



## **Guglielmo Marconi Orbiter – The First Interplanetary Communications Satellite**

Gary Noreen, Tom Komarek, Roger Diehl, Gene Brower, Phil Varghese, JPL; M. Marcozzi, C. Dionisio, Alenia Spazio



2007

October 10, 2002



2007



- Mars Relay Network
- Relay Users
- Guglielmo Marconi Orbiter (GMO) Mission Design
- End-to-End Information System Design
- Mission Operations

**J. MAR** 



2007



- Relay communications
  - Range<sup>2</sup> reduced by a factor of up to  $6.4 \times 10^{21} (218 \text{ dB})$
  - Gigantic improvement in ability to communicate with in-situ elements
- UHF relay radios added to most Mars science orbiters
  - Now orbiting Mars: NASA Mars Global Surveyor & Mars Odyssey
  - 2003 ESA Mars Express, 2005 NASA Mars Reconnaissance Orbiter, 2007 CNES Premier Orbiter
  - Relay performance limited by primary science mission
    - Low orbit optimized for science, not relay
    - Omnidirectional relay antenna on shared platform
- Guglielmo Marconi Orbiter
  - High orbit optimized for relay service
  - High performance steered relay antennas



G. MAR



## High Relay Orbit Increases Contact Time





High orbit  $\rightarrow$  EDL tracking for wide range of landing sites, long contact times Long contact times  $\rightarrow$  operational flexibility, traverse monitoring

| 18:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22:00 | 2:00 | TIME 6:00 | 10:00 | 14:00  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----------|-------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      | SUN       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | G    | MO ACE    |       |        |
| and the second se |       | G    | MO 4450   |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | F    | PREMIER   |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | ľ    | MRO       |       | ······ |

October 10, 2002

. MAR



- High orbit maximizes area of Mars in view, maximizing possible landing site locations
- GMO orbit node can be selected to facilitate EDL tracking



October 10, 2002

. MA



S 200

G. MAR



High orbit + X-band = huge increase in data return







- 2003 (before GMO)
  - 2 NASA Mars Exploration Rovers
  - British Beagle II
- ▶ 2007
  - European (CNES) NetLanders
  - NASA Mars Scout
- ► 2009
  - NASA Mobile Science Laboratory (MSL)
- ▶ 2011 & Beyond
  - NASA Mars Scout
  - NASA Mars Sample Return



. MA



200



- Launch in 2007
- Type II trajectory to Mars
- Orbit Options
  - Circular sun synchronous
    - -4450 km
    - 1000 km
  - Elliptical
    - <sup>1</sup>/<sub>2</sub> sol Apoapsis at Constant time-of-day Equatorial (ACE)
    - <sup>1</sup>/<sub>4</sub> sol Apoapsis at Constant time-of-day Critically Inclined



October 10, 2002





- Electra relay radio will be carried by all Mars orbiters beginning with NASA Mars Reconnaissance Orbiter in 2005
- Break between 2003 and 2007 landers being used to develop new end-to-end information system with greater commonality
- Objectives
  - Make orbiter & ground system transparent to relay user
  - Share development costs

**J. MAR** 



## Forward Link through GMO JPL Alenia





**Mission Operations** 



