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MotivationMotivationMotivation
• Silicon carbide is a new material with 

potential for making large lightweight 
mirrors and systems quickly and cost-
effectively

• Is this material ready for insertion into 
future systems, especially in space 
systems?

• How do we characterize and develop this 
material for future needs?



Iwona.A.Palusinski@aero.org

3

OutlineOutlineOutline

• Space application requirements
• Existing material overview
• Why SiC?
• SiC descriptions
• Evolution of SiC from substrate to 

system material 
• Future work
• Recommendations
• Summary
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Space Application Needs 
and Goals

Space Application Needs Space Application Needs 
and Goalsand Goals

• Build large aperture mirrors
– Apertures >3 m in diameter are of interest
– Low areal density, currently ≈ 15kg/m2, goal 1 – 5 kg/m2

• Choose materials that maintain optical performance 
from launch through on-orbit operations 
– Radiation environment

• Maintain optical performance even with radiation exposure: 
AO, UV, electrons, micro debris etc

• Develop model to predict behavior 
– Material and structural stability

• Maintain optical performance during launch and temperature 
variations on orbit

• Reduce risk by using material with extensive space 
heritage
– Rely on engineering experience
– Design systems using established design trades

• Reduce cost of developing new space materials
– Develop cost-effective substrate production, optical 

finishing, and coatings
– Perform space environment testing
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• Glass
– Fused silica
– ULE 
– Zerodur

• Metals
– Beryllium

• Alternatives
– Composites
– SiC

Low CTE Mirror MaterialsLow CTE Mirror MaterialsLow CTE Mirror Materials

Source: Stephen Jacobs, SPIE Vol 1335• Operating parameters dictate material selection 
–Room temperature, Zerodur and ULE good choices
–Cryogenic temperatures, less than 123K, fused silica may be better choice
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Glass Glass vs vs Be Be vs vs SiCSiC
• Glass

– Extensive space heritage
– Easily figured and polished
– Long lead times for large-diameter 

applications
• Be

– Space heritage, used for structures 
and mirrors

– Established material, proven long-
term stability

– Uncertain supply and challenges of 
toxicity

• SiC
– High thermal conductivity, low 

thermal expansion, high specific 
stiffness, can be lightweighted

– Multiple suppliers, inexpensive 
substrates

– Good potential for space 
applications

– Limited space heritage and difficult 
to polish to an optical surface

Source: Trex Enterprises

• All materials are susceptible to radiation   
effects to varying extents

– Materials have a change in density
– Compaction or expansion can occur

– Changes can affect radius of curvature
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• Using a single property to choose a material must be 
avoided, must examine all parameters and application

• Evaluate replacement of existing materials with SiC on 
case-by-case basis
– May not be possible to replace only one component of a 

system with SiC
– Decision may require reengineering of entire system
– Introduction of SiC may be more successful in new projects 

and technology developments
• Resistance may exist when replacement of well-known 

components with higher risk materials is suggested
– Reengineering and unknown performance

Choosing SiC:
Systems engineering approach

Choosing SiC:Choosing SiC:
Systems engineering approachSystems engineering approach
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• Complete SiC system is passively athermal instrument
– Challenges in mounting and assembly of system

• Inserts, bonding, SiC screws
• Somewhat different requirements for mirror vs structures

– Solution is application driven
• Structures

– High fracture toughness 
– Specific stiffness may not need to be as high

• Require more weight (Fiber reinforced)
– Uniformity not as critical, if high fracture toughness is key

• Mirrors
– High specific stiffness, enables lightweighting
– Polishable, create optical surface
– High uniformity, maintain optical performance

SiC Mirrors vs. StructuresSiC Mirrors vs. StructuresSiC Mirrors vs. Structures

Mirrors and structures may require two 
different forms of SiC
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SiC Production Methods SiC Production Methods SiC Production Methods 
• Chemical Vapor Deposition (CVD): fully dense single-phase 

SiC, zero porosity
• Sintering: trace amounts of a second phase from sintering, 

porosity 2 – 5% 
• Reaction bonding: two-phase mixture of SiC and silicon metal 

(6 to 40%), porosity 0 – 15% 
• Graphite or carbon conversion: single-phase (monolithic) 

structure with porosity up to 20%; if carbon fibers, 
unconverted Gr or C, or Si present, at least two-phase material

• Hot Isostatic Pressing (HIP): fully dense SiC with minor 
amounts of a second phase from additive used as a hot 
pressing aid, porosity <1%

• Foam: fully distributed load paths under mirror surface, easier 
metrology mount, higher stiffness and first mode frequency, 
porosity 85 – 95%
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Porosity and Contamination Porosity and Contamination Porosity and Contamination 
• Open Pores

– Increased probability of contamination during fabrication 
– Migration and deposition of outgassed contaminants in vacuum

• Onto optical surface(s) during coating process
• Onto critical telescope components (e.g. focal plane arrays) on orbit

• Closed pores
– Trapped gasses

• Surface deformation  due to pressure difference between fabrication 
and vacuum/on-orbit environments
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SiC Phase Descriptions and 
Optical Challenges

SiC Phase Descriptions and SiC Phase Descriptions and 
Optical ChallengesOptical Challenges

• SiC can come in different phases
– Single phase: pure SiC
– Two-phase: SiC plus Si
– Three phase: carbon fibers, SiC, Si example: CeSiC 

• SiC with different phases make optical finishing a 
challenge
– Single phase is a hard surface, difficult to polish
– Two phase is more difficult to polish as SiC and Si polish at 

different rates requiring CVD coating for optic quality 
– Three phase can have fiber print through 
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Processing ChallengesProcessing ChallengesProcessing Challenges
• CVD: time to create monolithic part, limit on size
• Sintering: press-limited size, green body integrity during 

machining, controlled shrinkage during sintering, brazing 
required for large diameter parts

• Reaction bonding: polishing, mold quality
• HIP: expensive, limit on shapes
• Graphite or Carbon conversion: complete conversion, 

green body integrity during machining, multiple phases
• Foam: polishing optical surfaces, scaling to large 

diameters
Different methods produce slightly differing SiC 
properties, which can vary up to 20% in value
Greatest difference among manufacturing methods is 
costs and processes to make an optical part
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US SiC ManufacturersUS SiC ManufacturersUS SiC Manufacturers

Source: CoorsTek Source: M Cubed
Source: POCO 

Source: Schafer

Source: SSG

Source: Trex Source: Xinetics

Photos reprinted with 
permission of sources
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Evolution of SiC from 
Substrate to System Material

Evolution of SiC from Evolution of SiC from 
Substrate to System MaterialSubstrate to System Material

• Collaborate with multiple agencies to qualify materials
– NASA, AFRL, MDA
– Share resources, develop multi-application requirements

• Verify consistency of SiC production
• Space qualify SiC not only as substrate material but as a 

system material
– Develop mirror substrate and structural samples

• Test variety of SiC such as reaction bonded, sintered, foams, 
and three phase materials

• Investigate both coated and uncoated SiC substrates
– Perform radiation, thermal, and vacuum testing

• Downselect to optimal forms of SiC via testing
• Develop polishing and coating technology

– Techniques will be SiC-type dependent 
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SiC Material Qualification Flow SiC Material Qualification Flow 
DiagramDiagram

SiC Material

Database and Models

RadiationMechanical and Thermal Properties

System Requirements

Independent
Testing

Vacuum and Thermal

Downselect*

Proven SiC Material
* Most probable downselect
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SiC Evolution Flow DiagramSiC Evolution Flow Diagram
Proven SiC Material

SiC Substrate SiC Structure

Components Space Testing

Polishing

Coating

Optical Testing Mechanical Testing

Mounting

Components Space Testing

System Space Testing
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On-orbit Requirements

StructuresDownselect*

Downselect*

* Most probable downselect
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• Characterize SiC as a substrate and structural 
material
– Perform material and optical testing

• 2-stage test matrix
– Screening – most critical properties: CTE, stiffness
– Characterization – full materials testing

• Reduce cost of materials development
– Identify manufacturers with greatest potential early
– Invest consolidated funds into companies that meet 

space environment requirements
• Pursue SiC system development 

• Perform space environment testing
– Earth simulation of atomic oxygen, radiation effects
– On-orbit testing, combined effects

• Develop and validate models of radiation effects on 
SiC
– Compare on-ground orbit simulation with on-orbit 

exposure

Testing and Future WorkTesting and Future WorkTesting and Future Work

Drawing courtesy of AFRL/ML

Photo courtesy of NASA/MSFC
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• Continue funding development of various forms of SiC
• Encourage collaboration with various government agencies 

and non-profit organizations for independent evaluation of 
SiC

• Develop groundwork for development of established 
polishing and coating techniques, will vary with SiC type

• Characterize various forms of SiC from material, optical, and 
structural perspective

• Fund demonstration program that uses a SiC system
– Validate material, optical, and structural characteristics of SiC
– Produce multiples of a system to validate production processes
– Increase diameters to meter class or greater

RecommendationsRecommendationsRecommendations
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SummarySummarySummary
• SiC has attractive qualities for space applications
• Several US SiC manufacturers producing various 

forms of SiC
• US programs are interested in pursuing SiC as an 

alternate material
• SiC must evolve from substrate material to systems 

engineering material for full implementation
• Develop radiation effects modeling

– Required to predict behavior of future systems


