implicit none
integer handle
include "visitfortransiminterface.inc"
visitgetmetadata = VISIT_OKAY
end

Listing 5-18:  sim5.c: C-Language example for making a data access function available.

Listing 5-19:  fsim5.f: Fortran language example for making a data access function available.
Writing data access code 165



Instrumenting a simulation code
4.5 Data access function for metadata

The first data access function that you write should be the one that populates a metadata 
object. VisIt uses metadata to determine which meshes and variables are in a database and 
reading a database’s metadata is the first thing VisIt does when accessing a new database. 
The object of the data access function for returning metadata is to allocate and return a 
VisIt_SimulationMetaData object. The VisIt_SimulationMetaData 
object contains lists of the other metadata objects. In Fortran, you do not explicitly create a 
VisIt_SimulationMetaData object. Instead, one is created in libsimf and a 
handle to it is passed to your data access function, which then passes the handle to helper 
functions in libsimf that perform various operations on the allocated object. Good 
starting points for a data access function that returns metadata are found in Listing 5-18 
and Listing 5-19. The code listings found in this section may reproduce those listings, 
however, as the listings get longer, the following code listings may instead contain code 
fragments required to perform a particular operation. The code fragments can be included 
into your simulation and modified until they expose the right variables for your 
simulation.

4.5.1 Returning simulation state metadata

Simulation state metadata is important because it indicates the running state of the 
simulation as well as its cycle iteration and simulated time. The C-Language example in 
Listing 5-20 shows that the simulation state can be set directly into the metadata object. 
The Fortran language example in Listing 5-21 shows how to set the simulation state into 
the metadata object using the visitmdsetcycletime and the 
visitmdsetrunning functions..

static int    simcycle = 0;
static double simtime = 0.;
VisIt_SimulationMetaData *VisItGetMetaData(void)
{

/* Create a metadata object with no variables. */
size_t sz = sizeof(VisIt_SimulationMetaData);
VisIt_SimulationMetaData *md = 

(VisIt_SimulationMetaData *)malloc(sz);
memset(md, 0, sz);

/* Set the simulation state. */
md->currentMode = runFlag ? VISIT_SIMMODE_RUNNING :

VISIT_SIMMODE_STOPPED;
md->currentCycle = simcycle;
md->currentTime = simtime;
return md;

Listing 5-20:  sim6.c: C-Language example for returning simulation state metadata.
166 Writing data access code



Instrumenting a simulation code
}

integer function visitgetmetadata(handle)
implicit none
integer handle
include "visitfortransiminterface.inc"

c SIMSTATE common block (data shared with mainloop and
c simulate_one_timestep)

integer runflag, simcycle
real simtime
common /SIMSTATE/ runflag, simcycle, simtime
integer err

err = visitmdsetcycletime(handle, simcycle, simtime)
if(runflag.eq.1) then

err = visitmdsetrunning(handle, VISIT_SIMMODE_RUNNING)
else

err = visitmdsetrunning(handle, VISIT_SIMMODE_STOPPED)
endif

visitgetmetadata = VISIT_OKAY
end

4.5.2 Returning mesh metadata

If you want VisIt to be able to plot any of your simulation’s data then you must expose at 
least one of your simulation’s meshes in the metadata. Remember that VisIt can support 
several different mesh types from simple point meshes all the way up to complex multi-
domain unstructured meshes.

Listing 5-21:  fsim6.f: Fortran language example for returning simulation state metadata.
Writing data access code 167



Instrumenting a simulation code
Mesh metadata is stored in the 
VisIt_SimulationMetaData as a 
dynamically allocated array of 
VisIt_MeshMetaData objects. Each 
VisIt_MeshMetaData object contains 
information about a mesh such as its name, 
type, dimensions, units, labels, etc. Note that 
when you create new 
VisIt_MeshMetaData objects and add 
them to the 
VisIt_SimulationMetaData object, 
they become the property of the 
VisIt_SimulationMetaData object 
and should not be deallocated by you. The 
same principle applies to any string members 
in the VisIt_MeshMetaData object; be 
sure to use the strdup function to create 
duplicate copies of strings so your strings are 
not destroyed when VisIt deletes the 
VisIt_SimulationMetaData object.

It is not important to set values for all of the 
members in the VisIt_MeshMetaData object so long as you do set values for the 
name, meshType, topologicalDimension, spatialDimension, and 
numBlocks structure members. The value that you use for the mesh’s name is the name 
that will appear in VisIt’s Plot menus (see Figure 5-22) as well as the name that will be 
passed to your data access function when VisIt wants to plot your mesh. The meshType 
value specifies the mesh’s type and can be any of the following values: 
VISIT_MESHTYPE_RECTILINEAR, VISIT_MESHTYPE_CURVILINEAR, 
VISIT_MESHTYPE_UNSTRUCTURED, VISIT_MESHTYPE_POINT, 
VISIT_MESHTYPE_SURFACE. The topologicalDimension and 
spatialDimension values should be either 2 or 3, depending on whether your mesh 
exists in 2D or 3D. Finally, the numBlocks value should be set to the total number of 
domains that comprise your mesh.

#define NDOMAINS 1
/* Allocate enough room for 2 meshes in the metadata. */
size_t sz;
md->numMeshes = 2;
sz = sizeof(VisIt_MeshMetaData) * md->numMeshes;
md->meshes = (VisIt_MeshMetaData *)malloc(sz);
memset(md->meshes, 0, sz);

/* Set the first mesh’s properties.*/
md->meshes[0].name = strdup("mesh2d");

Figure 5-22:  Mesh variables in the plot menu

Listing 5-23:  sim7.c: C-Language example for returning mesh metadata.
168 Writing data access code



Instrumenting a simulation code
md->meshes[0].meshType = VISIT_MESHTYPE_RECTILINEAR;
md->meshes[0].topologicalDimension = 2;
md->meshes[0].spatialDimension = 2;
md->meshes[0].numBlocks = NDOMAINS;
md->meshes[0].blockTitle = strdup("Domains");
md->meshes[0].blockPieceName = strdup("domain");
md->meshes[0].numGroups = 0;
md->meshes[0].units = strdup("cm");
md->meshes[0].xLabel = strdup("Width");
md->meshes[0].yLabel = strdup("Height");
md->meshes[0].zLabel = strdup("Depth");

/* Set the second mesh’s properties.*/
md->meshes[1].name = strdup("mesh3d");
md->meshes[1].meshType = VISIT_MESHTYPE_CURVILINEAR;
md->meshes[1].topologicalDimension = 3;
md->meshes[1].spatialDimension = 3;
md->meshes[1].numBlocks = NDOMAINS;
md->meshes[1].blockTitle = strdup("Domains");
md->meshes[1].blockPieceName = strdup("domain");
md->meshes[1].numGroups = 0;
md->meshes[1].units = strdup("Miles");
md->meshes[1].xLabel = strdup("Width");
md->meshes[1].yLabel = strdup("Height");
md->meshes[1].zLabel = strdup("Depth");

The Fortran interface does not deal directly with VisIt_MeshMetaData objects and it 
hides the complexities of inserting them into the VisIt_SimulationMetaData 
object. This difference in how metadata is added between the C and Fortran interfaces for 
libsim is due primarily to Fortran’s lack of direct support for dynamically allocated 
objects. Instead of directly creating VisIt_MeshMetaData objects in Fortran, the 
interface provides the visitmdmeshcreate function which creates a new 
VisIt_MeshMetaData object, inserts it into the VisIt_SimulationMetaData 
object, and returns an integer handle. The handle can be passed to other mesh-related 
metadata functions such as visitmdmeshsetunits in order to set additional mesh 
properties.

integer err, tdim, sdim, mesh, mt
c     Add a 2D rectilinear mesh

mt = VISIT_MESHTYPE_RECTILINEAR
tdim = 2
sdim = 2
mesh = visitmdmeshcreate(handle, "mesh2d", 6, mt, tdim, 

. sdim, 1)
if(mesh.ne.VISIT_INVALID_HANDLE) then

err = visitmdmeshsetunits(handle, mesh, "cm", 2)
err = visitmdmeshsetlabels(handle, mesh, "Width", 5,

. "Height", 6, "Depth", 5)

Listing 5-24:  fsim7.f: Fortran language example for returning mesh metadata.
Writing data access code 169



Instrumenting a simulation code
err = visitmdmeshsetblocktitle(handle, mesh, "Domains", 7)
err = visitmdmeshsetblockpiecename(handle, mesh, "domain",

. 6)
endif

c     Add a 3D curvilinear mesh
tdim = 3
sdim = 3
mt = VISIT_MESHTYPE_CURVILINEAR
mesh = visitmdmeshcreate(handle, "mesh3d", 6, mt, tdim, 

. sdim, 1)
if(mesh.ne.VISIT_INVALID_HANDLE) then

err = visitmdmeshsetunits(handle, mesh, "Miles", 5)
err = visitmdmeshsetlabels(handle, mesh, "Width", 5,

. "Height", 6, "Depth", 5)
err = visitmdmeshsetblocktitle(handle, mesh, "Domains", 7)
err = visitmdmeshsetblockpiecename(handle, mesh, "domain",

. 6)
endif

4.5.3 Returning scalar variable metadata

Scalar variables must be exposed via the metadata if they are to be plotted in VisIt. You 
need not expose all of the scalar variables that you have; only those you want to plot in 
VisIt. The VisIt_SimulationMetaData object contains a list of 
VisIt_ScalarMetaData objects, which contain the metadata for all of the scalars 
that you expose to VisIt. Specifying a scalar variable only requires you to create a new 
entry in the list of VisIt_ScalarMetaData objects. You must set the name, 
meshName, and centering fields in the VisIt_ScalarMetaData structure. The 
Fortran interface provides the visitmdscalarcreate function to add metadata for a 
new scalar variable to the metadata.

/* Add some scalar variables. */
md->numScalars = 2;
sz = sizeof(VisIt_ScalarMetaData) * md->numScalars;
md->scalars = (VisIt_ScalarMetaData *)malloc(sz);
memset(md->scalars, 0, sz);

/* Add a zonal variable on mesh2d. */
md->scalars[0].name = strdup("zonal");
md->scalars[0].meshName = strdup("mesh2d");
md->scalars[0].centering = VISIT_VARCENTERING_ZONE;

/* Add a nodal variable on mesh3d. */
md->scalars[1].name = strdup("nodal");
md->scalars[1].meshName = strdup("mesh3d");

Listing 5-25:  sim8.c: C-Language example for returning scalar metadata.
170 Writing data access code



Instrumenting a simulation code
md->scalars[1].centering = VISIT_VARCENTERING_NODE;

integer scalar
c     Add a zonal variable on mesh2d.

scalar = visitmdscalarcreate(handle, "zonal", 5, "mesh2d", 6,
. VISIT_VARCENTERING_ZONE)

c     Add a nodal variable on mesh3d.
scalar = visitmdscalarcreate(handle, "nodal", 5, "mesh3d", 6,

. VISIT_VARCENTERING_NODE)

4.5.4 Returning curve variable metadata

As with other variable types, curve variables (X-Y plot data) must also be exposed in the 
metadata if they are to be plotted in VisIt. The VisIt_SimulationMetaData object 
contains a list of Visit_CurveMetaData objects, which contain the attributes of the 
curve variables that will be exposed to VisIt from the simulation. The only required field 
that must be set in the VisIt_CurveMetaData object is the name field, which 
specifies the name of the curve as it will be used in the Plot list and in your data access 
function.

/* Add a curve variable. */
md->numCurves = 1;
sz = sizeof(VisIt_CurveMetaData) * md->numCurves;
md->curves = (VisIt_CurveMetaData *)malloc(sz);
memset(md->curves, 0, sz);

md->curves[0].name = strdup("sine");
md->curves[0].xUnits = strdup("radians");
md->curves[0].xLabel = strdup("angle");
md->curves[0].yLabel = strdup("amplitude");

integer err, curve
c     Add a curve variable

curve = visitmdcurvecreate(handle, "sine", 4)
if(curve.ne.VISIT_INVALID_HANDLE) then

err = visitmdcurvesetlabels(handle, curve, "angle", 5,
. "amplitude", 9)

err = visitmdcurvesetunits(handle, curve, "radians", 7,
. VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN)
endif

Listing 5-26:  fsim8.f: Fortran language example for returning scalar metadata.

Listing 5-27:  sim9.c: C-Language example for returning curve metadata.

Listing 5-28:  fsim9.f: Fortran language example for returning curve metadata.
Writing data access code 171



Instrumenting a simulation code
The Fortran interface provides the visitmdcurvecreate function to add a curve to 
the metadata. The visitmdcurvecreate function takes the metadata handle, the 
name of the new curve, and the length of the curve name string as arguments. If the 
visitmdcreatecurve function succeeds then it returns a handle to the new curve 
metadata object, which can be passed to visitmdcurvesetlabels and 
visitmdcurvesetunits to set additional attributes.

4.5.5 Returning material metadata

In addition to the variable types mentioned so far, the VisIt_SimulationMetaData 
object also contains a list of material variables. The list of material variables is stored in 
the materials member and is composed of VisIt_MaterialMetaData objects. A 
VisIt_MaterialMetaData object contains the name of the material, the mesh on 
which it is defined, and the list of possible material names that can be used.

/* Add a material variable. */
md->numMaterials = 1;
sz = sizeof(VisIt_MaterialMetaData) * md->numMaterials;
md->materials = (VisIt_MaterialMetaData *)malloc(sz);
memset(md->materials, 0, sz);

md->materials[0].name = strdup("mat");
md->materials[0].meshName = strdup("mesh2d");
md->materials[0].numMaterials = 3;
/* Allocate memory to store the list of material names. */
md->materials[0].materialNames = (const char **)malloc(
sizeof(char *) * md->materials[0].numMaterials);
md->materials[0].materialNames[0] = strdup("Iron");
md->materials[0].materialNames[1] = strdup("Copper");
md->materials[0].materialNames[2] = strdup("Nickel");

The Fortran interface provides a different interface once more to circumvent the 
difficulties imposed by dynamic memory allocation. Instead of directly allocating a 
VisIt_MaterialMetaData object, in the Fortran interface, you call 
visitmdmaterialcreate to create material metadata and acquire a handle to it. The 
returned handle can be used with the visitmdmaterialadd function to add materials 
one at a time to the list of material types in the material metadata object.

integer err, mat
c     Add a material

mat = visitmdmaterialcreate(handle, "mat", 3, "mesh2d", 6)
if(mat.ne.VISIT_INVALID_HANDLE) then

err = visitmdmaterialadd(handle, mat, "Iron", 4)
err = visitmdmaterialadd(handle, mat, "Copper", 6)

Listing 5-29:  sim10.c: C-Language example for returning material metadata.

Listing 5-30:  fsim10.f: Fortran language example for returning material metadata.
172 Writing data access code



Instrumenting a simulation code
err = visitmdmaterialadd(handle, mat, "Nickel", 6)
endif

4.5.6 Returning expression metadata

VisIt allows databases to return user-defined expressions that can be plotted or used to 
create new expressions in the Expressions window. The 
VisIt_SimulationMetaData object contains an array of 
VisIt_ExpressionMetaData objects that each contain the information for one 
expression. An expression consists of an expression name, definition, and expression type. 
The expression definition is a string that must contain a valid VisIt expression, as defined 
in by the expression language documented in the VisIt User’s Manual. 

/* Add some expressions. */
md->numExpressions = 2;
sz = sizeof(VisIt_ExpressionMetaData) * md->numExpressions;
md->expressions = (VisIt_ExpressionMetaData *)malloc(sz);
memset(md->expressions, 0, sz);

md->expressions[0].name = strdup("zvec");
md->expressions[0].definition = strdup("{zonal, zonal, zonal}");
md->expressions[0].vartype = VISIT_VARTYPE_VECTOR;

md->expressions[1].name = strdup("nid");
md->expressions[1].definition = strdup("nodeid(mesh3d)");
md->expressions[1].vartype = VISIT_VARTYPE_SCALAR;

The Fortran interface provides a function called visitmdexpressioncreate that 
you can use to create expressions. The function takes the new expression’s name, 
definition and variable type as arguments and inserts a new expression definition into the 
VisIt_SimulationMetaData object.

c     Add some expressions
e = visitmdexpressioncreate(handle, "zvec", 4,

. "{zonal, zonal, zonal}", 21, VISIT_VARTYPE_VECTOR)
e = visitmdexpressioncreate(handle, "nid", 3,

. "nodeid(mesh3d)", 14, VISIT_VARTYPE_SCALAR)

Listing 5-31:  sim11.c: C-Language example for returning material metadata.

Listing 5-32:  fsim11.f: Fortran language example for returning material metadata.
Writing data access code 173



Instrumenting a simulation code
4.5.7 Returning simulation-defined command metadata

VisIt allows your simulation to provide the names of user-defined commands in the 
metadata object. When such commands appear in a simulation’s metadata, it influences 
VisIt to create special command buttons in the Simulations window. When you open 
the Simulations window and click on the buttons, it causes a chain of events that ends 
up calling your simulation’s command callback function, which then performs some 
action based on the name of the command being executed. These custom commands give 
you the opportunity to perform limited steering of your simulation from within VisIt. 
More advanced methods of simulation steering will be covered later in this chapter.

Example of simple simulation commands that you 
might want to expose in the metadata are the “run”, 
“halt”, “step”. Imagine that you use VisIt to connect 
to your simulation and you create some plots. Once 
you are done analyzing a particular time step, you 
may want to click the “run” button in the 
Simulations window (shown in Figure 5-33) to let 
your simulation proceed for a while. After your 
simulation has advanced, you could click the “halt” 
button to pause it while you investigate features that 
have developed in the data for the simulation’s 
current time step.

The C-Language mainloop function that was 
created in Section 3.4.2 did not have support for a 
command callback function. The following code 
listing shows what the command callback function 
would look like for a simulation that exposes three 
simple commands: halt, step, and run. The code 
listing also shows how the command callback 
function is registered with libsim using the 
VisItSetCommandCallback function. The new 
command callback function and the change to the mainloop function are underlined.

/* Is the simulation in run mode (not waiting for VisIt input) */
static int    runFlag = 1;
static int    simcycle = 0;
static double simtime = 0.;

/* Callback function for control commands. */
void ControlCommandCallback(const char *cmd,

int intdata, float floatdata,
const char *stringdata)

{

Figure 5-33:  VisIt’s Simulations 
window with custom 
simulation commands.

Listing 5-34:  sim12.c: C-Language example for installing a command callback function.
174 Writing data access code



Instrumenting a simulation code
if(strcmp(cmd, "halt") == 0)
runFlag = 0;

else if(strcmp(cmd, "step") == 0)
simulate_one_timestep();

else if(strcmp(cmd, "run") == 0)
runFlag = 1;

}

void mainloop(void)
{

int blocking, visitstate, err = 0;

do
{

blocking = runFlag ? 0 : 1;
/* Get input from VisIt or timeout so the simulation can run. */
visitstate = VisItDetectInput(blocking, -1);

/* Do different things depending on the output from 
VisItDetectInput. */
if(visitstate >= -5 && visitstate <= -1)
{

fprintf(stderr, "Can’t recover from error!\n");
err = 1;

}
else if(visitstate == 0)
{

/* There was no input from VisIt, return control to sim. */
simulate_one_timestep();

}
else if(visitstate == 1)
{

/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection())
{

fprintf(stderr, "VisIt connected\n");
VisItSetCommandCallback(ControlCommandCallback);

}
else

fprintf(stderr, "VisIt did not connect\n");
}
else if(visitstate == 2)
{

/* VisIt wants to tell the engine something. */
runFlag = 0;
if(!VisItProcessEngineCommand())
{

/* Disconnect on an error or closed connection. */
VisItDisconnect();
/* Start running again if VisIt closes. */
runFlag = 1;

}
}

} while(!simulation_done() && err == 0);
Writing data access code 175



Instrumenting a simulation code
}

/* Add some custom commands. */
md->numGenericCommands = 3;
sz = sizeof(VisIt_SimulationControlCommand) * md->numGenericCommands;
md->genericCommands = (VisIt_SimulationControlCommand *)malloc(sz);
memset(md->genericCommands, 0, sz);

md->genericCommands[0].name = strdup("halt");
md->genericCommands[0].argType = VISIT_CMDARG_NONE;
md->genericCommands[0].enabled = 1;

md->genericCommands[1].name = strdup("step");
md->genericCommands[1].argType = VISIT_CMDARG_NONE;
md->genericCommands[1].enabled = 1;

md->genericCommands[2].name = strdup("run");
md->genericCommands[2].argType = VISIT_CMDARG_NONE;
md->genericCommands[2].enabled = 1;

Since the Fortran interface, defined in visitfortransiminterface.c requires callbacks to be in 
place when the simulation is linked, the Fortran simulation examples so far have already 
contained a command callback function. No change is required to the mainloop 
function in the Fortran simulations because the callback is already installed. The 
command callback function, which is always named visitcommandcallback in a 
Fortran simulation, previously did nothing. The following code example shows how to 
compare the names of a command coming from a button click in VisIt’s Simulations 
window with the names of the supported commands and how to perform the desired 
action. The Fortran interface provides the visitstrcmp function, which is analygous to 
the C-Language’s strcmp function in order to make string comparisons easier in Fortran. 
After the Listing 5-36, Listing 5-37 shows how to use the Fortran interface’s 
visitaddsimcommand function to add simulation commands to the metadata.

c-----------------------------------------------------------------
c visitcommandcallback
c-----------------------------------------------------------------

subroutine visitcommandcallback (cmd, lcmd, intdata, 
. floatdata, stringdata, lstringdata)
implicit none
character*8 cmd, stringdata
integer     lcmd, lstringdata, intdata
real        floatdata
include "visitfortransiminterface.inc"

ccc   SIMSTATE common block

Listing 5-35:  sim12.c: C-Language example for returning simulation commands in the metadata.

Listing 5-36:  fsim12.f: Fortran language implementation of the command callback function.
176 Writing data access code



Instrumenting a simulation code
integer runflag, simcycle
real simtime
common /SIMSTATE/ runflag, simcycle, simtime

c     Handle the commands that we define in visitgetmetadata.
if(visitstrcmp(cmd, lcmd, "halt", 4).eq.0) then

runflag = 0
elseif(visitstrcmp(cmd, lcmd, "step", 4).eq.0) then

call simulate_one_timestep()
elseif(visitstrcmp(cmd, lcmd, "run", 3).eq.0) then

runflag = 1
endif
end

integer err
c     Add simulation commands

err = visitmdaddsimcommand(handle, "halt", 4,
. VISIT_CMDARG_NONE, 1)
err = visitmdaddsimcommand(handle, "step", 4, 

. VISIT_CMDARG_NONE, 1)
err = visitmdaddsimcommand(handle, "run", 3,

. VISIT_CMDARG_NONE, 1)

4.6 Data access function for meshes

Now that you’ve implemented a function to return metadata about the meshes and 
variables in your simulation, you can write a new data access function to return the actual 
mesh. Adding a new data access function means that you will be adding a new function 
pointer to the visitCallbacks object. If your simulation is written in Fortran, you 
must implement the visitgetmesh function to return your mesh’s data.

The data access function for meshes returns a VisIt_MeshData object. The 
VisIt_MeshData object is a simple structure, defined in 
VisItDataInterface_V1.h, consisting of pointers to structures, which contain data 
for the different mesh types that VisIt supports. This section will first show how to return 
the right mesh to VisIt and will then focus on passing different types of meshes back to 
VisIt so they can be visualized.

4.6.1 Adding a mesh data access function

Adding a mesh data access function means that you have to first write a function and set 
the visitCallbacks object’s GetMesh member so it points to your function. The 
mesh data access function takes 2 arguments if you program in C. The first argument is a 
domain number, which you can use to return smaller pieces of the whole mesh. The 
second argument is the name of the mesh that VisIt wants to read. The mesh name will be 
one of the meshes that you added to the metadata. The basic procedure involved in writing 

Listing 5-37:  fsim12.f: Fortran language example for returning simulation commands in metadata..
Writing data access code 177



Instrumenting a simulation code
a mesh data access function is to first check the incoming name against the names of the 
meshes that your simulation is prepared to return and when one is found, return it to VisIt 
in a VisIt_MeshData object. If your mesh data access routine does not recognize the 
name of the mesh then you can return NULL instead of returning a VisIt_MeshData 
object.

VisIt_MeshData *VisItGetMesh(int domain, const char *name)
{

VisIt_MeshData *mesh = NULL;
size_t sz = sizeof(VisIt_MeshData);

if(strcmp(name, "mesh2d") == 0)
{

/* Allocate VisIt_MeshData. */
mesh = (VisIt_MeshData *)malloc(sz);
memset(mesh, 0, sz);
/* Make VisIt_MeshData contain a VisIt_RectilinearMesh. */
sz = sizeof(VisIt_RectilinearMesh);
mesh->rmesh = (VisIt_RectilinearMesh *)malloc(sz);
memset(mesh->rmesh, 0, sz);

/* Fill in the attributes of the VisIt_RectilinearMesh. */
}
else if(strcmp(name, "mesh3d") == 0)
{

/* Allocate VisIt_MeshData. */
mesh = (VisIt_MeshData *)malloc(sz);
memset(mesh, 0, sz);
/* Make VisIt_MeshData contain a VisIt_CurvilinearMesh. */
sz = sizeof(VisIt_CurvilinearMesh);
mesh->cmesh = (VisIt_CurvilinearMesh *)malloc(sz);
memset(mesh->cmesh, 0, sz);

/* Fill in the attributes of the VisIt_CurvilinearMesh. */
}

return mesh;
}

VisIt_SimulationCallback visitCallbacks =
{

&VisItGetMetaData,
&VisItGetMesh,
NULL, /* GetMaterial */
NULL, /* GetSpecies */
NULL, /* GetScalar */
NULL, /* GetCurve */
NULL, /* GetMixedScalar */
NULL /* GetDomainList */

Listing 5-38:  mesh.c: C-Language example for installing a mesh data access function.
178 Writing data access code



Instrumenting a simulation code
};

Remember that when writing a Fortran simulation, all of the data access functions must be 
defined before you can actually link your simulation. That means that up until now, the 
Fortran example programs have been using a simple implementation of the 
visitgetmesh function, which did nothing. The rest of this section will cover how to 
add an appropriate, working implementation of the visitgetmesh data access 
function.

c-------------------------------------------------------
c visitgetmesh
c-------------------------------------------------------

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer     handle, domain, lname
include "visitfortransiminterface.inc"
integer m
m = VISIT_ERROR
if(visitstrcmp(name, lname, "mesh2d", 6).eq.0) then

c Create a rectilinear mesh here
elseif(visitstrcmp(name, lname, "mesh3d", 6).eq.0) then

c Create a curvilinear mesh here
endif
visitgetmesh = m
end

4.6.2 Rectilinear meshes

Rectilinear meshes can be returned by the mesh data access function by allocating a 
VisIt_RectilinearMesh object and inserting it into the returned 
VisIt_MeshData object. Don’t forget to set the VisIt_MeshData’s meshType member 
to VISIT_MESHTYPE_RECTILINEAR. Once you’ve allocated the 
VisIt_RectilinearMesh object, start initializing its members using information 
about the mesh. For starters, set the ndims member to 2 or 3, depending on the number of 
dimensions occupied by the mesh. Next, set the components of the dims array so VisIt 
will know the size of each of the coordinate arrays. The values that you store in the dims 
array are the number of mesh nodes in each dimension. The dims array must always 
contains 3 elements. If you are creating a 2D mesh, set the last element to one.

After setting the elements in the dims array to the right values for your mesh, you can set 
the baseIndex member, which is an offset in X,Y,Z that will be added to your mesh’s 
zone numbers and node numbers when VisIt displays information about your mesh. You 
can leave these values set at zero. However, when you want to create a multi-domain mesh 

Listing 5-39:  fmesh.f: Fortran language example of a mesh data access function.
Writing data access code 179



Instrumenting a simulation code
that has global zone and node numbers, you should set the values for baseIndex. 
Global node and zone numbers can make it easier to think of your domain-decomposed 
mesh as a single entity by making VisIt features such as pick return global node or zone 
numbers instead of per-domain node or zone numbers.

Now that you’ve set the values in the VisIt_RectilinearMesh object that indicate 
its logical size, you must tell VisIt whether the mesh has ghost zones. The 
VisIt_RectilinearMesh object indicates whether there are ghost zones by using 
the values stored in the minRealIndex and maxRealIndex members. If you 
initialized the entire object to zeroes using the memset function then you can omit code to 
set the values in the minRealIndex array. If your mesh has no ghost zones then you can 
set the elements in the maxRealIndex array to the number of cells in each dimension. If 
your mesh has ghost zones in any of the dimensions then be sure that you add 1 to the 
values stored in the minRealIndex array for the dimensions that have ghost zones. 
Also be sure to subtract 1 from the elements in the maxRealIndex array for the 
dimensions that have ghost zones.

The final stage in specifying your rectilinear mesh is to provide VisIt with the coordinate 
arrays. The VisIt_RectilinearMesh object contains three data array objects that 
can be used to contain references to your simulation’s X,Y,Z mesh coordinate arrays or 
they can contain copies of those arrays if you do not want to share them with VisIt. The 
VisIt_CreateDataArrayFromFloat utility function is used to store a reference to 
the simulation-owned mesh coordinate arrays into the VisIt_RectilinearMesh 
object. The coordinate arrays will be the same arrays, thus the same memory locations, as 
the simulation’s coordinate arrays if you use the the VISIT_OWNER_SIM flag when 
creating data arrays for VisIt. If you instead pass VISIT_OWNER_VISIT then VisIt will 
create a copy of the coordinate array, requiring additional memory. Copying the arrays 
when giving them to VisIt is a good choice if your data are not readily stored in a format 
that VisIt can process. If you use the VISIT_OWNER_VISIT flag then VisIt will free the 
data arrays when they are no longer required.

/* Simulation mesh */
float mesh_x[] = {0., 1., 2.5, 5.};
float mesh_y[] = {0., 2., 2.25, 2.55,  5.};
int   mesh_dims[] = {4, 5, 1};
int   mesh_ndims = 2;

VisIt_MeshData *VisItGetMesh(int domain, const char *name)
{

VisIt_MeshData *mesh = NULL;
size_t sz = sizeof(VisIt_MeshData);

if(strcmp(name, "mesh2d") == 0)
{

/* Allocate VisIt_MeshData. */
mesh = (VisIt_MeshData *)malloc(sz);

Listing 5-40:  mesh.c: C-Language example for returning a rectilinear mesh.
180 Writing data access code



Instrumenting a simulation code
memset(mesh, 0, sz);
/* Make VisIt_MeshData contain a VisIt_RectilinearMesh. */
sz = sizeof(VisIt_RectilinearMesh);
mesh->rmesh = (VisIt_RectilinearMesh *)malloc(sz);
memset(mesh->rmesh, 0, sz);

/* Tell VisIt which mesh object to use. */
mesh->meshType = VISIT_MESHTYPE_RECTILINEAR;

/* Set the mesh’s number of dimensions. */
mesh->rmesh->ndims = mesh_ndims;

/* Set the mesh dimensions. */
mesh->rmesh->dims[0] = mesh_dims[0];
mesh->rmesh->dims[1] = mesh_dims[1];
mesh->rmesh->dims[2] = mesh_dims[2];

mesh->rmesh->baseIndex[0] = 0;
mesh->rmesh->baseIndex[1] = 0;
mesh->rmesh->baseIndex[2] = 0;

mesh->rmesh->minRealIndex[0] = 0;
mesh->rmesh->minRealIndex[1] = 0;
mesh->rmesh->minRealIndex[2] = 0;
mesh->rmesh->maxRealIndex[0] = mesh_dims[0]-1;
mesh->rmesh->maxRealIndex[1] = mesh_dims[1]-1;
mesh->rmesh->maxRealIndex[2] = mesh_dims[2]-1;

/* Let VisIt use simulation’s copy of the mesh coordinates. */
mesh->rmesh->xcoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, mesh_x);
mesh->rmesh->ycoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, mesh_y);
}

return mesh;
}

The Fortran interface provides the visitmeshrectilinear function to create a 
rectilinear mesh that can be passed back to VisIt. The visitmeshrectilinear 
function essentially packages up the code from the C-Language example, making it 
possible to dynamically create a VisIt_RectilinearMesh object and populate its 
members. The data arrays that make up the rectilinear mesh in the upcoming Fortran 
example are stored in a Fortran common block, making the data accessible to the 
simulate_one_timestep function and the visitgetmesh function. If you store 
your data in common blocks, it is easy to make it accessible to VisIt.

subroutine simulate_one_timestep()

Listing 5-41:  fmesh.f: Fortran language example for returning a rectilinear mesh.
Writing data access code 181



Instrumenting a simulation code
ccc   RECTMESH common block
integer NX, NY
parameter (NX = 4)
parameter (NY = 5)
real rmx(NX), rmy(NY)
integer rmdims(3), rmndims
common /RECTMESH/ rmdims, rmndims, rmx, rmy
save /RECTMESH/

c Initial rectilinear mesh
data rmndims /2/
data rmdims /4, 5, 1/
data rmx/0., 1., 2.5, 5./
data rmy/0., 2., 2.25, 2.55,  5./

c Simulate one time step
end

c-----------------------------------------------------------------
c visitgetmesh
c-----------------------------------------------------------------

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer     handle, domain, lname
include "visitfortransiminterface.inc" 

ccc   RECTMESH common block (shared with simulate_one_timestep)
integer NX, NY
parameter (NX = 4)
parameter (NY = 5)
real rmx(NX), rmy(NY)
integer rmdims(3), rmndims
common /RECTMESH/ rmdims, rmndims, rmx, rmy

ccc   local variables
integer m, baseindex(3), minrealindex(3), maxrealindex(3)
real rmz

m = VISIT_ERROR
if(visitstrcmp(name, lname, "mesh2d", 6).eq.0) then

baseindex(1) = 1
baseindex(2) = 1
baseindex(3) = 1
minrealindex(1) = 0
minrealindex(2) = 0
minrealindex(3) = 0
maxrealindex(1) = rmdims(1)-1
maxrealindex(2) = rmdims(2)-1
maxrealindex(3) = rmdims(3)-1

c Create a rectilinear rmesh here
m = visitmeshrectilinear(handle, baseindex, minrealindex,

.        maxrealindex, rmdims, rmndims, rmx, rmy, rmz)
elseif(visitstrcmp(name, lname, "mesh3d", 6).eq.0) then

c Create a curvilinear mesh here
endif
visitgetmesh = m
182 Writing data access code



Instrumenting a simulation code
end

4.6.3 Curvilinear meshes

Curvilinear meshes can be returned from your mesh data access function by creating a 
VisIt_CurvilinearMesh object and storing it inside a VisIt_MeshData object. 
With the exception of using a different structure name in C programs, the procedure for 
creating a curvilinear mesh is exactly the same as that for creating a rectilinear mesh. 
Remember that the only difference that VisIt recognizes between the two mesh types is the 
size of the coordinate arrays. A curvilinear mesh must have the X,Y,Z coordinates of each 
node in the mesh explicitly provided, whereas most of the coordinates are implicitly 
defined in a rectilinear mesh. Since the code for handling curvilinear meshes is so similar 
to that for handling rectilinear meshes, refer to Section 4.6.2 for more detail on setting 
values into the VisIt_CurvilinearMesh.

/* Curvilinear mesh */
float cmesh_x[2][3][4] = {

{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}},
{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}}

};
float cmesh_y[2][3][4] = {

{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}},

Figure 5-42:  2D rectilinear mesh returned by the previous 
code examples.

Listing 5-43:  mesh.c: C-Language example for returning a curvilinear mesh.
Writing data access code 183



Instrumenting a simulation code
{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}}
};
float cmesh_z[2][3][4] = {

{{0.,0.,0.,0.},{0.,0.,0.,0.},{0.,0.,0.,0.}},
{{1.,1.,1.,1.},{1.,1.,1.,1.},{1.,1.,1.,1.}}

};
int cmesh_dims[] = {4, 3, 2};
int cmesh_ndims = 3;

VisIt_MeshData *VisItGetMesh(int domain, const char *name)
{

VisIt_MeshData *mesh = NULL;
size_t sz = sizeof(VisIt_MeshData);
if(strcmp(name, "mesh3d") == 0)
{

/* Allocate VisIt_MeshData. */
mesh = (VisIt_MeshData *)malloc(sz);
memset(mesh, 0, sz);
/* Make VisIt_MeshData contain a VisIt_CurvilinearMesh. */
sz = sizeof(VisIt_CurvilinearMesh);
mesh->cmesh = (VisIt_CurvilinearMesh *)malloc(sz);
memset(mesh->cmesh, 0, sz);

/* Tell VisIt which mesh object to use. */
mesh->meshType = VISIT_MESHTYPE_CURVILINEAR;

/* Set the mesh’s number of dimensions. */
mesh->cmesh->ndims = cmesh_ndims;

/* Set the mesh dimensions. */
mesh->cmesh->dims[0] = cmesh_dims[0];
mesh->cmesh->dims[1] = cmesh_dims[1];
mesh->cmesh->dims[2] = cmesh_dims[2];

mesh->cmesh->baseIndex[0] = 0;
mesh->cmesh->baseIndex[1] = 0;
mesh->cmesh->baseIndex[2] = 0;

mesh->cmesh->minRealIndex[0] = 0;
mesh->cmesh->minRealIndex[1] = 0;
mesh->cmesh->minRealIndex[2] = 0;
mesh->cmesh->maxRealIndex[0] = cmesh_dims[0]-1;
mesh->cmesh->maxRealIndex[1] = cmesh_dims[1]-1;
mesh->cmesh->maxRealIndex[2] = cmesh_dims[2]-1;

/* Let VisIt use simulation’s copy of the mesh coordinates. */
mesh->cmesh->xcoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, (float *)cmesh_x);
mesh->cmesh->ycoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, (float *)cmesh_y);
mesh->cmesh->zcoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, (float *)cmesh_z);
}

184 Writing data access code



Instrumenting a simulation code
return mesh;
}

The Fortran interface provides the visitmeshcurvilinear function to create a 
rectilinear mesh that can be passed back to VisIt. The visitmeshcurvilinear 
function essentially packages up the code from the C-Language example, making it 
possible to dynamically create a VisIt_CurvilinearMesh object and populate its 
members. The data arrays that make up the curvilinear mesh in the upcoming Fortran 
example are stored in a Fortran common block, making the data accessible to the 
simulate_one_timestep function and the visitgetmesh function.

subroutine simulate_one_timestep()
ccc   CURVMESH common block

integer CNX, CNY, CNZ
parameter (CNX = 4)
parameter (CNY = 3)
parameter (CNZ = 2)
integer cmdims(3), cmndims
real cmx(CNX,CNY,CNZ), cmy(CNX,CNY,CNZ), cmz(CNX,CNY,CNZ)
common /CURVMESH/ cmdims, cmndims, cmx, cmy, cmz
save /CURVMESH/

c Curvilinear mesh data
data cmx/0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3.,

. 0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3./
data cmy/0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5,

. 0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5/
data cmz/0.,0.,0.,0., 0.,0.,0.,0., 0.,0.,0.,0,

. 1.,1.,1.,1., 1.,1.,1.,1., 1.,1.,1.,1./
data cmndims /3/
data cmdims/CNX,CNY,CNZ/

c Simulate one time step
end

c----------------------------------------------------------------
c visitgetmesh
c----------------------------------------------------------------

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer     handle, domain, lname
include "visitfortransiminterface.inc"

ccc   CURVMESH common block (shares with simulate_one_timestep)
integer CNX, CNY, CNZ
parameter (CNX = 4)
parameter (CNY = 3)
parameter (CNZ = 2)
integer cmdims(3), cmndims
real cmx(CNX,CNY,CNZ), cmy(CNX,CNY,CNZ), cmz(CNX,CNY,CNZ)
common /CURVMESH/ cmdims, cmndims, cmx, cmy, cmz

Listing 5-44:  fmesh.f: Fortran language example for returning a curvilinear mesh.
Writing data access code 185



Instrumenting a simulation code
ccc   local variables
integer m, baseindex(3), minrealindex(3), maxrealindex(3)

m = VISIT_ERROR
if(visitstrcmp(name, lname, "mesh3d", 6).eq.0) then

baseindex(1) = 1
baseindex(2) = 1
baseindex(3) = 1
minrealindex(1) = 0
minrealindex(2) = 0
minrealindex(3) = 0
maxrealindex(1) = cmdims(1)-1
maxrealindex(2) = cmdims(2)-1
maxrealindex(3) = cmdims(3)-1

c Create a curvilinear mesh here
m = visitmeshcurvilinear(handle, baseindex, minrealindex,

.        maxrealindex, cmdims, cmndims, cmx, cmy, cmz)
endif
visitgetmesh = m
end

4.6.4 Point meshes

Point meshes can be returned by the mesh data access function by allocating a 
VisIt_PointMesh object and inserting it into the returned VisIt_MeshData 
object. Don’t forget to set the VisIt_MeshData’s meshType member to 

Figure 5-45:  3D curvilinear mesh returned by the previous 
code examples
186 Writing data access code



Instrumenting a simulation code
VISIT_MESHTYPE_POINT. Once you’ve allocated the VisIt_PointMesh object, 
start initializing its members using information about the mesh. Point meshes contain 
relatively few elements - little more than a list of vertices. Be sure to set the ndims 
member, which tells VisIt how many of the coordinate arrays that your point mesh will 
use: 2 or 3. After setting the number of dimensions, set the nnodes member - the number 
of nodes in the point mesh. Finally, use the VisIt_CreateDataArrayFromFloat 
function to set the coordinate arrays for your point mesh. The coordinate arrays can either 
be owned by the simulation (VISIT_OWNER_SIM), in which case VisIt will not free the 
arrays. If you use VISIT_OWNER_VISIT then VisIt will free the arrays once they are no 
longer required.

#define NPTS 100
float angle = 0.;
int pmesh_ndims = 3;
float pmesh_x[NPTS], pmesh_y[NPTS], pmesh_z[NPTS];
void simulate_one_timestep(void)
{

int i;
for(i = 0; i < NPTS; ++i)
{

float t = ((float)i) / ((float)(NPTS-1));
float a = 3.14159 * 10. * t;
pmesh_x[i] = t * cos(a + (0.5 + 0.5 * t) *angle);
pmesh_y[i] = t * sin(a + (0.5 + 0.5 * t) * angle);
pmesh_z[i] = t;

}
angle = angle + 0.05;

}
VisIt_MeshData *VisItGetMesh(int domain, const char *name)
{

VisIt_MeshData *mesh = NULL;
size_t sz = sizeof(VisIt_MeshData);

if(strcmp(name, "point3d") == 0)
{

/* Allocate VisIt_MeshData. */
mesh = (VisIt_MeshData *)malloc(sz);
memset(mesh, 0, sz);
/* Make VisIt_MeshData contain a VisIt_PointMesh. */
sz = sizeof(VisIt_PointMesh);
mesh->pmesh = (VisIt_PointMesh *)malloc(sz);
memset(mesh->pmesh, 0, sz);

/* Tell VisIt which mesh object to use. */
mesh->meshType = VISIT_MESHTYPE_POINT;

/* Set the mesh’s number of dimensions. */
mesh->pmesh->ndims = pmesh_ndims;

Listing 5-46:  point.c: C-Language example for returning a point mesh.
Writing data access code 187



Instrumenting a simulation code
/* Set the number of points in the mesh. */
mesh->pmesh->nnodes = NPTS;

/* Let VisIt use simulation’s copy of the mesh coordinates. */
mesh->pmesh->xcoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, (float *)pmesh_x);
mesh->pmesh->ycoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, (float *)pmesh_y);
mesh->pmesh->zcoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, (float *)pmesh_z);
}
return mesh;

}

The Fortran interface provides the visitmeshpoint function so you can create a 
VisIt_PointMesh object that can be returned to VisIt. The visitmeshpoint 
function takes 6 arguments. The first argument is an integer handle to the mesh object that 
was passed into the visitgetmesh function. The second argument allows you to set the 
number of dimensions that your point mesh will use: 2 or 3. The third argument lets you 
set the number of nodes in your point mesh. The final three REAL arguments contain the 
X,Y,Z coordinates, respectively.

subroutine simulate_one_timestep()
ccc   POINTMESH common block (shared with visitgetmesh)

integer NPTS
parameter (NPTS = 100)
real pmx(NPTS), pmy(NPTS), pmz(NPTS), angle
integer pmndims, pmnnodes
common /RECTMESH/ pmx, pmy, pmz, pmndims, pmnnodes, angle

ccc   local variables
real a, t

c Simulate one time step
pmndims = 3
pmnnodes = NPTS
do 10000 i = 0,NPTS-1

t = float(i) / float(NPTS-1)
a =  3.14159 * 10. * t
pmx(i+1) = t * cos(a + (0.5 + 0.5 * t) * angle);
pmy(i+1) = t * sin(a + (0.5 + 0.5 * t) * angle);
pmz(i+1) = t

10000 continue
angle = angle + 0.05
end

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer     handle, domain, lname

Listing 5-47:  fpoint.f: Fortran language example for returning a point mesh.
188 Writing data access code



Instrumenting a simulation code
include "visitfortransiminterface.inc" 
ccc   POINTMESH common block (shared with simulate_one_timestep)

integer NPTS
parameter (NPTS = 100)
real pmx(NPTS), pmy(NPTS), pmz(NPTS), angle
integer pmndims, pmnnodes
common /RECTMESH/ pmx, pmy, pmz, pmndims, pmnnodes, angle

ccc   local variables
integer m

m = VISIT_ERROR
if(visitstrcmp(name, lname, "point3d", 7).eq.0) then

c Create a point mesh here
m = visitmeshpoint(handle, pmndims, pmnnodes, pmx, pmy, pmz)

endif
visitgetmesh = m
end

4.6.5 Unstructured meshes

Unstructured meshes can be returned by the mesh data access function by allocating a 
VisIt_UnstructuredMesh object and inserting it into the returned 
VisIt_MeshData object. Don’t forget to set the VisIt_MeshData’s meshType 
member to VISIT_MESHTYPE_UNSTRUCTURED. Once you’ve allocated the 
VisIt_UnstructuredMesh object, start initializing its members using information 

Figure 5-48:  3D point mesh returned by the previous code 
examples
Writing data access code 189



Instrumenting a simulation code
about the mesh. The first member that you set should be the ndims member, which tells 
VisIt if the mesh is 2D or 3D. Set the ndims member to 2 for a 2D mesh and 3 for a 3D 
mesh. Next, set the nnodes and nzones members so VisIt will know how many nodes 
make up the mesh and how many zones are connected out of that set of nodes.

You can specify the mesh’s coordinates by using the 
VisIt_CreateDataArrayFromFloat function to create data arrays for the 
xcoords, ycoords, and zcoords members. You can use the simulation’s data arrays 
by passing VISIT_OWNER_SIM or you can create copies of them by passing 
VISIT_OWNER_VISIT.

Now you must tell VisIt whether the mesh has ghost zones. The 
VisIt_UnstructuredMesh object indicates whether there are ghost zones by using 
the values stored in the firstRealZone and lastRealZone members. You can use 
those members to indicate that the first N zones are ghost zones and that the last M zones 
are ghost zones. If your mesh has no ghost zones then you can set the lastRealZone 
member to the number of zones in the mesh minus one. If your mesh has ghost zones then 
be sure to set both firstRealZone and lastRealZone so they tell VisIt the indices 
of the zones in the zone list where the real zones begin and end. If you do not set these 
members then VisIt may become confused.

The final step in creating an unstructured mesh is providing the zone connectivity 
information. Connectivity information indicates how nodes are connected into zones of 

0

2
5

4

1 3

1

6

2 2

0

7

3

1

4

5

4 1

3

2

30

0

Tetrahedron Pyramid

Wedge Hexahedron

Figure 5-49:  Node ordering for 3D unstructured zone types
190 Writing data access code



Instrumenting a simulation code
varying types. The connectivity information is stored in a linear array of integers in 
sequences that list the zone type, followed by the node indices being used for that zone. 
The node indices should begin at node zero, even in languages where the first array 
element is one, such as in Fortran. This pattern is repeated until all zones in the mesh have 
been identified. Figure 5-49 shows the node ordering that must be used to create cells for 
an unstructured mesh. Note that the node ordering (VTK’s node ordering) for all zone 
types is the same as for creating Silo files, except for the wedge zone type. You can use the 
VisIt_CreateDataArrayFromInt function to create an integer data array that can 
be passed to VisIt. After supplying the connectivity array, be sure to set the 
connectivityLen member so the length of the connectivity array since VisIt uses that 
value to determine when to stop iterating through the connectivity array.

float umx[] = {0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4.};
float umy[] = {0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0.};
float umz[] = {2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0.};
/* Connectivity */
int connectivity[] = {

VISIT_CELL_HEX,   0,1,2,3,4,5,6,7,    /* hex,     zone 1 */
VISIT_CELL_HEX,   4,5,6,7,8,9,10,11,  /* hex,     zone 2 */
VISIT_CELL_PYR,   8,9,10,11,12,       /* pyramid, zone 3 */
VISIT_CELL_WEDGE, 1,14,5,2,15,6,      /* wedge,   zone 4 */
VISIT_CELL_TET,   1,14,13,5           /* tet,     zone 5 */

};
int lconnectivity = sizeof(connectivity) / sizeof(int);
int umnnodes = 16;
int umnzones = 5;

VisIt_MeshData *VisItGetMesh(int domain, const char *name)
{

VisIt_MeshData *mesh = NULL;
size_t sz = sizeof(VisIt_MeshData);

if(strcmp(name, "unstructured3d") == 0)
{

/* Allocate VisIt_MeshData. */
mesh = (VisIt_MeshData *)malloc(sz);
memset(mesh, 0, sz);
/* Make VisIt_MeshData contain a VisIt_PointMesh. */
sz = sizeof(VisIt_UnstructuredMesh);
mesh->umesh = (VisIt_UnstructuredMesh *)malloc(sz);
memset(mesh->umesh, 0, sz);

/* Tell VisIt which mesh object to use. */
mesh->meshType = VISIT_MESHTYPE_UNSTRUCTURED;

/* Set the mesh’s number of dimensions. */
mesh->umesh->ndims = 3;
/* Set the number of nodes and zones in the mesh. */
mesh->umesh->nnodes = umnnodes;

Listing 5-50:  unstructured.c: C-Language example for returning an unstructured mesh.
Writing data access code 191



Instrumenting a simulation code
mesh->umesh->nzones = umnzones;

/* Set the indices for the first and last real zones. */
mesh->umesh->firstRealZone = 0;
mesh->umesh->lastRealZone = umnzones-1;

/* Let VisIt use simulation’s copy of the mesh coordinates. */
mesh->umesh->xcoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, umx);
mesh->umesh->ycoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, umy);
mesh->umesh->zcoords = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, umz);

/* Let VisIt use the simulation’s copy of the connectivity. */
mesh->umesh->connectivity = VisIt_CreateDataArrayFromInt(

VISIT_OWNER_SIM, connectivity);
mesh->umesh->connectivityLen = lconnectivity;

}
return mesh;

}

The Fortran interface provides the visitmeshunstructured function for creating 
unstructured meshes and returning them to VisIt. The visitmeshunstructured 
function takes 11 arguments. The first argument is an integer handle to the mesh object 
that will contain your unstructured mesh. This handle was passed to your 
visitgetmesh function from visitfortransiminterface.c. The next argument is ndims, 
which lets you tell VisIt whether your unstructured mesh is 2D or 3D. The third argument 
is the nnodes argument, indicating the number of nodes in your mesh’s coordinate 
arrays. The fourth argument, nzones, tells VisIt how many zones are contained in your 
mesh. The fifth argument is firstrealzone, which is a ghost zone argument 
indicating the index of the mesh’s first real zone. The first real zone is set to zero in many 
cases. The sixth argument is the lastrealzone argument, which lets you indicate the 
index of the last real zone, above which are found the ghost zones. The next three 
arguments (7,8,9) let you specify the mesh’s X,Y,Z coordinates in 32-bit floating point 
form. The tenth argument is the length of the connectivity array. The final argument is an 
integer zone connectivity array, which tells VisIt how to connect your mesh’s nodes into 
zones. 

subroutine simulate_one_timestep()
implicit none
include "visitfortransiminterface.inc" 

ccc   UNSTRUCTURED common block (shared with visitgetmesh)
integer  NNODES, NZONES, LCONN
parameter (NNODES = 16)
parameter (NZONES = 5)
parameter (LCONN = 36)

Listing 5-51:  funstructured.f: Fortran language example for returning an unstructured mesh.
192 Writing data access code



Instrumenting a simulation code
real umx(NNODES), umy(NNODES), umz(NNODES)
integer connectivity(LCONN)
common /UNSTRUCTURED/ umx, umy, umz, connectivity
save /UNSTRUCTURED/

c Data values
data umx/0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4./
data umy/0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0./
data umz/2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0./
data connectivity/VISIT_CELL_HEX, 0,1,2,3,4,5,6,7,

. VISIT_CELL_HEX, 4,5,6,7,8,9,10,11,

. VISIT_CELL_PYR, 8,9,10,11,12,

. VISIT_CELL_WEDGE, 1,14,5,2,15,6,

. VISIT_CELL_TET, 1,14,13,5/
end

c-----------------------------------------------------------------
c visitgetmesh
c-----------------------------------------------------------------

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer     handle, domain, lname
include "visitfortransiminterface.inc" 

ccc   UNSTRUCTURED common block (shared with simulate_one_timestep)
integer NNODES, NZONES, LCONN
parameter (NNODES = 16)
parameter (NZONES = 5)
parameter (LCONN = 36)
real umx(NNODES), umy(NNODES), umz(NNODES)
integer connectivity(LCONN)
common /UNSTRUCTURED/ umx, umy, umz, connectivity

ccc   local variables
integer m

m = VISIT_ERROR
if(visitstrcmp(name, lname, "unstructured3d", 14).eq.0) then

c Create an unstructured mesh here
m = visitmeshunstructured(handle, 3, NNODES, NZONES, 0,

. NZONES-1, umx, umy, umz, LCONN, connectivity)
endif
visitgetmesh = m
end
Writing data access code 193



Instrumenting a simulation code
4.7 Data access function for scalars

This chapter has so far shown how to instrument a simulation code so VisIt can connect to 
it and read out meshes so they can be plotted. This section will illustrate how to add a data 
access function that lets VisIt access your simulation’s scalar data. Reading scalar data 
requires a new data access function. Adding a new data access function means that you 
will be adding a new function pointer to the visitCallbacks object. If your 
simulation is written in Fortran, you must implement the visitgetscalar function to 
return your simulation’s scalar data.

The data access function for scalars returns a VisIt_ScalarData object. The 
VisIt_ScalarData object is a simple structure, defined in 
VisItDataInterface_V1.h, consisting of little more than a data array containing 
the scalar values. This section will show how to return your simulation’s scalar data so 
they can be visualized in VisIt.

4.7.1 Adding a scalar data access function

Adding a scalar data access function means that you have to first write a function and set 
the visitCallbacks object’s GetScalar member so it points to your function. The 
scalar data access function takes 2 arguments if you program in C. The first argument is a 
domain number, which you can use to return scalar data for a smaller piece of the whole 
mesh. The second argument is the name of the scalar that VisIt wants to read. The scalar 

Figure 5-52:  3D unstructured mesh returned by the previous 
code examples
194 Writing data access code



Instrumenting a simulation code
name will be one of the scalars that you added to the metadata. The basic procedure 
involved in writing a scalar data access function is to first check the incoming name 
against the names of the scalars that your simulation is prepared to return and when one is 
found, return it to VisIt in a VisIt_ScalarData object. If your scalar data access 
routine does not recognize the name of the scalar then you can return NULL instead of 
returning a VisIt_ScalarData object.

VisIt_ScalarData *VisItGetScalar(int domain, const char *name)
{

size_t sz = sizeof(VisIt_ScalarData);
VisIt_ScalarData *scalar = (VisIt_ScalarData*)malloc(sz);
memset(scalar, 0, sz);

if(strcmp(name, "zonal") == 0)
/* Make scalar return the zonal array. */

else if(strcmp(name, "nodal") == 0)
/* Make scalar return the nodal array. */

else 
{

free(scalar);
scalar = NULL;

}
return scalar;

}

VisIt_SimulationCallback visitCallbacks =
{

&VisItGetMetaData,
&VisItGetMesh,
NULL, /* GetMaterial */
NULL, /* GetSpecies */
&VisItGetScalar, /* GetScalar */
NULL, /* GetCurve */
NULL, /* GetMixedScalar */
NULL /* GetDomainList */

};

The Fortran interface does not require you to install functions into the 
visitCallbacks structure because that is taken care for you by the libsimf library. 
In order to return scalar data from a Fortran simulation, you must implement the 
visitgetscalar function. The visitgetscalar function is the Fortran 
interface’s scalar data access function. The function takes four arguments. The first 
argument is a handle to a scalar data object. The second argument is the domain number 
for which VisIt wants the specified scalar. The domain argument can be ignored if your 
simulation only has one domain per processor. The third and fourth arguments are the 
name of the scalar to return and the length of that name string, respectively. As in the C 
interface, the visitgetscalar function must check the incoming names against the 

Listing 5-53:  scalar.c: C-Language example for installing a scalar data access function.
Writing data access code 195



Instrumenting a simulation code
names of the scalars that the simulation has exposed to VisIt via metadata. You can use the 
visitstrcmp function to match the incoming name against the names of the known 
scalars.

c----------------------------------------------------------------
c visitgetscalar
c----------------------------------------------------------------

integer function visitgetscalar(handle, domain, name, lname)
implicit none
character*8 name
integer     handle, domain, lname
include "visitfortransiminterface.inc"
integer m
m = VISIT_ERROR
if(visitstrcmp(name, lname, "zonal", 5).eq.0) then

c Pass the scalar to VisIt, setting m
elseif(visitstrcmp(name, lname, "nodal", 5).eq.0) then

c Pass the scalar to VisIt, setting m
endif
visitgetscalar = m
end

4.7.2 Passing a simulation’s data array

The VisIt_ScalarData object contains only two items: the length of the data array, 
and a data array object that points to the scalar data. Both the C and Fortran interfaces 
provide multiple functions for passing a simulation’s data into the VisIt_ScalarData 
object’s data array. There are multiple functions to account for multiple variable types 
since a VisIt_ScalarData object’s data array can contain char, int, float, and 
double scalar arrays. The C interface provides the 
VisIt_CreateDataArrayFromChar, VisIt_CreateDataArrayFromInt, 
VisIt_CreateDataArrayFromFloat, and 
VisIt_CreateDataArrayFromDouble functions to pass simulation data into the 
VisIt_ScalarData object. Each of the functions accepts two arguments: an owner 
and a pointer to the scalar data. The owner flag indicates whether or not VisIt will be 
responsible for freeing the scalar data array when it is no longer needed. If you pass 
VISIT_OWNER_SIM then VisIt will never free the data because the simulation owns the 
scalar’s memory. If you pass VISIT_OWNER_VISIT then VisIt will free the scalar’s 
memory when the scalar is no longer needed.

int   rmesh_dims[] = {4, 5, 1};
float zonal[] = {1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.};
int cmesh_dims[] = {4, 3, 2};
double nodal[2][3][4] = {

Listing 5-54:  fscalar.f: Fortran language example of a scalar data access function.

Listing 5-55:  scalar.c: C-Language example for returning a scalar variable.
196 Writing data access code



Instrumenting a simulation code
{{1.,2.,3.,4.},{5.,6.,7.,8.},{9.,10.,11.,12}},
{{13.,14.,15.,16.},{17.,18.,19.,20.},{21.,22.,23.,24.}}

};
VisIt_ScalarData *VisItGetScalar(int domain, const char *name)
{

size_t sz = sizeof(VisIt_ScalarData);
VisIt_ScalarData *scalar = (VisIt_ScalarData*)malloc(sz);
memset(scalar, 0, sz);

if(strcmp(name, "zonal") == 0)
{

scalar->len = (rmesh_dims[0]-1) * (rmesh_dims[1]-1);
scalar->data = VisIt_CreateDataArrayFromFloat(

VISIT_OWNER_SIM, zonal);
}
else if(strcmp(name, "nodal") == 0)
{

scalar->len = cmesh_dims[0] * cmesh_dims[1] *
cmesh_dims[2];

scalar->data = VisIt_CreateDataArrayFromDouble(
VISIT_OWNER_SIM, (double*)nodal);

}
else 
{

free(scalar);
scalar = NULL;

}
return scalar;

}

The Fortran interface provides the visitscalarsetdatac, 
visitscalarsetdatai, visitscalarsetdataf, and 
visitscalarsetdatad functions for passing your simulation’s scalar data back to 
VisIt. The functions allow you to pass back char, integer, real, and double precision data, 
respectively. Each of the functions takes four arguments. The first argument is the handle 
that VisIt passed into the visitgetscalar function. The second argument is the actual 
array that contains the scalar. Be sure that you use the appropriate function for the type of 
array that you are passing or you will experience runtime problems. The third argument is 
a 3 element integer array indicating the dimensions of the array that you’re providing. The 
dimensions should match the number of nodes in the mesh for nodal variables. If your 
mesh is 2D then set the third array element to one. If you are providing a zonal scalar 
variable then the array elements should contain your mesh’s number of zones in each 
dimension. If you are passing data for an unstructured mesh then you should put either the 
number of zones or nodes in the first element and add ones for the next two array 
elements. If you adhere to the guidelines that have been given then you can provide 3 for 
Writing data access code 197



Instrumenting a simulation code
the number of array dimensions; otherwise the number of dimensions should match the 
number of mesh dimensions for structured meshes or use one for unstructured meshes.

c----------------------------------------------------------------
c visitgetscalar
c----------------------------------------------------------------

integer function visitgetscalar(handle, domain, name, lname)
implicit none
character*8 name
integer     handle, domain, lname
include "visitfortransiminterface.inc"

ccc   RECTMESH data
integer NX, NY
parameter (NX = 4)
parameter (NY = 5)
integer rmdims(3)
real zonal(NX-1,NY-1)

ccc   CURVMESH data
integer CNX, CNY, CNZ
parameter (CNX = 4)
parameter (CNY = 3)
parameter (CNZ = 2)
integer cmdims(3)
double precision nodal(CNX,CNY,CNZ)

ccc   local vars
integer m, sdims(3)

ccc   Data
data rmdims /4, 5, 1/
data zonal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12./
data cmdims/CNX,CNY,CNZ/
data nodal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.,15.,

. 16.,17.,18.,19.,20.,21.,22.,23.,24./

m = VISIT_ERROR
if(visitstrcmp(name, lname, "zonal", 5).eq.0) then

c A zonal variable has 1 less value in each dimension as there
c are nodes. Send back REAL data.

sdims(1) = rmdims(1)-1
sdims(2) = rmdims(2)-1
sdims(3) = rmdims(3)-1
m = visitscalarsetdataf(handle, zonal, sdims, rmndims)

elseif(visitstrcmp(name, lname, "nodal", 5).eq.0) then
c A nodal variable has the same number values in each dimension
c as there are nodes. Send back DOUBLE PRECISION data.

m = visitscalarsetdatad(handle, nodal, cmdims, cmndims)
endif
visitgetscalar = m
end

Listing 5-56:  fscalar.f: Fortran language example for returning a scalar variable.
198 Writing data access code



Instrumenting a simulation code
The scalar data access functions in the previous examples build on some of the earlier 
mesh data access function examples, specifically the examples that returned rectilinear 
and curvilinear meshes. The zonal variable returned in the examples in this section return 
data defined on the “mesh2d” rectilinear mesh. The nodal variable returned in the 
examples in this section return data on the “mesh3d” curvilinear mesh. Examples of both 
scalar variables are shown in Figure 5-57.

4.8 Data access function for curves

This section illustrates how to add a data access function that lets VisIt access your 
simulation’s curve data. Reading curve data requires a new data access function, requiring 
you to add a new function pointer to the visitCallbacks object. If your simulation is 
written in Fortran, you must implement the visitgetcurve function to return your 
simulation’s scalar data.

The data access function for scalars returns a VisIt_CurveData object. The 
VisIt_CurveData object is a simple structure, defined in 
VisItDataInterface_V1.h, consisting of two arrays to contain the curve’s X,Y 
coordinate pairs. This section shows how to create a data access function for curves so 
your simulation’s curve data are available in VisIt.

4.8.1 Adding a curve data access function

Adding a curve data access function means that you have to first write a function and set 
the visitCallbacks object’s GetCurve member so it points to your function. If you 
program in C, the curve data access function takes the name of a curve object as an 
argument. The basic procedure for returning curve data is to first check the incoming name 
against the names of the curves that your simulation is prepared to return and when one is 
found, return it to VisIt in a VisIt_CurveData object. If your curve data access 

Figure 5-57:  Examples of scalar variables returned by a scalar data access function.
Writing data access code 199



Instrumenting a simulation code
routine does not recognize the name of the curve then you can return NULL instead of 
returning a VisIt_CurveData object.

VisIt_CurveData *VisItGetCurve(const char *name)
{

size_t sz = sizeof(VisIt_CurveData);
VisIt_CurveData *curve = (VisIt_CurveData*)malloc(sz);
memset(curve, 0, sz);
if(strcmp(name, "sine") == 0)
{

/* Populate curve object’s data. */
}
else 
{

free(curve);
curve = NULL;

}

return curve;
}

VisIt_SimulationCallback visitCallbacks =
{

&VisItGetMetaData,
&VisItGetMesh,
NULL, /* GetMaterial */
NULL, /* GetSpecies */
&VisItGetScalar,
&VisItGetCurve,
NULL, /* GetMixedScalar */
NULL /* GetDomainList */

};

The Fortran interface does not require you to install functions into the 
visitCallbacks structure because that is taken care for you in the libsimf library. 
In order to return curve data from a Fortran simulation, you must implement the 
visitgetcurve function. The visitgetcurve function is the Fortran interface’s 
curve data access function. The function takes three arguments. The first argument is a 
handle to a curve data object. The second and third arguments are the name of the curve to 
return and the length of that name string, respectively. As in the C interface, the 
visitgetcurve function must check the incoming names against the names of the 
scalars that the simulation has exposed to VisIt via metadata. You can use the 
visitstrcmp function to match the incoming name against the names of the known 
curves.

Listing 5-58:  curve.c: C-Language example for installing a curve data access function.

Listing 5-59:  fcurve.f: Fortran language example of a curve data access function.
200 Writing data access code



Instrumenting a simulation code
c----------------------------------------------------------------
c visitgetcurve
c----------------------------------------------------------------

integer function visitgetcurve(handle, name, lname)
implicit none
character*8 name
integer     handle, lname
include "visitfortransiminterface.inc"
integer m
m = VISIT_ERROR
if(visitstrcmp(name, lname, "sine", 4).eq.0) then

c Pass the curve to VisIt, setting m
endif
visitgetcurve = m
end

4.8.2 Passing curve data to VisIt

Now that you know how to install a curve data access function, you need to know how to 
actually pass curve data back to VisIt. If you program in C, this means filling in the data 
members of the VisIt_CurveData structure. The VisIt_CurveData structure has 
three members. First of all, it contains a number of points that make up the curve data. 
Next, it contains x and y data arrays that contain the x and y coordinates of the points that 
make up your curve object. The x and y arrays should have the same number of entries and 
that number should match the length that you’ve indicated in the VisIt_CurveData 
structure.

VisIt_CurveData *VisItGetCurve(const char *name)
{

size_t sz = sizeof(VisIt_CurveData);
VisIt_CurveData *curve = (VisIt_CurveData*)malloc(sz);
memset(curve, 0, sz);
if(strcmp(name, "sine") == 0)
{

int i;
/* Create a sine curve with 200 points. */
float *x = NULL, *y = NULL;
x = (float*)malloc(200 * sizeof(float));
y = (float*)malloc(200 * sizeof(float));
for(i = 0; i < 200; ++i)
{

x[i] = ((float)i / (float)(200-1)) * 4. * 3.14159;
y[i] = sin(x[i]);

}

/* Use VISIT_OWNER_VISIT and VisIt will free the arrays. */
curve->len = 200;
curve->x=VisIt_CreateDataArrayFromFloat(VISIT_OWNER_VISIT, x);

Listing 5-60:  curve.c: C-Language example for passing curve data back to VisIt.
Writing data access code 201



Instrumenting a simulation code
curve->y=VisIt_CreateDataArrayFromFloat(VISIT_OWNER_VISIT, y);
}
else 
{

free(curve);
curve = NULL;

}

return curve;
}

If you use the Fortran interface to return curve data then you will implement the 
visitgetcurve function. When the visitgetcurve function is passed the name of 
a valid curve then you must call the visitcurvesetdataf if your curve contains 
single-precision data or the visitcurvesetdatad function if your curve contains 
double-precision floating point data. Both functions accept four arguments. The first 
argument is the integer handle passed to your visitgetcurve function. The second 
and third arguments are the arrays containing the x and y coordinates, respectively. The 
final argument is an integer containing the number of points that make up your curve.

c----------------------------------------------------------------
c visitgetcurve
c----------------------------------------------------------------

integer function visitgetcurve(handle, name, lname)
implicit none
character*8 name
integer     handle, lname, m, NPTS, i
parameter   (NPTS = 200)
real        x(NPTS), y(NPTS), t
include "visitfortransiminterface.inc"
integer m
m = VISIT_ERROR
if(visitstrcmp(name, lname, "sine", 4).eq.0) then

do 10000 i=1,NPTS
t = float(i-1) / float(NPTS-1)
x(i) = t * 4. * 3.14159
y(i) = sin(x(i))

10000 continue          
m = visitcurvesetdataf(handle, x, y, NPTS)

endif
visitgetcurve = m
end

Listing 5-61:  fcurve.f: Fortran language example for passing curve data back to VisIt.
202 Writing data access code



Instrumenting a simulation code
Both of the code examples for returning curve data produce a sine curve, shown in 
Figure 5-62.

4.9 Data access function for the domain list

The domain list is an object that tells VisIt how many domains there are in your simulation 
and to which processors they belong. Domain lists are used by VisIt’s load balancer to 
assign work to various processors when running in parallel. Since most parallel 
simulations only ever process a single domain’s worth of data, the domain list will almost 
always contain a single domain, though the total number of domains is free to change. 
Note that you must provide a domain list when you run a parallel simulation so VisIt’s 
load balancer can retrieve domains from the appropriate simulation processors.

Installing a domain list data access function is done using the same procedure as for 
installing other types of data access functions. If you program in C then you must create a 
new function and add it to the visitCallbacks object by setting the 
GetDomainList member.

VisIt_DomainList *VisItGetDomainList(void)
{

int np = 1, rank = 0;
size_t sz = sizeof(VisIt_DomainList);

Figure 5-62:  Sine curve produced by the curve data access 
function example programs.

Listing 5-63:  curve.c: C-Language example for returning a domain list.
Writing data access code 203



Instrumenting a simulation code
VisIt_DomainList *dl = (VisIt_DomainList*)malloc(sz);
memset(dl, 0, sz);

#ifdef PARALLEL
/* Get number of processors and rank from MPI. */
/* Set np, rank using those values. */

#endif

dl->nTotalDomains = np;
dl->nMyDomains = 1;
dl->myDomains = VisIt_CreateDataArrayFromInt(

VISIT_OWNER_SIM, &rank);
return dl;

}

VisIt_SimulationCallback visitCallbacks =
{

&VisItGetMetaData,
&VisItGetMesh,
NULL, /* GetMaterial */
NULL, /* GetSpecies */
&VisItGetScalar, 
&VisItGetCurve,
NULL, /* GetMixedScalar */
&VisItGetDomainList

};

If you use the Fortran interface then you must implement the visitgetdomainlist 
function. The visitgetdomainlist function is called when VisIt needs the number 
and distribution of the domains in use by your simulation. You can provide this 
information by calling the visitsetdomainlist function. The 
visitsetdomainlist function takes four arguments. The first argument is a handle 
to the VisIt_DomainList object that was passed into your visitgetdomainlist 
function. The second argument is an integer containing the total number of domains in 
your simulation. The total number of domains is almost always equal to the number of 
processors used by your simulation. The third argument is a list of domain id’s. If your 
simulation assigns 1 domain per processor then you can use the processor’s rank for the 
single value in the list of domain id’s. The final argument is an integer containing the 
number of domains in the domain list.

c------------------------------------------------------------------
c visitgetdomainlist
c------------------------------------------------------------------

integer function visitgetdomainlist(handle)
implicit none
integer handle
include "visitfortransiminterface.inc"

Listing 5-64:  fcurve.f: Fortran language example for returning a domain list.
204 Writing data access code



Instrumenting a simulation code
ccc   local variables
integer totaldomains, domainids(1), ndomids

totaldomains = 1
domainids(1) = 0
ndomids = 1
visitgetdomainlist = visitsetdomainlist(handle, totaldomains,

. domainids, ndomids)
end
Writing data access code 205



Instrumenting a simulation code
206 Writing data access code



Index
A
avtMaterial 134

B
BOV file format 9
BOV header file 10
Brick of Floats 10
Brick of Values 10

C
Command line argument -debug 101
Command line argument -debug 5 100
Creating a new Silo file 15
Curve file format 11
Cycle 17
Cycles 126



D
Data extents 70, 131
Dealing with time 16
Debugging logs 100
Debugging your plugin 100
dlopen 143
Double precision 45
Dynamic load balancing 138

E
EMPTY keyword 52
export-dynamic linker flag 164

G
Ghost zones 74, 136, 137

I
Inspecting Silo files 14

L
LD_LIBRARY_PATH 161
LDFLAGS 164
libsim - VisItAttemptToCompleteConnection 
150
libsim - VisItControlInterface_V1.h 142
libsim - VisItDetectInput 149
libsim - VisItDisconnect 150
libsim - visitfortransiminterface.inc 142
libsim - VisItInitializeSocketAndDumpSim-
File 144, 161
libsim - VisItProcessEngineCommand 150
libsim - VisItSetBroadcastIntFunction 145
libsim - VisItSetBroadcastStringFunction 145
libsim - VisItSetCommandCallback 174
libsim - VisItSetParallel 145
libsim - VisItSetParallelRank 145
libsim - VisItSetupEnvionment 144

M
Materials 81, 82, 83, 84, 134
MPI 137

O
Option lists 17
208



P
Plugin development - ActivateTimestep 138
Plugin development - Auxiliary data 130
Plugin development - avtDatabaseMetaData 
103
Plugin development - Curvilinear meshes 113
Plugin development - expression metadata 108
Plugin development - GetAuxiliaryData 130, 
131
Plugin development - GetMesh 99, 110, 111, 
112, 114, 115, 116, 118, 119
Plugin development - GetVar 99, 122, 123
Plugin development - GetVectorVar 99, 123
Plugin development - libE 89, 137
Plugin development - libI 89
Plugin development - libM 89
Plugin development - material metadata 108
Plugin development - mesh metadata 103
Plugin development - MTMD 90
Plugin development - MTSD 90
Plugin development - Parallelizing your reader 
137
Plugin development - Point meshes 115
Plugin development - PopulateDatabaseMeta-
Data 99, 103, 122, 123
Plugin development - Rectilinear meshes 111
Plugin development - Returning a mesh 109
Plugin development - Returning a scalar vari-
able 122
Plugin development - Returning a vector vari-
able 123
Plugin development - Returning cycles and 
times 126
Plugin development - Returning ghost zones 
136
Plugin development - Returning materials 134
Plugin development - scalar metadata 106
Plugin development - STMD 90
Plugin development - STSD 90
Plugin development - Unstructured meshes 118
Plugin development - Using a VTK reader 
class 125

Plugin development - vector metadata 107
Plugin development - xml2info 94
Plugin development - xml2makefile 94, 96, 97
Plugin development - xml2plugin 94
Plugin development - XMLEdit 90

S
Silo 9
Silo - browser 14
Silo - DB_CHAR 38
Silo - DB_F77NULL 20
Silo - DB_FLOAT 37
Silo - DB_HDF5 15
Silo - DB_NODECENT 38
Silo - DB_NONCOLLINEAR 22
Silo - DB_PDB 15
Silo - DB_ZONECENT 38
Silo - DBAddOption 17
Silo - DBCreate 15
Silo - DBFreeOptlist 17, 32, 44
Silo - DBMakeOptlist 17, 32, 44
Silo - DBOPT_UNITS 44
Silo - DBPutdefvars 45
Silo - dbputdefvars 46
Silo - dbputmat 85
Silo - DBPutMaterial 84
Silo - dbputmmesh 49
Silo - DBPutMultimesh 48
Silo - DBPutMultivar 50, 72
Silo - dbputpm 26
Silo - DBPutPointmesh 25
Silo - DBPutPointVar1 41
Silo - dbputqm 20, 21, 23, 24
Silo - DBPutQuadmesh 18, 20, 22, 81
Silo - DBPutQuadvar1 35, 37, 38, 44
Silo - dbputqv1 38
Silo - DBPutUcdmesh 28
Silo - DBPutUcdvar1 43, 44
Silo - dbputuv1 43
209



Silo - DBPutZonelist 28
Silo - dbset2dstrlen 46
Silo - header files 12
Silo - linking with 13
SimV1 database reader plugin 163, 164
Spatial extents 73, 132
Static load balancing 138
Strategies 2

T
Time 17
Times 126
topological dimension 104

U
Units 44

V
VCEL 141
VisIt Compute Engine Library 141
VisIt_CreateDataArrayFromChar 196
VisIt_CreateDataArrayFromDouble 196
VisIt_CreateDataArrayFromFloat 180, 187, 
196
VisIt_CreateDataArrayFromInt 191, 196
VisIt_CurveData 199

VisIt_MaterialMetaData 172
VisIt_MeshData 177
VisIt_MeshMetaData 168
VISIT_OWNER_SIM 180, 196
VISIT_OWNER_VISIT 180, 196
VisIt_PointMesh 186
VisIt_ScalarData 194, 196
VisIt_ScalarMetaData 170
VisIt_SimulationMetaData 166
visit_writer - write_curvilinear_mesh 58
visit_writer - write_point_mesh 61
visit_writer - write_regular_mesh 54
visit_writer - write_unstructured_mesh 62
visitaddsimcommand 176
visitbroadcastintfunction 159, 160
visitbroadcaststringfunction 159, 160
visitCallbacks 162, 163, 164
visitcommandcallback 176
visitdetectinput 157
visitgetcurve 199, 200
visitgetmesh 177, 192
visitgetscalar 194, 195
visitinitializesim 156
visitmdcurvecreate 172
visitmdcurvesetlabels 172
visitmdcurvesetunits 172
visitmdexpressioncreate 173
visitmdmaterialadd 172
visitmdmaterialcreate 172
visitmdmeshcreate 169
visitmdmeshsetblockpiecename 170
visitmdmeshsetblocktitle 170
visitmdmeshsetlabels 169
visitmdmeshsetunits 169
visitmdscalarcreate 170
visitmdsetcycletime 166, 167
visitmdsetrunning 166, 167
visitmeshcurvilinear 185
visitmeshrectilinear 181
visitmeshunstructured 192
VISITPLUGINDIR 161
visitprocessenginecommand 157
visitscalarsetdatac 197
visitscalarsetdatad 197
visitscalarsetdataf 197
visitscalarsetdatai 197
210



visitsetparallel 156
visitsetparallelrank 156
visitslaveprocesscallback 159, 160
visitstrcmp 176, 196
VTK 9, 125
vtkFloatArray 122, 123
vtkRectilinearGrid 111
vtkStructuredGrid 113
vtkUnstructuredGrid 115, 118, 122

X
X-Y plots 11
211



212


	Getting Data Into VisIt
	September 2006
	Version 1.5.4

	DISCLAIMER
	Introduction
	Creating compatible files
	Creating compatible files II Advanced topics
	Creating a database reader plug-in
	Instrumenting a simulation code

	Chapter 1 Introduction
	1.0 Overview
	2.0 Manual chapters
	3.0 Manual conventions
	4.0 Strategies
	5.0 Picking a strategy
	6.0 Definition of terms

	Chapter 2 Creating compatible files
	1.0 Overview
	2.0 Creating a conversion utility or extending a simulation
	3.0 Survey of database reader plug-ins
	3.1 BOV file format
	Listing 2-1: bov.c: C-Language example for creating data that the BOV plug-in can read.
	Listing 2-2: fbov.f: Fortran language example for creating data that the BOV plug-in can read.

	3.2 X-Y Curve file format

	4.0 Writing Silo files
	4.1 Using the Silo library
	4.1.1 Including Silo
	4.1.2 Linking with Silo
	4.1.3 Using Silo on Windows

	4.2 Inspecting Silo files
	4.3 Silo files and parallel codes
	4.4 Creating a new Silo file
	Listing 2-3: basic.c: C-Language example for creating a new Silo file.
	Listing 2-4: fbasic.f: Fortran language example for creating a new Silo file..

	4.5 Dealing with time
	Listing 2-5: time.c: C-Language example for dealing with time.

	4.6 Option lists
	4.6.1 Cycle and time
	Listing 2-6: optlist.c: C-Language example for saving cycle and time using an option list..
	Listing 2-7: foptlist.f: Fortran language example for saving cycle and time using an option list..


	4.7 Writing a rectilinear mesh
	Figure 2-8: Rectilinear mesh and its X,Y node coordinates.
	Listing 2-9: rect2d.c: C-Language example for writing a 2D rectilinear mesh.
	Listing 2-10: frect2d.f: Fortran language example for writing a 2D rectilinear mesh.
	Figure 2-11: Rectilinear mesh and its X,Y,Z coordinates
	Listing 2-12: rect3d.c: C-Language example for writing a 3D rectilinear mesh.
	Listing 2-13: frect3d.f: Fortran language example for writing a 3D rectilinear mesh.

	4.8 Writing a curvilinear mesh
	Figure 2-14: Curvilinear mesh and its X,Y node coordinates
	Listing 2-15: curv2d.c: C-Language example for writing a 2D curvilinear mesh.
	Listing 2-16: fcurv2d.f: Fortran language example for writing a 2D curvilinear mesh.
	Figure 2-17: 3D Curvilinear mesh and its X,Y,Z coordinates
	Listing 2-18: curv3d.c: C-Language example for writing a 3D curvilinear mesh.
	Listing 2-19: fcurv3d.f: Fortran language example for writing a 3D curvilinear mesh.

	4.9 Writing a point mesh
	Figure 2-20: 2D point mesh
	Listing 2-21: point2d.c: C-Language example for writing a 2D point mesh.
	Listing 2-22: fpoint2d.f: Fortran language example for writing a 2D point mesh.
	Figure 2-23: 3D point mesh
	Listing 2-24: point3d.c: C-Language example for writing a 3D point mesh.
	Listing 2-25: fpoint3d.f: Fortran language example for writing a 3D point mesh.

	4.10 Writing an unstructured mesh
	Figure 2-26: 2D unstructured mesh composed of triangles and quadrilaterals. The node numbers are labelled red and the zone numbers are labelled blue.
	Listing 2-27: ucd2d.c: C-Language example for writing a 2D unstructured mesh.
	Listing 2-28: fucd2d.f: Fortran language example for writing a 2D unstructured mesh.
	Figure 2-29: Node ordering for Silo’s 3D unstructured zone types
	Figure 2-30: Node numbers on the left and the mesh, colored by zone type, on the right. Hexhadrons (red), Pyramid (blue), Prism (yellow), Tetrahedron (green).
	Listing 2-31: ucd3d.c: C-Language example for writing a 3D unstructured mesh.
	Listing 2-32: fucd3d.f: Fortran language example for writing a 3D unstructured mesh.
	4.10.1 Adding axis labels and axis units
	Figure 2-33: Custom mesh labels and units along the X and Y axes
	Listing 2-34: rect2d.c: C-Language example for associating new axis labels and units with a mesh.
	Listing 2-35: frect2d.f: Fortran language example for associating new axis labels and units with a mesh


	4.11 Writing a scalar variable
	4.11.1 Zone centering vs. Node centering
	Figure 2-36: Zone-centering (left) and Node-centering (right)

	4.11.2 API Commonality
	Figure 2-37: Variables in VisIt’s plot menus

	4.11.3 Rectilinear and curvilinear meshes
	Figure 2-38: Zone-centered variables. Clock-wise from upper left, float, double-precision, integer, char
	Listing 2-39: quadvar2d.c: C-Language example for writing zone-centered variables.
	Listing 2-40: fquadvar2d.f: Fortran language example for writing zone-centered variables.
	Listing 2-41: quadvar2d.c: C-Language example for writing node-centered variables.
	Listing 2-42: fquadvar2d.f: Fortran language example for writing node-centered variables.
	Figure 2-43: Zone-centered variable in 3D and a node-centered variable in 3D (shown with a partially transparent plot)
	Listing 2-44: quadvar3d.c: C-Language example for writing variables on a 3D mesh.
	Listing 2-45: fquadvar3d.f: Fortran language example for writing variables on a 3D mesh.

	4.11.4 Point meshes
	Figure 2-46: Scalar variable defined on a point mesh
	Listing 2-47: pointvar3d.c: C-Language example for writing variables on a 3D point mesh.
	Listing 2-48: fpointvar3d.f: Fortran language example for writing variables on a 3D point mesh.

	4.11.5 Unstructured meshes
	Figure 2-49: A 2D unstructured mesh with a zonal variable (left) and a nodal variable (right).
	Listing 2-50: ucdvar2d.c: C-Language example for writing variables on an unstructured mesh.
	Listing 2-51: fucdvar2d.f: Fortran language example for writing variables on an unstructured mesh.

	4.11.6 Adding variable units
	Figure 2-52: Plot legend with units
	Listing 2-53: ucdvar2d.c: C-Language example for writing a variables with units.
	Listing 2-54: fucdvar2d.f: Fortran language example for writing a variables with units.


	4.12 Single precision vs. Double precision
	Listing 2-55: C-Language example for writing a mesh with double-precision coordinates.

	4.13 Writing expressions
	Listing 2-56: defvars.c: C-Language example for writing out expression definitions.
	Listing 2-57: fdefvars.f: Fortran language example for writing out expression definitions.

	4.14 Creating a master file for parallel
	4.14.1 Creating a multimesh
	Figure 2-58: Multimesh colored by its domain number
	Listing 2-59: multimesh.c: C-Language example for writing a multimesh.
	Listing 2-60: fmultimesh.f: Fortran language example for writing a multimesh.

	4.14.2 Creating a multivar
	Figure 2-61: Multivar displayed on its multimesh
	Listing 2-62: multivar.c: C-Language example for writing a multivar.
	Listing 2-63: fmultivar.f: Fortran language example for writing a multivar.

	4.14.3 EMPTY contributions
	Listing 2-64: C-Language example using the EMPTY keyword.



	5.0 Writing VTK files
	5.1 Getting started with visit_writer
	5.1.1 Using visit_writer in C programs
	5.1.2 Using visit_writer in Python programs

	5.2 Regular meshes with data
	Figure 2-65: Regular mesh with data created using visit_writer
	Listing 2-66: vwregmesh.c: C-Language example for writing a regular mesh with data.
	Listing 2-67: vwregmesh.py: Python language example for writing a regular mesh with data.

	5.3 Rectilinear meshes with data
	Figure 2-68: 2D rectilinear mesh with zonal variable
	Listing 2-69: vwrect2d.c: C-Language example for writing a rectilinear mesh with data.
	Listing 2-70: vwrect2d.py: Python language example for writing a rectilinear mesh with data.

	5.4 Curvilinear meshes with data
	Figure 2-71: 3D curvilinear mesh with zonal variable
	Listing 2-72: vwcurv3d.c: C-Language example for writing a curvilinear mesh with data.
	Listing 2-73: vwcurv3d.py: Python language example for writing a curvilinear mesh with data.

	5.5 Point meshes with data
	Figure 2-74: Point mesh with scalar data and vector data
	Listing 2-75: vwpoint3d.c: C-Language example for writing a point mesh with data.
	Listing 2-76: vwpoint3d.py: Python language example for writing a point mesh with data.

	5.6 Unstructured meshes with data
	Figure 2-77: 2D unstructured mesh with zonal variable
	Listing 2-78: vwrucd2d.c: C-Language example for writing an unstructured mesh with data.
	Listing 2-79: vwucd2d.py: Python language example for writing an unstructured mesh with data.

	5.7 Creating a master file for parallel (.visit file)


	Chapter 3 Creating compatible files II Advanced topics
	1.0 Overview
	2.0 Writing vector data
	3.0 Adding metadata for performance boosts
	3.1 Writing data extents
	Figure 3-3: Example Mesh and Pseudocolor plots with the data extents for each domain of the Pseudocolor plot’s scalar variable.
	Figure 3-4: Only process domain 3 (left) to yield the Contour plot of value 11.5 (right).

	3.2 Writing spatial extents
	Figure 3-7: Only the red domains need to be processed to compute the slice plane if spatial extents are provided.


	4.0 Ghost zones
	Figure 3-10: VisIt can use ghost zones to ensure continuity and to remove internal surfaces
	4.1 Writing ghost zones to your files
	Figure 3-11: The zones that are both red and green are real zones in one domain and ghost zones in another.


	5.0 Materials
	Figure 3-14: A mesh with both clean and mixed material zones
	Figure 3-15: Mixed material example


	Chapter 4 Creating a database reader plug-in
	1.0 Overview
	2.0 Structure of VisIt
	Figure 4-1: VisIt’s architecture
	2.1 plug-ins

	3.0 Starting your plug-in
	3.1 Picking a database reader plug-in interface
	3.2 Using XMLEdit
	Figure 4-2: XMLEdit plug-in tab
	Figure 4-3: XMLEdit plug-in tab with plug-in name and type selected
	Figure 4-4: XMLEdit plug-in tab with database type and extensions selected
	3.2.1 Makefile options
	Figure 4-5: XMLEdit Makefile tab with compiler options and additional files specified.


	3.3 Generating a plug-in code skeleton
	Figure 4-6: Files generated by xml2plugin

	3.4 Building your plug-in
	Figure 4-7: Example of a “YOU MUST IMPLEMENT THIS” message
	Figure 4-8: Example of corrections made to a “YOU MUST IMPLEMENT THIS” message needed to make the source code compile
	Figure 4-9: Files are created in the .visit directory when a plug-in is built.

	3.5 Calling your plug-in for the first time
	Figure 4-10: File Information window confirming use of your plug-in.


	4.0 Implementing your plug-in
	4.1 Required plug-in methods
	4.2 Debugging your plug-in
	4.2.1 Debugging logs
	Listing 4-11: debugstream.C: C++-Language example for using debug streams.

	4.2.2 Dumping VTK objects to disk
	Figure 4-12: Output of running with the -dump command line argument


	4.3 Opening your file
	Listing 4-13: invaliddbtype.C: C++-Language example for a file format constructor that must throw an exception.

	4.4 Returning file metadata
	4.4.1 Returning mesh metadata
	Figure 4-14: Topological dimensions. One zone is highlighted blue.
	Figure 4-15: AVT mesh types (AVT_CSG_MESH not pictured).
	Listing 4-16: meshmetadata.C: C++-Language example for returning mesh metadata.

	4.4.2 Returning scalar metadata
	Listing 4-17: scalarmetadata.C: C++-Language example for returning scalar metadata.

	4.4.3 Returning vector metadata
	Listing 4-18: vectormetadata.C: C++-Language example for returning vector metadata.

	4.4.4 Returning material metadata
	Listing 4-19: materialmetadata.C: C++-Language example for returning material metadata.

	4.4.5 Returning expressions
	Listing 4-20: expressionmetadata.C: C++-Language example for returning expression metadata.


	4.5 Returning a mesh
	4.5.1 Determining which mesh to return
	Listing 4-21: getmesh1.C: C++ Language example for which mesh to return in GetMesh.

	4.5.2 Rectilinear meshes
	Figure 4-22: Rectilinear mesh and its X,Y node coordinates.
	Listing 4-23: getmesh_rect.C: C++ Language example for creating vtkRectilinearGrid in GetMesh.

	4.5.3 Curvilinear meshes
	Figure 4-24: Curvilinear mesh and its X,Y node coordinates
	Listing 4-25: getmesh_curv.C: C++ Language example for creating vtkStructuredGrid in GetMesh.

	4.5.4 Point meshes
	Figure 4-26: 3D point mesh
	Listing 4-27: getmesh_point.C: C++ Language example for returning a point mesh from GetMesh.

	4.5.5 Unstructured meshes
	Figure 4-28: 2D unstructured mesh composed of triangles and quadrilaterals. The node numbers are labelled red and the cell numbers are labelled blue.
	Figure 4-29: Node ordering for some VTK unstructured cell types
	Listing 4-30: getmesh_ugrid.C: C++ Language example for returning an unstructured mesh from GetMesh.


	4.6 Returning a scalar variable
	Listing 4-31: getvar.C: C++ Language example for returning data from GetVar.

	4.7 Returning a vector variable
	Listing 4-32: getvectorvar.C: C++ Language example for returning data from GetVectorVar.

	4.8 Using a VTK reader class

	5.0 Advanced topics
	5.1 Returning cycles and times
	Figure 4-33: Cycles and times values are used to help you navigate through time
	Figure 4-34: The File Information window can be used to inspect the cycles and times returned from your plug-in.
	5.1.1 Returning cycles and times in an ST plug-in
	Listing 4-35: cycletime_st.C: C++ Language example for returning cycles, times from ST plug-in.

	5.1.2 Returning cycles and times in an MT plug-in
	Listing 4-36: cycletime_mt.C: C++ Language example for returning cycles, times from MT plug-in.


	5.2 Auxiliary data
	5.2.1 Returning data extents
	Listing 4-37: dataextents.C: C++ Language example for returning data extents.

	5.2.2 Returning spatial extents
	Listing 4-38: spatialextents.C: C++ Language example for returning spatial extents.

	5.2.3 Returning materials
	Listing 4-39: matclean.C: C++ Language example for returning material data.


	5.3 Returning ghost zones
	5.3.1 Blanking out zones
	Listing 4-40: gz_blank.C: C++ Language example for returning a mesh with blanked out zones.

	5.3.2 Ghost zones at the domain boundaries

	5.4 Parallelizing your reader


	Chapter 5 Instrumenting a simulation code
	1.0 Overview
	2.0 Architecture
	Figure 5-1: Simulation writing data files in parallel
	Figure 5-2: VisIt’s compute engine reads data files in parallel and sends data to the viewer component.
	Figure 5-3: VisIt getting data from an instrumented parallel simulation

	3.0 Using libsim
	3.1 Getting libsim
	3.2 Building in libsim support
	Listing 5-4: Including libsim header file in C-Language simulation.
	Listing 5-5: Including libsim header file in Fortran-Language simulation.

	3.3 Initialization
	Listing 5-6: sim1.c: C-Language simulation example before adding libsim
	3.3.1 Setting up the environment and creating a .sim file
	Listing 5-7: sim2.c: C-Language simulation example including libsim initialization

	3.3.2 Parallel initialization
	Listing 5-8: sim2p.c: C-Language simulation example including parallel libsim initialization


	3.4 Restructuring the main loop
	3.4.1 Creating a mainloop function
	Listing 5-9: sim3.c: C-Language simulation example with a mainloop function.

	3.4.2 Adding libsim functions to mainloop
	Listing 5-10: sim4.c: C-Language simulation example with fully instrumented mainloop function.
	Figure 5-11: Simulation window

	3.4.3 Setting up mainloop for a parallel simulation
	Listing 5-12: sim4p.c: C-Language simulation example with fully instrumented parallel mainloop function.


	3.5 Using libsim in a Fortran simulation
	Listing 5-13: fsim4.f: Fortran language simulation example with fully instrumented mainloop function.

	3.6 Using libsim in a parallel Fortran simulation
	Listing 5-14: fscalarp.f: Fortran language simulation example for parallel initialization.
	Listing 5-15: fscalarp.f: Fortran language simulation example for parallel mainloop function.
	Listing 5-16: fscalarp.f: Fortran language simulation example for parallel processvisitcommand function.
	Listing 5-17: fscalarp.f: Fortran language simulation example for parallel broadcast functions.

	3.7 Running an instrumented simulation
	3.8 Connecting to an instrumented simulation from VisIt

	4.0 Writing data access code
	4.1 The VisIt Data Interface
	4.2 How data access functions are called
	4.3 Compiler and platform issues
	4.3.1 Linking your simulation
	4.3.2 The Windows platform

	4.4 Making data access functions available
	Listing 5-18: sim5.c: C-Language example for making a data access function available.
	Listing 5-19: fsim5.f: Fortran language example for making a data access function available.

	4.5 Data access function for metadata
	4.5.1 Returning simulation state metadata
	Listing 5-20: sim6.c: C-Language example for returning simulation state metadata.
	Listing 5-21: fsim6.f: Fortran language example for returning simulation state metadata.

	4.5.2 Returning mesh metadata
	Figure 5-22: Mesh variables in the plot menu
	Listing 5-23: sim7.c: C-Language example for returning mesh metadata.
	Listing 5-24: fsim7.f: Fortran language example for returning mesh metadata.

	4.5.3 Returning scalar variable metadata
	Listing 5-25: sim8.c: C-Language example for returning scalar metadata.
	Listing 5-26: fsim8.f: Fortran language example for returning scalar metadata.

	4.5.4 Returning curve variable metadata
	Listing 5-27: sim9.c: C-Language example for returning curve metadata.
	Listing 5-28: fsim9.f: Fortran language example for returning curve metadata.

	4.5.5 Returning material metadata
	Listing 5-29: sim10.c: C-Language example for returning material metadata.
	Listing 5-30: fsim10.f: Fortran language example for returning material metadata.

	4.5.6 Returning expression metadata
	Listing 5-31: sim11.c: C-Language example for returning material metadata.
	Listing 5-32: fsim11.f: Fortran language example for returning material metadata.

	4.5.7 Returning simulation-defined command metadata
	Figure 5-33: VisIt’s Simulations window with custom simulation commands.
	Listing 5-34: sim12.c: C-Language example for installing a command callback function.
	Listing 5-35: sim12.c: C-Language example for returning simulation commands in the metadata.
	Listing 5-36: fsim12.f: Fortran language implementation of the command callback function.
	Listing 5-37: fsim12.f: Fortran language example for returning simulation commands in metadata..


	4.6 Data access function for meshes
	4.6.1 Adding a mesh data access function
	Listing 5-38: mesh.c: C-Language example for installing a mesh data access function.
	Listing 5-39: fmesh.f: Fortran language example of a mesh data access function.

	4.6.2 Rectilinear meshes
	Listing 5-40: mesh.c: C-Language example for returning a rectilinear mesh.
	Listing 5-41: fmesh.f: Fortran language example for returning a rectilinear mesh.
	Figure 5-42: 2D rectilinear mesh returned by the previous code examples.

	4.6.3 Curvilinear meshes
	Listing 5-43: mesh.c: C-Language example for returning a curvilinear mesh.
	Listing 5-44: fmesh.f: Fortran language example for returning a curvilinear mesh.
	Figure 5-45: 3D curvilinear mesh returned by the previous code examples

	4.6.4 Point meshes
	Listing 5-46: point.c: C-Language example for returning a point mesh.
	Listing 5-47: fpoint.f: Fortran language example for returning a point mesh.
	Figure 5-48: 3D point mesh returned by the previous code examples

	4.6.5 Unstructured meshes
	Figure 5-49: Node ordering for 3D unstructured zone types
	Listing 5-50: unstructured.c: C-Language example for returning an unstructured mesh.
	Listing 5-51: funstructured.f: Fortran language example for returning an unstructured mesh.
	Figure 5-52: 3D unstructured mesh returned by the previous code examples


	4.7 Data access function for scalars
	4.7.1 Adding a scalar data access function
	Listing 5-53: scalar.c: C-Language example for installing a scalar data access function.
	Listing 5-54: fscalar.f: Fortran language example of a scalar data access function.

	4.7.2 Passing a simulation’s data array
	Listing 5-55: scalar.c: C-Language example for returning a scalar variable.
	Listing 5-56: fscalar.f: Fortran language example for returning a scalar variable.
	Figure 5-57: Examples of scalar variables returned by a scalar data access function.


	4.8 Data access function for curves
	4.8.1 Adding a curve data access function
	Listing 5-58: curve.c: C-Language example for installing a curve data access function.
	Listing 5-59: fcurve.f: Fortran language example of a curve data access function.

	4.8.2 Passing curve data to VisIt
	Listing 5-60: curve.c: C-Language example for passing curve data back to VisIt.
	Listing 5-61: fcurve.f: Fortran language example for passing curve data back to VisIt.
	Figure 5-62: Sine curve produced by the curve data access function example programs.


	4.9 Data access function for the domain list
	Listing 5-63: curve.c: C-Language example for returning a domain list.
	Listing 5-64: fcurve.f: Fortran language example for returning a domain list.
	A
	B
	C
	D
	E
	G
	I
	L
	M
	O
	P
	S
	T
	U
	V
	X




