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Recent developments in data mining techniques for anomaly detection make it
possible to use the wealth of available archived spacecraft system data to produce
advanced system health monitoring applications. These “data driven” applications
are capable of characterizing and monitoring interactions between multiple
parameters and can complement existing practice to provide valuable decision
support for mission controllers. Data driven software tools, including Orca and the
Inductive Monitoring System (IMS), have been successfully applied to mission
operations for both the Space Shuttle and the International Space Station. Orca uses
a nearest-neighbor approach to search for unusual data points in multivariate data
sets by calculating the distance of each data point from neighboring points. The IMS
tool uses a data mining technique called clustering to analyze archived spacecraft
data and characterize nominal interactions between selected parameters. This
characterization, or model, is compared with real time or archived system data to
detect off nominal behavior. Augmenting traditional mission control software with
advanced monitoring tools, such as Orca and IMS, can provide controllers with
greater insight into the health and performance of the space systems under their
watch. We will describe how such techniques have been applied to NASA mission
control operations and discuss plans for future mission control system health
monitoring software.

 I. Introduction
RCHIVED spacecraft telemetry data can contain a wealth of information about complex system
behavior. Recent developments in data mining techniques for anomaly detection make it possible to

examine this archived data and extract embedded information to produce advanced system health
monitoring applications. Such applications can aid mission controllers and engineering analysts in their
task of ensuring that spacecraft systems under their watch are operating properly. In contrast to common
individual parameter monitoring schemes, these “data driven” applications are capable of characterizing
and monitoring interactions between multiple spacecraft parameters and can provide additional insight and
valuable decision support for controllers and engineers.

Several data driven software tools, including Orca and the Inductive Monitoring System (IMS), have
been successfully applied to mission operations for both the Space Shuttle and the International Space
Station. Orca1 is a data mining tool that searches for unusual data points, or outliers, in multivariate data
sets by calculating the distance of each data point from neighboring points. The presence of outliers in
spacecraft system data is of interest to mission controllers because they may indicate malfunctioning
system components. The IMS tool2 uses a data mining technique called clustering to analyze archived
spacecraft data and characterize nominal interactions between selected parameters. This characterization, or
model, of normal operation is stored in a knowledge base that can be used for real time system monitoring
or analysis of archived events. Spacecraft data is compared with the nominal model built by IMS to
produce a measure of how well that data matches normal behavior captured in the training data that was
used to build the IMS knowledge base. Significant deviations from the nominal system model can alert the
controller to a system malfunction or precursor to a significant failure.
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 II. Data Mining for Mission Control
NASA maintains years of archived Space Shuttle and International Space Station telemetry data in the

Operational Data Reduction Complex (ODRC) at the Johnson Space Center (JSC). Methods from the field
of data mining are useful for analyzing the type of data found in the ODRC and extracting information
about typical telemetry parameter behavior and how those parameters relate to one another. In particular,
recent developments in data driven anomaly detection techniques can process the data to find unusual
events, or outliers, in data for a given spacecraft subsystem. These anomaly detection techniques can also
automatically analyze archived nominal system data to characterize normal system performance.
Comparing incoming real-time data to that nominal model can let the user know if the current system
behavior differs from previous system performance.

A. Distance-Based Anomaly Detection
One powerful feature of many data driven anomaly detection techniques is the ability to analyze

multiple parameters simultaneously. This feature allows them to discover and model interactions between
related parameters that might be difficult to notice when monitoring the parameters individually. A basic
data structure used for distance-based analysis is a vector of parameter values (Fig. 1). Vectors containing
N values can be treated as points in an N-dimensional vector space. An appropriate distance metric can be
used to calculate the distance between points. The familiar Euclidean distance metric has proven effective
in several applications, though other metrics may also be useful.

For system health monitoring applications, vector parameters are typically instantiated with concurrent
sensor values collected from a time slice of the data stream. Additional computed (derived) or historic
parameter values can be included in the vector as well. For instance, increased system insight can often be
obtained by incorporating values in the vector such as the rate of change of a pressure value or the
difference between two related temperature sensors. Flight controllers and engineers familiar with the
monitored system can often suggest useful telemetry and derived parameters to use in the health monitoring
vectors.

An archive data set typically covers a number of dissimilar ranges for the vector parameters. For
example, in a given data set a pressure parameter may range from 0 to 8000 kPa, while a temperature
parameter may only cover 10 to 50 degrees. This would imply that a temperature change of one degree is
probably more significant than a one kPa pressure change, since the temperature change covers a larger
portion of the expected parameter range than the pressure change. Thus, data normalization within the
vector is required to avoid disproportionately weighting parameters with differing ranges when calculating
distances between vectors. One useful normalization technique represents values as a percentage of the
expected parameter range, so each vector parameter value will fall somewhere between zero and one
hundred. With this normalization scheme, a 1 degree change in our example temperature data would
translate to a normalized value change of 2.5%, while a 1 kPa pressure change would translate to a
normalized value of 0.0125%, reflecting the greater significance of the temperature change. Another useful
method is a Z-score normalization using the mean and standard deviation calculated for each parameter
from the archived data set. Z-score normalized vector values are calculated by subtracting the parameter
mean from the current value then dividing the difference by the standard deviation.

In some cases, it may be advantageous to increase or decrease the significance (weight) given to certain
vector parameters. For instance, if maintaining a specific operating pressure is critical to a system, the
weight of that pressure value could be increased so a small change in the pressure would manifest as a
larger change in the associated vector parameter, increasing monitoring sensitivity to variations in that
parameter. Conversely, if the monitored system is not particularly sensitive to a certain parameter, such as
ambient temperature, the weight of that vector value could be decreased to reduce the chance of
unnecessary alarms when that parameter value changes by an insignificant amount.
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Each monitored system will present unique characteristics. Normalization and parameter weighting
schemes can be adapted to suit the situation. Often the most effective way to determine which scheme is
most appropriate for monitoring a given system is to analyze familiar, well understood data and try
candidate normalization and weighting values until the analysis results are acceptable. If the familiar test
data is representative of typical system behavior, the normalization and weighting selected by this
technique will usually produce reasonable results when analyzing unfamiliar data.

B. Orca Distance-Based Outlier Detection
Orca is a data mining tool that analyzes multivariate data sets.1 It uses a nearest neighbor approach for

outlier detection. For each point in the data set, Orca locates the other points in the data set that are closest
to that point, called the point’s nearest neighbors. Distance between points is measured with the Euclidean
distance measure for continuous parameters and the Hamming distance for discrete parameters. The
program outputs a score for each point representing the average distance to the nearest k neighbors in the
data set. The value of k is specified by the user. Points that have a larger average distance to their nearest
neighbors than most other points in the data set are considered outliers. Orca is able to find outliers within a
single data set, or compare one data set with another to determine which points in the first data set are
unusual in comparison to the second set.

One approach to using Orca with spacecraft telemetry is to form data vectors, as described previously,
using sensor values from a given spacecraft subsystem and search for outliers among those vectors. For
instance, vectors could be formed from temperature, pressure, and fuel flow rates in a rocket engine. An
Orca analysis of this data set can locate data from time periods during the engine firing that display unusual
characteristics compared with the rest of the data. Unusual data points may be symptoms of engine
malfunctions, such as a faulty pressure regulator or an incorrect fuel-oxidizer mixture ratio.

C. IMS: Inductive Monitoring System
The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to

extract models of normal system operation from archived data.2 Like Orca, IMS works with vectors of data
values. IMS analyzes data collected during periods of normal system operation to build a system model. It
characterizes how the parameters relate to one another during normal operation by finding areas in the
vector space where nominal data tends to fall. These areas are called nominal operating regions and
correspond to clusters of similar points found by the IMS clustering algorithm. These nominal operating
regions are stored in a knowledge base that IMS uses for real-time telemetry monitoring or archived data
analysis.

During the monitoring operation, IMS reads real-time or archived data values, formats them into the
predefined vector structure, and searches the knowledge base of nominal operating regions to see how well
the new data fits the nominal system characterization. For each input vector, IMS returns the distance that
vector falls from the nearest nominal operating region. Data that matches the normal training data well will
have a deviation distance of zero. If one or more of the data parameters is slightly outside of expected
values, a small non-zero result is returned. As incoming data deviates further from the normal system data,
indicating a possible malfunction, IMS will return a higher deviation value to alert users of the anomaly.
IMS also calculates the contribution of each individual parameter to the overall deviation, which can help
isolate the cause of the anomaly.

 III. Mission Control Applications
The Orca and IMS software tools have both been applied in NASA mission control to support real-time

telemetry monitoring and engineering analysis of mission data. In support of the Johnson Space Center
(JSC) Mission Evaluation Room (MER) engineering analysis activity, the tools were applied to data from
the Space Shuttle Wing Leading Edge Impact Detection System (WLEIDS) to find potential impact
signatures. In the International Space Station (ISS) flight control room they have been used to build real-
time health monitoring applications for the ISS Control Moment Gyroscopes. Applications for real-time
monitoring of ISS thermal control systems are currently under development.

A. Space Shuttle Wing Leading Edge Impact Detection System
The Space Shuttle WLEID system was developed in response to the loss of the Columbia orbiter on the

STS-107 mission. During the launch of STS-107 a piece of foam shed from the Shuttle external fuel  tank



struck the leading edge of the orbiter’s left wing, compromising the thermal protection system. This
damage resulted in the tragic loss of vehicle and crew during reentry due to overheating and failure of the
internal wing structure.3

The WLEIDS consists of 132 single axis accelerometers mounted along the length of the orbiter’s
leading edge wing spars (Fig. 2). During launch, the accelerometers collect data at a rate of 20 kHz and
store that data onboard for subsequent downlink to Mission Control. Within 6 to 8 hours of launch,
summary files containing periodic sub-samples of the data collected by each accelerometer are down linked
to the MER for analysis to find potential impact signatures. This analysis must be completed within 24 to
48 hours of the launch so the results can be used to schedule detailed on-orbit wing leading edge
inspections using cameras mounted on the Shuttle robotic arm.

The WLEIDS analysis is performed by MER
engineers by visually examining three dimensional
graphs of summary data that show accelerometer
location and vibration magnitude along a time axis
(Fig. 3). The analysts search the graphs for localized
peaks among the normal vibration signals caused by
the Shuttle engines and aerodynamic forces, looking
for unusual peaks that may have been caused by an
impact on the wing leading edge. When potential
impact events are identified, a half second of raw
data collected by the affected accelerometer during
that time period is downloaded for more thorough
analysis to determine the likelihood that an impact
occurred.

The Orca and IMS tools have been used to
support the WLEIDS analysis on three Shuttle
launches. The goal was to provide a quick,
automated initial scan of the WLEIDS summary
files to locate unusual points and help focus the
MER analysts’ efforts. For each accelerometer
sensor, vectors were formed from concurrent values
collected from that sensor and seven nearby sensors

Figure 2. Space Shuttle Wing Leading Edge Impact Detection System

Figure 3. Sample WLEIDS Summary
File Graph



that might pick up radiating impact energy (Fig.
4). Prior to the launch, IMS was used to analyze
normal data from previous launches to
characterize typical vibration patterns for each
group of accelerometers. Data from the current
launch is compared to this characterization to
identify unusual vibration patterns that might
have been caused by impact events. Orca is used
to search for outliers within the data collected
during the current launch.

To gauge the effectiveness of the data mining tools, we compared Orca and IMS results to visual
WLEIDS summary file analysis performed by MER engineers on the STS-115 launch of Space Shuttle
Atlantis. The analysts classified the events they identified as critical, probable, or questionable based on the
likelihood that the data signature was caused by an impact. Their analysis of the STS-115 launch WLEIDS
summary data produced 6 critical events, 23 probable events, and 2 questionable events. The Orca analysis
placed all critical events in the top 50 outliers. IMS identified 334 interesting events, divided nearly evenly
between the two wings. Those events included all 6 critical events, 18 of 23 probable events, and all of the
questionable events found by the MER analysts. Most of the anomalies identified by Orca and IMS that
were not noted by analysts could be eliminated as normal global vibrations that shook the entire vehicle,
leaving a small subset that included the events of interest. A technique to automatically identify and remove
those global vibration events was later developed. Additionally, during all launches where Orca and IMS
have been used, the tools identified several lower energy vibration signatures that did not stand out in the
visual data inspection. These events were investigated with raw WLEIDS data downloads from the affected
sensors. Fortunately all of the potential impact events identified in the WLEIDS data were shown to be the
result of non-damaging phenomena, such as aerodynamic events, sensor data spikes, or minor impacts, and
all missions concluded with safe and uneventful reentry and landing.

B. ISS Control Moment Gyroscopes
The International Space Station (ISS) Control Moment Gyroscope (CMG) attitude control system

consists of four large gyroscopes, each mounted in a gimbal system that can rotate the CMG about the two
axes perpendicular to the gyroscope spin axis (Fig. 5). The CMGs operate as non-propulsive attitude
control devices that exchange momentum with the ISS through induced gyroscopic torques.

As they have aged, some of the CMGs have
degraded enough to malfunction and require
replacement. A failed CMG1 was replaced with a new
unit in July 2005, and a faulty CMG3 was replaced in
August 2007. Given their history, the ISS Attitude
Determination and Control Officer (ADCO) flight
controllers are interested in detecting early symptoms of
degradation in the CMGs. A deployment of data driven
system health monitoring applications in the ISS flight
control room is assisting with that task.

Working with the ADCO flight controllers, 13 CMG
parameters were selected for real time monitoring. These
parameters include CMG vibration, bearing
temperatures, rotation speed, gimbal rates, electrical
current, and ISS rotation rates, along with derived
parameters for rates of change of temperatures and
electrical current. Archived data collected over a period
of 10 months for CMG1, 2, and 4 was analyzed. Seven
months of data was analyzed for the recently installed CMG3. The data was sampled at a 1 Hz rate and
formed into vectors of 13 values. The vectors were normalized using a variation of the Z-score method
described previously. Each CMG was analyzed individually to capture its unique characteristics.

Because IMS was trained strictly on nominal data, the first operation with the CMG data was removal
of any anomalies from the archived data. This was accomplished by searching for outliers within each data
set using the Orca tool. Data records with significant deviations relative to the remainder of the data for that

Figure 4. WLEIDS Analysis Sensor Selection
on Shuttle Wing Leading Edge Panels

Figure 5. ISS Control Moment Gyroscopes



CMG were removed. These deviations were typically caused by data corruption or minor anomalies in
CMG operation. Once the archived CMG data had gone through this cleaning process, the remaining
nominal data was used by IMS to build a monitoring knowledge base for each CMG.

To test the IMS CMG monitoring on a known anomaly, a similar process was performed using archived
data from 2002 when CMG1 experienced a major failure. CMG1 exhibited increasing vibration levels that
damaged a gyroscope spin bearing, prompting controllers to shut it down for safety. The redundant CMGs
were able to maintain ISS attitude control without any issues. To test IMS effectiveness on this event, an
IMS monitoring knowledge base was constructed from a month of archived nominal data collected prior to
the CMG1 failure. The experiment used the same parameters, normalization, and weighting as the deployed
IMS CMG monitoring systems. The results are shown in Fig. 6, plotting time on the horizontal axis and
IMS results on the vertical axis. Recall that IMS outputs a measure of the distance from expected normal
system behavior. Lower values indicate the system is behaving as expected. Increasing IMS values indicate
the monitored system is deviating from expected behavior, possibly due to a system fault. In this case, IMS
began indicating anomalous behavior more than 14 hours in advance of the eventual CMG1 failure. These
and other similar results showed the value of using data driven anomaly detection methods to provide
system health awareness and decision support for flight controllers.

The IMS monitoring application was integrated with the NASA Mission Control data server software to
access real-time telemetry in the ISS flight control room. Four IMS processes, one per CMG, are run on the
ADCO flight control console to provide continuous monitoring. Once per second, when data is available,
each IMS process will query the appropriate CMG knowledge base and return the amount of overall
deviation, if any, from the nominal training data. It will also return the contribution of each individual
parameter to any deviation to aid in isolating the source of any deviation. These IMS results are published
back to the data stream for access and monitoring by other Mission Control software applications.

C. ISS Early External Thermal Control System
A study similar to the CMG1 analysis was performed using data from the ISS Early External Thermal

Control System (EETCS). The EETCS was used to dissipate heat onboard ISS. Excess thermal energy from
inside the ISS was transferred to liquid ammonia cooling loops in the EETCS. The heated ammonia was
then circulated to radiators and cooled as thermal energy was released into space.

The EETCS included accumulators, which are containers that compensate for the expansion and
contraction of ammonia due to temperature variation and also keep the ammonia in a liquid state via
pressure regulation.4 As documented in a January 2007 ISS anomaly report, the EETCS experienced
conditions that resulted in increasing accumulator quantity sensor values for approximately 9 hours,
followed by a sudden drop in accumulator quantities. The anomaly report states that symptoms of this event
were noticed by mission controllers on the morning of January 9, 2007. After the fact, it was determined
that the root cause was the formation of a bubble of gaseous ammonia within the normally liquid EETCS
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ammonia fluid loop. As the bubble grew, it appeared that accumulator quantities were increasing. The
sudden drop in accumulator quantities occurred when the gaseous ammonia bubble essentially popped and
dissipated back into the liquid ammonia. Although this ammonia bubble incident fell outside of normal
EETCS operating conditions, there was no significant impact to ISS thermal control capabilities.

To see how a data driven monitoring system would react to the ammonia bubble event, archived data
for 23 EETCS parameters was obtained from the time period surrounding the event. These parameters
included EETCS pressures, temperatures, accumulator quantities, and pump speeds. 185 days of data
collected between June and December 2006 were normalized with the Z-score technique and used to build
an IMS monitoring knowledge base. This knowledge base was used to analyze data from January 1 through
January 9, 2007, the day the anomaly was reported. It can be seen in the results graph (Fig. 7) that the IMS
analysis detected the first signs of the anomaly near the end of day 2. As the ammonia bubble grew, the
IMS deviation value steadily increased, until the bubble popped on the afternoon of day 9. (The large IMS
spike on day 6 was caused by commanded temperature set point changes that briefly perturbed the
EETCS.)

 This EETCS study is another demonstration that data driven anomaly detection can be an effective tool
for space operations. In this case, as in the CMG1 example, the data driven monitoring process was able to
detect unusual parameter interactions early in the life of the anomalous event. Such timely information on
unusual system behavior can be a useful decision aid for mission operations personnel as they monitor the
health of their spacecraft systems.

 IV. Summary and Future Work
Through practical application, it has been demonstrated that data driven system health monitoring can

be useful in a space mission operations setting. Many spacecraft have extensive archives of telemetry data
available that can be advantageously exploited by data mining methods. Two data mining tools, Orca and
the Inductive Monitoring System (IMS), have been used to analyze data from the Space Shuttle and
International Space Station to search for anomalous data points that could be indications of a system fault
or damage to the spacecraft. Providing information on possible system anomalies in a timely manner
provides controllers and mission support engineers with helpful information for decision support and
enables more efficient and effective execution of their duties. The examples covered here and other similar
experiments have shown the ability of these data driven anomaly detection techniques to characterize
nominal interactions between multiple system parameters. This ability allows them to detect subtle
anomalous parameter interactions that may not be apparent in more traditional single parameter data
monitoring tools that are frequently used in space operations settings.

The utility and effectiveness of data driven system health monitoring methods have been demonstrated
in three disciplines in NASA mission control, but the applications are not limited to just these examples.
There are many areas with rich archived data repositories where these and similar techniques can be
applied. Mission controllers from several additional ISS disciplines, including power management,
communications, and life support, have expressed interest in developing similar system monitoring
capability. Now that the software has been integrated with Mission Control data systems, expansion of the

Figure 7. IMS monitoring results for EETCS ammonia bubble event



capability is primarily a matter of identifying relevant parameters to monitor and performing the archived
data analysis. Following the successful demonstration of data driven tools, as described here, work has
begun to develop real-time monitoring capability for ISS thermal control systems.

Eventually we plan to develop tools that allow mission control personnel to build and maintain their
own data driven monitoring applications. Controllers will be able to specify which parameters to monitor,
what time periods to include in the nominal training data, and any computations that should be performed
on the raw telemetry data. The tool set will retrieve the desired archived training data, remove spurious data
points using outlier detection, and build a new monitoring knowledge base and an appropriate monitoring
application configuration to run on their control console.

A useful enhancement to the current monitoring software would be the ability to automatically detect
operating mode changes in the monitored system and switch to a targeted monitoring knowledge base
developed specifically for that mode. For instance, the ISS is flown in different orientations and
configurations during different mission phases. The behavior of the CMGs can differ in the various
configurations. Rather than building one large knowledge base per CMG that covers all cases, as in the
current deployment, a separate knowledge base could be built from archived data collected during each ISS
configuration, then consulted for real-time monitoring when the ISS is in that configuration. This would
provide more accurate and efficient monitoring capability.

Another application of data driven monitoring to explore is the use of supervised learning methods to
help identify fault signatures. If examples of fault behavior are available in the archived data, supervised
learning algorithms, such as decision tree or support vector machine based techniques, may be able to
analyze the data and distinguish between different types of fault behavior and normal operation. If the
monitored system exhibits unusual behavior, fault characterizations from the supervised learning algorithm
could help controllers identify the cause of the anomaly. These techniques could allow automated fault
identification in cases that are too complex to be encoded using simpler schemes.
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