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A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is developed. A wide
range of modes in inhomogeneous plasmas, such as the internal kink modes, the toroidal Alfve
eigenmodeTAE) modes, and the drift modes, can be recovered from this system. The inclusion of
most of the interesting physical factors into a single framework enables one to look at many familiar
modes simultaneously, and thus to study the modifications of and the interactions between them in
a systematic way. Especially, it is possible to investigate self-consistently the kinetic
magnetohydrodynamid®HD) phenomena entirely from the kinetic side. Phase space Lagrangian
Lie perturbation methods and a newly developed computer algebra package for vector analysis in
general coordinate system are utilized in the analytical derivation. In tokamak geometries, a
two-dimensional finite element code has been developed and tested. In this paper, the basic
theoretical formalism and some of the preliminary results are presentedl998 American
Institute of Physicg.S1070-664X98)04304-3

I. INTRODUCTION regime from the kinetic side. An example of this approach is
the kinetic-MHD ballooning mode theofyUsing this for-

The motivation O,f this research project ',S twofold: to malism, we are able to recover those familiar MHD results
develop an alternative, more comprehensive, and self

. L entirely from the kinetic point of view, and more importantly
consistent approach for kmetlc—MHQ thgory, anq 0 adeto obtain kinetic modifications. Compared with previous hy-
electromagnetic effects to a global kinetic analysis of low

brid kinetic-MHD theory, the approach from the kinetic side

frequency microinstabilities, with the goal of achieving is more rigorous, self-consistent, and comprehensive. On the

better under;tandmg of anpmalous transport in toroidal 9 ther hand, the drift type microinstabilities and the associ-
ometry. Basically, the previous focus has been on the elec-

trostatic drift type instabilities and on pure fluid type MHD ated transport can be also investigated systematically in this

modes. However, in order to realistically assess the stabilit eoretical framework. Not only d'o we recover the existing
oroperties in high temperaturhigh betd plasmas, it be- .es.ul'gs, such as the electrostatic limtthe long wavelength
comes necessary to systematically analyze kinetic MHOIML" and the ballooning limit, but also we can explore
modes and electromagnetic drift waves. Developing the relany new problems, for example, the intermediate wave-
quired methods of analysis and the associated codes consf"9th regime and the coupling between drift waves and
tute fundamental problems in the field of plasma stability. 1t5h€ar Alfien Waves. . _
is believed that the interaction between kinetic effects and _Furthermore, in magnetized plasmas there exist a lot of
MHD modes, such as the fishbone modes and the toroidanulti-scale-length modes. Actually the well-known internal
Alfvén eigenmoddTAE) modes, is the key physical reason kink mgde is |nQeed a multl-scalg-length mode. For an un-
for many bewildering phenomena in fusion plasmas. In agStable internal kink mode, there is a boundary layer around
dition, there are possible new applications of kinetic-MHD, the rational surface, inside which the scale length is much
such as collisionless reconnection, which is thought to bé&horter than that outside. FLR effects are important inside
relevant to magnetic storms in the magnetosphere and to tHBe boundary layer, whereas outside the boundary layer it is
sawtooth instability commonly seen in modern tokamaksjust a long wavelength MHD mode. Obviously this structure
For drift type microinstabilities and the associated transporgannot be described by the conventional approaches, neither
theory, the inclusion of electromagnetic effects has long beethe long wavelength ideal MHD nor the short wavelength
recognized as being necessary. For example, the examinatiginetic theory. An arbitrary wavelength kinetic approach will
of electromagnetiey; modes in slab geomethand in toroi-  provide us with a tool for this kind of multi-scale-length
dal geometr§® revealed that increasing plasma beta can prostructure.
vide a stabilizing effect, especially when finite Larmor radius  In this paper, we present our gyrokinetic theory for ar-
(FLR) effects of ions become important. bitrary wavelength electromagnetic modes. First, the linear
These problems can be put into a single theoreticapyro-kinetic Vlasov—Maxwell system valid for arbitrary
framework—the gyrokinetic theory of arbitrary wavelength wavelength is briefly derived using the phase space Lagrang-
electromagnetic modes. On the one hand, including magnetian Lie perturbation methot:*?> The existing gyrokinetic
components in the kinetic analysis and extending it to longsystems are mainly derived for the high modenumtaer,
wavelength modes formally lead us into the kinetic-MHD short wavelengthmodest>~° for which some of the back-

1070-664X/98/5(4)/1035/15/$15.00 1035 © 1998 American Institute of Physics

Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



1036 Phys. Plasmas, Vol. 5, No. 4, April 1998 Qin, Tang, and Rewoldt

ground inhomogeneities are not important and are left outwavelength modes, and all the equilibrium inhomogeneities
However the most crucial physical factors driving the longshould be fully retained. We use thkerepresentation instead
wavelength modes, such as the toroidal Atfve of the p| representation, wherd is the parallel velocity and
eigenmod&?* mode and the internal kink mod&;**are the  pj=U/{). Also, unnormalized real physical units are used.
background inhomogeneities which include the inhomogene- The equilibrium is assumed to be magnetostatic. In the
ities of the magnetic field, temperature, and density. Part oéxtended guiding center coordinate§(J, u, &,w,t), the ex-
the inhomogeneity of the magnetic field enters through théended phase space Lagrangidit{s-2

current distribution. Then a gyrokinetic system for the shear -

Alfvén modes is developed. This system consists of three ve=7ve— Hed7

basic equations: the gyro-kinetic equati@®KE), the gyro-

e mc mc
kinetic quasineutrality condition, and the gyro-kinetic mo- =|=-A+mUb— u—W|-dX+ —udé—wdt
ment equatioGKM) which is derived by combining the ¢ € €
parallel Ampere’s law and the Oth moment of the gyro- —(H-w)dr, (1)

kinetic equation. In this system, all the interesting physical ) . . .
factors are kept. Many classical results obtained before bj¥hereXis the configuration component of the guiding center
different theories can be put into a single framework in thiscoerdinatel is the parallel velocityu is the magnetic mo-
new approach. Therefore, it is also a good framework tdn€nt:¢ is the gyrophase angle, and
study the modifications of and the interactions between these b
classical modes. W=R+5(b-Vxb), R=(Ve)-&. 2

The solution methods for this system are also developed.
Even though this is a fully kinetic approach, the differentialb=B/B. €, ande, are unit vectors in two arbitrarily chosen
equations which need to be solved numerically can be cagterpendicular directions, argl ande, are perpendicular to
rigorously into the configuration dimensions. This is accom-e€ach other. The regular phase space is extended to include
plished by solving the linear GKE using the method of inte-the time coordinate and its conjugate coordinate energy
grating along characteristic lines, and substituting the soluyg is the extended symplectic structutég=H—w is the
tion of the distribution function in terms of perturbed fields extended Hamiltonian, and is the regular Hamiltonian de-
back into the quasineutrality condition and the GKM. A two- fined as
dimensional(2D) numerical code for tokamak geometries 5
has been developed and testéd’he newly developed com- H= mu
puter algebra package for vector analysis in general coordi- 2
nate systems is also utilized in solving the equation sy§?em. The corresponding Poisson bracket is obtained by inverting
In section I, we briefly denvz_a the linear gyrokinetic the symplectic structuréEi- '
Vlasov—Maxwell system for arbitrary wavelength modes. ]

+uB.

The gyrokinetic system for shear Alfughysics is presented e [OF 9G IF 9G cb
in secnop I_II. Then, in section IV we compare our system to {F.G}= m_c(a_g @ - ﬁ (9_5) - eBIT
other existing equations and especially the ideal MHD equa-
tion. Section V is about the analytical and numerical solution 9F 9G B*
methods. Two simple applications, the local dispersion rela- [ VE+W— | X| VC+W—r| |+ —
tions for electrostatic drift waves and the instabilities of the ¢ % mB
internal kink mode in a straight tokamak, are given in section IE\ 9G 9G\ 9F
VI. The last section is the conclusions and some discussion -[(VFJrW—) ——(VG+W—) —}
on our future work. 9§/ oU 9] U
+((9F dG JF aG) 3
IIl. LINEAR GYRO-KINETIC VLASOV—-MAXWELL ow ot dt Jw)’
SYSTEM FOR ARBITRARY WAVELENGTH where
ELECTROMAGNETIC MODES
cm
Different versions of the gyrokinetic system have been  B*=B+ —UVxb, B =b-B*. (4)
derived many times by different methods in different €
representations.™*® Usually, it is derived for short wave- When the perturbed electromagnetic field is introduced,

length modes for which many of the equilibrium inhomoge-the extended phase space Lagrangian is perturbed accord-
neities can be neglected. However the essence of the GKE isgly:

to average out the fast time scale gyromotion. The wave-

length can be left unspecified and all the equilibrium inho- ~ YE= YEo™ VEL, (5)
mogeneities can be kept in. We will briefly derive the linear e

gyrokinetic system for arbitrary wavelength modes using the  yg;1= EAl(TgéX,t) . d(TgéX) —e¢1(TgéX,t)dr,

phase space Lagrangian Lie perturbation method. The deri-

vation here is similar to those of Hahm and Brizard for thewhere T is the guiding center transformation, a'rﬁ@é is
nonlinear GKE*'12 However, here we consider arbitrary its inverse:
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TgéX=X+ pot+prt+ O(GZB), (6) We emphasi'ze that there are three d?fferent coqrdinate
systems appearing in our formalisnmx,g) is the particle
where “physical” coordinate systemZ=(X,U,u,&,w,t) is the
¢ Pmu- (extendedl “guiding center” coordinate system in an equi-
pOEE\ /T i (7) librium magnetic field. When the time-dependent electro-

magnetic field is introduced, we use the “gyrocenter” coor-

length of the equilibrium magnetic field, motion. Among other things, the most well-known difference
between the guiding center motion and the gyrocenter mo-
EB:&_ (8) tion is the polarization drift motion due to the time-
Lg dependent electrical perturbation. We follow Briz&rih us-

ing the terms ‘“gyrocenter” and ‘“guiding center” to
distinguish these two different coordinate systems.
For the transformation

% is the unit vector pointing from the guiding center to the
particle’s physical position,

p—— (% (b~Vb)+2“—zBm nB Z'=(e°2)'~Z+Gi(2), (12)
Qm the leading order transformed extended phase space La-
B U P grangian i§
S e (V-b)+2| b- Vb %) - | L
4Q0°m ¢ Ye1= YE1~l6@weotdS=y g1 —Hedr, (13

wherewgg=d7ygq, Sis the gauge function, angwg, is the

U 1
- mﬂo['(b' Vxb)+ 5 (bxVb=Vbxb)|. (9 interior product between the vector fieBiand the two form

wgo. There are several ways to makeand I-_|Edr gyrophase
independent. We will choosé and S such that there is no
perturbation on the symplectic structure,

In tokamak geometryl.g~R,. The backgroundequi-
librium) FLR is represented by the small parametgrand
ignored in linear gyrokinetic theory. Important FLR effects
come from the perturbed magnetic field whose wavelength A; ~0 (14)
could be much shorter than the scale length of the equilib- 5%
rium structure and could be comparable to the particle gyroThis will transfer the perturbation into the Hamiltonian.
radius. This FLR effect is represented by the paramegter: Since we choose not to change the time variable'=0.

=kp. In gegeral, we keep the FLR effects on the perturbechiher components b are solved for fromyg,=0,
field to O(ep).

To derive the linear GKE, we usually do not need higher " c e * S
orders of the guiding center transformation, because the G :_e DX EA1+VS ok mJFO(eB)’
guiding center transformation is the transformation from the |
particle “physical coordinate” in an equilibrium magnetic B* e
field to the “guiding center coordinate” in the same equilib- GY= . EA1+ VS| +0O(ep),
rium magnetic field. No perturbed field is involved in this mB;
transformation. However, for nonlinear gyrokinetic formal- ele ap, IS
isms, the background and perturbed fields cannot be sepa- GM=—<—A1' 07—0 a—) (15
rated very well; therefore it is necessary to keepghéerm. mcic ¢ ¢
Our current formalism is a linear one. The leading order ele dpo
expression, G§=—m: Aot o +O(ep),

TecX=X+po, (10 35

w_ _ _~

will be sufficient for our purpose. Expandirt@(TgéX), we oot
obtain The transformed Hamiltonian is

AL X+ pot)-| (14T pg)-dx+ Poq+ TP oH
YE1 o\ 0> 0 I M Y- HE1:HE1_Gi a?0+GW

X
—e¢1(X+p0,'[)dT. (ll)
_ e _ _

The essence of the Lie perturbation method is to intro- =ed(X+pg,t)— EAl(X+p0,t)-{X+pO,HEO}
duce a near identity transformation from the equilibrium
guiding center coordinate®=(X,U, u,&,w,t) to the gyro- —{S,Heq}, (16)
center coordinateZ=(X,U,u,&,w,t) when the perturbed -
: : in which
field is present such that the transformed extended phase =
space Lagrangiary can be gyrophase independent. {X+pg,Hego}=v+v43+O(€p). a7
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In the calculation related to the gyrocenter transformation,

we will only keep the lowest order in terms ef, because
the background FLR effects normally are not important.
We choose

He= < edy(X+po,t)—v- §A1<>T+po,t>>, (18)

where() represents the gyrophase averaging operation. This {f Hg} +{Fo,Hg1} =0,

leads to the equation determining the gauge funcBon

S 9S IS
{S,Hgo} = Q(9§+_+ =1{X, HE0}+(9U{U Heol

e
—e¢1(X+po,t) L Ay(X+po,t),

(19
whered, (X+ po,t) andw - A;((X+po,t) are the gyrophase-
dependent parts ofh,(X+ pg,t) and v-A(X+pg,t), re
spectively,

B1(X+ po,t)=by(X+ po,t) — (B1(X+ o, t))

67&“1<>T+po,t>=v-A1(>?+po,t>—<v-A1(>T+po,t>(>2.0)

To the lowest order,

—~—~—

aS e
— =ed1(X+po,t)— = c v A1(X+po.t).

g (21)

Since&zo, the Poisson bracket in the gyrocenter coordinates

Qin, Tang, and Rewoldt

_gFD
& y
By the same way, we can prove thatis gyrophase inde-
pendent to all orders.

The linear GKE in its geometric forn{coordinate-
independent formcan be written as

=0. (27)

(28)
or
_+{f,H0}:_{F0,Hl}, (29)
where
F=Fo+f,
mu?
e
H;= e¢1(x+Po.t)_EU'Al(x+Po,t) :
In the coordinatesX,U, u,&,w,t), the linear GKE is
ot Ub Vi lb VH ot
=i H(Ubtog)- m2 Voo
—Cb VFoXVH b | vE, 2L gy, 70
=—5b- (VFgX )__ Ty 150
(3D

is the same as that in the guiding center coordinates, which is

given by Equation(3).

Another set of gyrocenter coordinateX, £, u, &,w,t) is

Now we are ready to obtain the linear GKE. Unless clar- often usede is the total energy in the unperturbed field, that
ity requires us to use the barred notation, we will drop thelS

bars for the gyrocenter coordinates hereafter. In the gyro-

center coordinates{ U, u,&,w,t), the distribution function
F(X,U,u,&,w,t) satisfies the Vlasov equation:

{F,Hg}= I:+{F H}= —F+X—F+U—+§—g:
(22
We prove that- is gyrophase independent. Let
F=FO+egFV+ EF @+ (23
The leading order is
gF©
e (24
F(© is gyrophase independent. To the next order:
gF @ gF@  gr@  HGF®
S XUt é T =0. (25)

Since all the terms except faF (Y)/9¢ are gyrophase inde-
pendent, gyrophase averaging this equation gives
F O GF@  gFO

g T ox YU 70

(26)

and therefore

mU?
2

In this set of gyrocenter coordinates, the linear GKE is

(9f+ Ub V§
E (Ub+uvg)-

(33

cb dFq
e—BXVFO -VH{+ E(Ub‘FUd)'VHl.

An alternative form of this equation is written in term of the
nonadiabatic part of,

aFO
g=f-H;— (39
de
%9 4 (Ub vo=| L xvE, v 20 ?
+( +vy)-Vg= e VFo e 9t
(35)

The gyrokinetic Maxwell equations are as important as
the GKE itself. The differences between different versions of
the GKE can be usually resolved when the corresponding
gyrokinetic Maxwell equations are taken into account in ap-
propriate coordinate systems.

The Poisson equation is
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lll. ARBITRARY WAVELENGTH ELECTROMAGNETIC
—V2¢(r,t)=4m, ef d® f(r,t,0), (36)  GYRO-KINETIC SYSTEM FOR SHEAR ALFVE N
J PHYSICS

where As discussed before, the most influential factors which

. solely define the characteristics of long wavelength modes
J d3vf(f,t,v)=J’ d°Z[TEVF1(Z,H) 8(TgeX—1). (87  are the background inhomogeneities, including the inhomo-
geneities of equilibrium temperature, density, magnetic field,

Ampere’s law is and current. We need to describe these inhomogeneities
properly in the kinetic context in order to develop a success-
VX(VXA(rt)= 4_772 ef d3vvf(r,t,v), (38) ful kinetic theory for arbitrary wavelength electromagnetic
C ] modes. At first thought, one would suggest a simple solution:

express all the background inhomogeneities by an inhomo-
geneous and anisotropic equilibrium distribution function,

and carry out the rest of the process straightforwardly. But
f dv vf(r,t,v) for more realistic systems, such as a tokamak, this simple
solution will not work out easily. The reason is that when we
put all the physical effects, the background inhomogeneities,
and the kinetic effects into the distribution function, they
entangle together in such a complex way that the problem is
not tractable anymore.

where

- [ @zive T szotaTex-n. @9

In above equations,d®Z is understood to be

* 3 * H
(Bj/m) d°X dU dud¢. Tgy is the pull-back transforma- Another method is necessary. To proceed, let us observe

tion, which transforms the perturbed distributiénin the some basic facts associated with the anisotropic distribution
gyrocenter coordinates into that in the guiding center €O nction:

dinates.Tg¢ is the inverse off g that transforms the par-
ticle physical coordinates {v,t) into the guiding center co- n;(r) mj[vf+(vu—uj)2]
ordinates. We assumi&., Tge, Tay, andTgy are one— i:[2 T_(r)/m_]g/zex - 2T.(r)

one onto(bijective). Generally for a macroscopic quantity Tl ! .
Q(r) in the particle coordinates, we have?!"19

(44)

The equilibrium current produced by the inhomogeneity of
the B field can be separated out from the unperturbed distri-
Q(r):J Q(r,v) fpy(r,v)d% bution function by taking the first moment,

f vF;d®=n;u;, (45)
=f 8(x—1)Q(2)fpn(2)d®z (40)
which suggests singling out the equilibrium current in deriv-
In the guiding center coordinat&@s= (X,U, u,£), ing the GKM equation. Another fact is that the anisotropy of
the equilibrium distribution function turns out to be weak.
Q(f)—f [T _lQ](Z)ch(Z) 5(Tec r)déz. (41) For example, to create the toroidal current for the poloidal
field in a tokamak,

Replacingf g c(2) by its pull-back from the gyrocenter coor- c cB

" _ _ N P
dinate J enu~47TVpr, U~ I ena (46)

Q(r) = J’ [T ‘1Q](Z)[T fGY](Z)zS(TgéX—r)dGZ. (42) For standard tokamak parameters,
uz  ¢c2 1 N3 (108 electrons;

The pull-back transformation from the gyrocenter coor- —5~2— ——~\.~5 . (47)
. - . ; . . v2 v% Bp a2 |107°, ions.
dinates to the guiding center coordinates is easily obtained “th th

from the expression fo& given by Equation(15), This estimate suggests that we can almost assume the unper-

X EF4LF turbed distribution to be isotropic. But we have to assume an

Gy ™ G anisotropic distribution, since the equilibrium inhomogene-
b 9F ities cannot be ignored. The answer to this seeming paradox

=F- ExAl-VFJr —b-Alm is that the bulk of the plasma does not contribute to the

me magnetic field inhomogeneity; the anisotropic part of the

ele é’Po IS oF plasma is the only source for the magnetic field inhomoge-

melcf _g FrE +O(€B) (43 neity although its population is extremely small. Hence we

cannot throw away the anisotropic component for this rea-
whereL gF represents the Lie derivative Bfwith respectto  son. For other effects, like perturbed pressure effects, colli-

the vector fieldG. sion effects, and Landau damping, where the contribution
We will useA and ¢ to notate the perturbed field here- from the isotropic part is nonvanishing, the contribution from
after; the subscript “1” will be dropped. the anisotropic part can be ignored completely. Our method-
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ology here is to separate out the terms related to the anisot-

e
ropy in velocity space during the process of deriving the = Hi1=€Joh(X)— ZJoUA|(X). (52
GKM, after which the unperturbed distribution function will

be assumed to be isotropic. In this equation and other equations appearing later,

Most of the important nonelectrostatic Iong wavelength\]o(vivL /iQ) should be viewed as a symbol for the differ-
eigenmodes in tokamak geometry are shear Alfveaves, gntial operator defined below:

that is, the parallel magnetic perturbation is much smaller
than the perpendicular magnetic perturbation. Kink modes v, V, vai
and TAE modes fall into this category. In a homogeneous JO( 0 ):1+ 20 e (53
medium, the shear Alfiewave is the branch with the dis-

persion relationn?= kﬁvi. It has several characteristics:

To derive the explicit forms of the gyrokinetic Max-
@) Bil (kXByp), vil(kXxBg), By=0, andv,=0; well’s equations, we first look at the pull-back transforma-
(i)  p1=0, p;=0, andV-v,;=0. tion TE,f. The special form of Equatiort21) for shear

, . . Alfvén modes is
For the shear Alfve wave in an inhomogeneous plasma,

these properties are not all true. We will restrict ourselves to e 1
large aspect ratio tokamak geometries. We define the shear () —~ Qo [V¢(X,t)——UVA(X,t) . (59
Alfvén modes in a large aspect ratio tokamak as the modes 9% ¢
with Using Equation(43), we get the pull-back transformation for

A =0. (48)  shear Alfven modes,
This definition is consistent with the normal meaning of the
shear Alfven wave, because from * € oF

’ evF=F+ —cA(X+po.) 77
Bl=VXAZVX(AHbO)ZVAHXbO-FAHV XDy, (49
. el~ 1— JF

we get the estimate +3 ¢(X+p0,t)—EUA”(X+p0,t)}@. (55

B ~b-beA~ﬂ<B ~ﬂ

4~ "o ORI R TP T The perturbed density, perturbed flow, and perturbed current

We also havey - £~0. From can be derived from the general form of Equatid®):

B1=VX(£XBo)=—BoV-&+(Bo- V)~ (& V)By,

nl(r)=f f(Z)a(x—r)d6z+f [8(X+ po—T)
andB,<B,, , it is easy to observe that

) ) i _ _ 6
By~ —Bo(V- &) +iBokj& =iBok, - £ <ik, & By. S(X=n]f(2)d°Z

That iskl~§L<kL§L7k§. e IFo
Other shear Alfva characteristics in a homogeneous +f 5(X+Po—f)[RA(X+PoJ)m

medium generally are not valid in tokamak geometries.

However, the pressure perturbation sometimes can be treated

as a small correction by the virtue of the Ig8vassumption. + €
This is obvious from the motion equation: B

~ 1— Fo)
P(X+po,1) = CUA(X+po.1) n d°Z.

(56)
v 1 1
Po gt = E‘]1XB0+ E‘]OXBl_Vpl’ 50 The physical meaning of this equation is clear. The perturbed
density in particle coordinates consists of three parts, the
perturbed density in gyrocenter coordinates, the guiding cen-
ter residue, and the gyrocenter residue. The guiding center
residue is related to the equilibrium FLR effects and the

Overall, the shear Alfve waves that we will study inthe pressure perturbation, and thus can be ignored. After some
large aspect ratio loy8 tokamaks are those almost incom- |engthy algebra,

pressible eigenmodes with zero perpendicular vector poten-
tial perturbations, small parallel magnetic perturbations, and e n
small pressure perturbations. nl(r,t)zf f(r,U,u,t)d%v+ —Vl—OV(ﬁ(r,t)
. . m QZ
For shear Alfva physics,

1 , € £
~J1XBo~47By—>Vp~V- (£ Vpo)~ = Po-
c r r

A=Apb. (51) 3 evfn

VA p(rb), (57

We need three equations to complete the system. Besides the 4 mo*
GKE, the gyrokinetic Poisson equation and the gyrokinetic

parallel Ampere’s law are used. Carrying out the gyrophasevhere d®v=_2=(B/m)dUdu. For the perturbed parallel
averaging, we obtain flow,
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Jd
n0V|\1(r):f Uf(Z)CS(X_r)dGZ"‘f [6(X+po—T) EJ' fdsv+f vd~Vfd3v+f Ub-Vfd3

6 1 of

—8(X=r)]f(Z2)d°Z+ [ US(X+pg—r) ——f b- uVB——d%v
m U
e IFy e~ cb b d(H,{VFy)
% RA\I(X+p0’t)m+§ d(X+ po,t) :e_B.jVFOXVH1d3v—E.j%d3U
1— dFo b JF

—EUA|(X+pO,t)}W dbz. (58 +EJV<Hla_J)dSU (62

It is obvious that the 4th term on the left hand side and the

Again, the algebra here is straightforward but involved. The2Nd term on the right hand side vanish. Applyibige;, we
final result is have

> eif fd3v+; ef

] at

Hi 0Fo\]|
Ub'Vf bV(Fm”dv
e
noVi(r,t :f Uf(r,U,u,t d3v+f— UA(r+ ch
oVja(.1) (Um0 mc AT po)) = E~jVF0xVH1d3v+Z evy Vidiv=0. (63
] J
dFo enOvt2

iszdeUJr VfA”. (59) Using the quasineutrality condition, Equatid®0), we re-
ou—"m 2mcQ?

place the first term by

X

al e n 3e vt2 n
_Ej: eﬁ(avlﬁvl(ﬁ—i_ Vi )

Therefore, the quasineutrality condition is 4m 02 02
For the second term, we have
Hy oF
2 Y el |UbVi-bV|——||d%
e no 3e Uy no - J’ (m aU)
3 _ _J R R vZ — i
; e ffd v+ mVLQZVLdH- m 0?2 qzVid|=0, o
(60) _ f o= A1)
; e| b-V|Uf———5|d%
. e H, oF\B
and the parallel Ampere’s law is = V- _ 17\ =2
p p ; B VBJ (Uf - aU)mzml,wlu
4 IF B v[12 U+ — (UA)—aF 27 2 BudU
_om o €& 3 “PYB4 fe mc = W gy [T m°
[VXVxA]=— ; eJ Ul f+—5 - (UA) |d% j
1| ¢ e?n, v?
2 2 _nR. - _ 0 t 2
G AT ST go (61) -8 V|B am (VTN g VA ]
C 2mcQ) (64)

We note that only in X,U,u,£) coordinates can we freely
moveU in and out ofV. But we should not move or B in

In the above equations, the spatial variable is the particle,q oty This is important for arbitrary wavelength modes,
coordinater. Howeverr is a dummy variable. What matters ¢, hich the equilibrium inhomogeneities are crucial. It will

is the functional forms. We can replaceby the spatial CO-  |ater pe clear that this accuracy enables us to exactly recover

ordinate of the gyrocenter coordina@sThe Equation$60)  yhe ideal MHD equation from our gyrokinetic system. For
and(61) will be referred to as the gyrokinetic quasineutrality gt wavelength modes, the background variations are nor-
qondmon and the gyrokinetic parallel Ampere’s law, respec—ma”y ignored, and, n,, andb can be brought in and out of
tively. V when necessary.

Instead of using the parallel Ampere’s law directly, we After some calculation. the third term is
usually combine it with the Oth moment equation of the GKE '

to get the gyrokinetic moment equati6@KM) and use this o

as the third equation in our equation system. This equationis ~ —(PXVA)-VZ° — 2, cbxV
often referred as the GKM, in spite of the fact that it is .
distinct from the gyrokinetic equation because Ampere’s lawAs before, no approximations regarding the equilibrium in-
has been utilized to derive it. We use the linear GKE inhomogeneities are made in this calculation.

(X,U,u,&), Equation(31). The Oth moment of it is Finally, the GKM is

2
t

enyv
2B0?2

VV2 .
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d| c? v c By (VXVxA)-B YA XD VjOH
AR AR I = e -
1 c?[ 3v? Y 1 e?ny v?
= — . f 3 —_— | — 4— . — _— 2
; f(evd VOt o vf\(mz)yL FR B; mc 202)
i J
+oxS v(cerbvtz VV24 65)
X * ]
j B2, O *

where thefevy- Vid3 is evaluated in X,U,u,£€) coordi- by a kinetic counterpart such that the crucial kinetic effects
nates. In K,e,u,&) coordinates, it should be replaced by are able to be picked up. Clearly this is the standard hybrid
[(vg-V+uvg VBflge u)d3. However, in alows plasma,  kinetic-MHD treatment.
The advantage of our fully gyrokinetic formalism and
of o . .
f vd'Vf+vd-VB—M>d?’v~f vy Vidv,  (66) the GKM equation is apparent by comparison. First, our self-
de consistent, fully kinetic approach is valid for general inho-
because mogeneous plasmas, and all the important physical factors
are captured. Therefore, it is capable of delineating the fine
structure of these long wavelength modes we are interested
in. As we can see from the left hand side of the GKM, the
kink terms are more detailed than those in References 27 and
21, and also the right hand side, in addition to being self-
consistent, has kinetic terms that are more comprehensive
c than those in References 27, 21, and 28. The kink mode is

A= E(V W) - (68 harder to describe because it appears in the ord€x(ef),

while the TAE comes out in the order &f(e). Most alter-

It is easy to solve foff in (X,e,u,§) coordinates. The native theories, including Strauss’ reduced MEfizonsider
nonadiabatic part of the perturbed distribution fUnCtignS physica| effects On|y to the Ord@(e), and thus are not
solved for in terms ok and ¢ from the gyrokinetic equa- capable of providing information to orded(e?). Specifi-
tion (35 by integrating along the characteristic lines. Thecally, the internal kink modes cannot be easily recovered by

Cm(vﬁ+vf/2)
eB?

We will introduce another field variablgy to replace
A”. l[lH is defined by

Vg~

X B. (67)

formal solution is given as these model&®~3! Our system can recover TAE modes as
t b IFg @ well as kink modes in tokamaks. It is an alternative approach
g=f dt’{ a XVFq-V— “E E) ] (690  for the classical yet still important kink instabilities studied

before by MHD theory. Moreover, with the ability to exam-
In conclusion, our gyrokinetic system for the arbitrary ine the interaction between ideal MHD kink modes and ki-
wavelength shear Alfue modes consists of three equations, netic effects, our system will be a key to investigate system-
the gyrokinetic equation, EquatiofB5), the gyrokinetic atically some bewildering questions in today’s fusion plasma
quasineutrality condition, Equatidie0), and the gyrokinetic  physics. Secondly, the physical features captured in our
moment equation, Equatiqi65s). GKM equation are separated. The background inhomogene-
ities responsible for the TAE modes, the kink instabilities,
and other ideal MHD modes is completely isolated in the left
IV. COMPARISON AND RECOVERY hand side; meanwhile the equilibrium pressure effects, the

The importance of the kinetic-MHD effect was realized L'andau damping effects, and the FLR effects appear on the

long before it was observed in tokamak experim@hiRe- right hand side of the equation. It is possible to look at each

cent study of kinetic-MHD is focused on those kinetic-MHD one of them lnd|V|duaIIy. _Fmally, our formalism is an arbi-

) trary wavelength description. It is able to recover the results
phenomena related to modern tokamak experiments such S hort wavelenath modes. We will use this as a bench-
the fishbone mode and the sawtooth mode. Two simplified 9 '

versions of our GKM have been derived before to study kl_mark, V\.'h"e concentratmg on the Iong w a\_/elength electro
; . . . magnetic modes and their kinetic modifications.
netically TAE related problems. The first one is the equation .
Now, we show that our GKM can recover the ideal

derived by Rosenbluth and Rutherfdrdthis equation was : o

used by Fu and Van Dathas the starting equation for their MHD equations. Fron¥V-j;=0, we get
kinetic Alfvén modes. Though some inhomogeneities were i )

kept, many of the important inhomogeneities in toroidal ge- (BO~V)11' Bo Ly BoX(j1XBo) _
ometry were left out. Being aware of this problem, Berk B3 B2

et al. derived a new equation for the same purpose from fluid

theory?® then they replaced the pressure perturbation ternThe linearized motion equation is

0. (70)
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2
vy VB 5

dv 1. 1 mc
poﬁ:EJ]_XBo"_ EjoxBl_vpl, (71) 2 ef vd‘VdeUZE f_bx
7 7 B
-Vid3

from which we obtain

=§ bxVB-V >, J f ud3v +bxb- Vb
j
Bo _dv Bo_ . Bo Bo_ .
CpOB_S X B_g X(JOXB1)+CB_§ xvpl:B_g X(j1XBy). -V}j: f fmU?d3v
(72)
VB Vxb
""C( bx—2+ T) Vpl
Also, we have the ideal Ohm’s Law, B
B
=cVp;- Vx—. (76)
BoXv=CE;. (73 B
V. SOLUTION METHODS IN TOKAMAK GEOMETRY
We combine Equation&70), (72), and(73) to get i ) ) ) )
In this section, we discuss briefly the solution methods
for our equation system. More details will be presented in
_ ) _ _ future publications.
B .V)Jl'BO_}_V. mﬂ_El_V_ Jo(Bo-B1) —B1(Bo-jo) One of the difficulties in solving the basics equations
0 B% Bg ot BS (35), (60), and(61) is that it is an integral-differential equa-
tion system in a six-dimensionéD) space—3D configura-
tion space and 3D velocity space. Though these equations
can be studied directly by particle simulation, the linear
Bo eigenmode problem can be rigorously projected onto the 3D
+cV p1~Vx?=o- (74) configuration space by solving the linear GKE for the per-
0 turbed distribution function in terms of field variables, and
substituting the solution back into the the quasineutrality
, L condition and the GKM. When combined with boundary
For shear Alfve modes, this is conditions, an eigenvalue problem is formed.
This method has been successfully applied to the kinetic
theory of both short wavelength electromagnetic modes and
j1-Bg . c%po jo-Bo long wavelength electrostatic modes. In the latter case, of
(Bo-V) 52 +iwV- ?VL ¢+(31-V)F+CVD1 course, the quasineutrality condition itself will complete the
0 0 0 system; the GKM is not used.
When applying the equation system to the geometries of
large aspect ratio tokamaks, we encounter another difficulty.
B, As one can imagine, the left hand side of the GKM equation
Vx—=0, (79  as a scalar function af and ¢ is extremely complicated in
Bo tokamak geometries. To study the TAE modes kinetically,

we have to evaluate this equation to or@¥fe). For internal

kink modes, it has to be calculated to ord@(e?). Even
where By =V X(Ajby)=By, =VA xby, j;=(c/4m)VXB;. assuming circular concentric magnetic surfaces, the total
This equation is the ideal MHD eigenequation for shear Al-number of terms involved in the calculation to ord@¢e?)
fvén modes in terms of perturbed electromagnetic fields. lis about 1,500, which is obviously problematic if calculating
can be recovered from our GKM when the FLR effect isby hand.
neglected and the first term on the left hand side of the GKM  We have developed a computer algebra package for vec-
is replaced by its ideal MHD counterparcVp,; tor analysis in general coordinate systems, called G&An-
~V><(BO/B§). The kinetic generalization of ideal MHD is eral Vector Analysis in the context of symbolic computa-
represented by the left hand side of the GKM, i.e., the kinetition systemMathematic&>?> GVA can perform symbolic
cally generalized pressure perturbation term and the FLRector calculation in any mathematically well-defined coor-
terms. Therefore it is reasonable to expect our kinetic apdinate system. Asymptotic analysis capability is built into
proach to recover all the important MHD results. Indeed, inthis package, and any analytical result can be expanded as an
the simplest limit, we hav8 asymptotic series. With the help of the GVA, we are able to
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FIG. 1. Circular concentric tokamak coordinate system.

work out the required vector calculation to any ordereof

quickly with 100% accuracy after specifying an equilibrium

magnetic field and a coordinate system.

Qin, Tang, and Rewoldt

i.e., S=S°+ S\ Inside every term, there are terms related to
¥ representing by subscripty” and terms related top
representing the subscripig.” For example,$°=S;,+ S, .

The expressions for these operators are listed below in the
Appendix.

The equation for straight tokamak geometry is a special
case and can be recovered when the toroidal coupling terms
are set to zero. In this case, poloidal harmonics are decou-
pled. For each one of them, we have

J c2V 1V c By (VXVXA)-B
Alar 2 T T
(v xA), v ¢ [0, S (83
t B iwdm|RZ RY)

The equation system in tokamak geometries is generally
a coupled system. There are an infinite number of ordinary

The simplest toroidal model equilibrium assumes circu-gitferential equations coupled together. However, consider-
lar, concentric flux surfaces, and uses the coordinatefg the fact that the inverse aspect ratio is a small parameter,

(r,6,¢) shown in Figure 1.
The magnetic field is given by

BO/ r

5= ho) % qoRr) (7
where
h(0)=1+ecos), €= L (78)
Ro
Assuming the general 2D expansith,
(lﬁ“v(ﬁ):% (lpHm(r),¢m(r))ein{—im6‘—iwt' (79)

let us work out the left hand side of the GKM equation in

this coordinate system to the order®fe)?2. There are more
than 100 terms,

g | c? 1 v i (VXVxA)-B
StlanrY V_f\ 19 E( : )T
iof
+(VXA), - V—
2
= ¢ eingfimﬁfiwt % %4—% (80)
w4 ‘5 R RS RY/
O;=D,e'’+U,e ", (81
O4:D262i0+U2672i0+S, (82)

we can utilize some perturbation techniques to simplify the
system. The important observation is that the coupling be-
tween different harmonics is proportional épas is apparent
from Equation(80). The orderO(e®) term is O,, which is
decoupled. The orde®(e!) term isO5 which couples to the
harmonics higher by one and lower by one. In the order
O(€?) term, O,4, we find terms coupled to the harmonics
higher by two and lower by two. In other words, the cou-
pling, like e itself, is a weak effect. The strongest coupling of
a harmonic to other harmonics is in ord2¢e?), and only to

its nearest neighbors. The longer the interval between two
harmonics, the higher order is the coupling between them.

The method of asymptotic decoupling, that we propose,
is based upon this fact. To ord€x(e°), all harmonics are
decoupled. Therefore we can pick an eigenmodeefe0,
for example (,n)=(1,1), and ask what the perturbation on
this mode is when the small parameteis introduced. It is
easy to see that to ord@x( e'), two new harmonics appear—
the m—1 andm+21 harmonics. There are only three har-
monics in the system now. We can solve for the-1 and
m+ 1 harmonics and the perturbation on the eigenfrequency
and them harmonic. We can go on to the next ordéxe?),
to solve for them—2 andm+2 harmonics and the second
order perturbations on other quantities. This process can be
carried out to any order.

One thing we need to realize about this asymptotic de-
coupling method is that the number of differential equations
involved varies as the perturbation process is carrying out.
The higher the order, the more the equations. To order

whereO,, O, O,4, etc., are differential operators acting upon O(€"), there are 2—1 equations in the system, but only 2

every pair ofyym(r) andgp(r). O,, O3, andOy areO(€Y),

0O(€h), andO(€?), respectively. Theé; term can be sepa-

new variables are introduced by each increase of one order.
For those modes whose leading order contains many de-

rated intoD; which couples downward by one poloidal har- coupled harmonics, the asymptotic method will become in-
monic, andU, which couples upward by one poloidal har- tractable. A numerical solution is needed. Also, for kinetic

monic; theO, term can be separated inf, which couples
downward by two poloidal harmonicd), which couples
upward by two poloidal harmonics, ar@lwhich is the self-

effects like trapped patrticle effects, a numerical code includ-
ing all the interesting physics are indispensable.
Our gyrokinetic system can be converted into a system

coupling term S can be divided further into the self-coupling of coupled ordinary differential equations of the following

term from a straight tokama®® and that from toroidicitys!,

form:
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=0, (84) In this section we give two simple applications of our

gyrokinetic formalism for arbitrary wavelength electromag-

netic modes. As the first application, we derive the local
whereA,,, Bpm, andC,, are 2<2 block matrices whose dispersion relation of electrostatic drift waves in slab geom-
two rows correspond to the quasineutrality condition and theetry. Then we recover the classical ideal MHD result of the
gyrokinetic moment equation, respectively, with each blockinternal kink mode in a straight tokamak. More interesting
spanning the poloidal harmonics. Heredenotes the radial applications such as global drift modes, internal kink modes
derivative. Note thaf,,,, By, andC,, are functions of  in toroidal geometry, and TAE modes will be covered in
as well asw. future publications.

After truncation to some proper number of poloidal har-  For the local dispersion relation of electrostatic drift
monics, this eigenvalue problem is solved numerically usingvaves in slab geometry, we employ the electrostatic limit of
a finite element method in the radial direction. The actualEquation(33),
code will appear as a version of the two-dimensional kinetic

;In
Apm

&) ) & VI. TWO SIMPLE APPLICATIONS
lp‘/l/m pm

+B ,
"™ i Pm

x .
code (KIN-2D) developed over the past 20 years by Tang, —+Ub.V)fj_ MVFoj—equb-bUﬂ: , (85
Rewoldt, Marchand, and Artun at the Princeton Plasma B de
Physics Laborator§./343° whose solution is given by

Teej &
|e|¢ wyeell— 3/27]j)—w+kHU 1+m)+w*eﬂj_r—j+l

fj:FOj Te |_ w—kHU ’

(86)

where o, ;= (k, T/mQ);dn;o/dx is the diamagnetic drift center residue which is due to the polarization drift in the
frequency, andp;=d In T;/d In nj,. This solution is substi- perturbed time-dependent electrical field. Without the kinetic

tuted in the quasineutrality condition, correction on the right hand side, it is the well-known fluid
result. We emphasize that the appearance of the ion gyro-
> € f f;(X,U,u,t)2rBdudU+ —‘Vli’vl(ﬁ =0, center residue in the quasmeqtrahty condition guarantees us
] m; le a complete recovery of the fluid result.
(87) The second application here is the classical internal kink

mode in a straight tokamak. The familiar ideal MHD result

to derive the dispersion relation. Normallly;; can be as- o _
P ¥oi rf]rom the energy principle can be summarized as follows:

sumed to be Maxwellian in the gyrocenter coordinates. The
the density response in the gyrocenter coordinates can be m?#1 all modes are stable ©(€°),

expressed in the following familiar form: q(r=0)>1/n stable toO(°
f(X U pt)2mdpud U | |¢no_ T Z(§ m=1 q(r=0)<1/n neutral toO(€%),
] T o Tilel  kp 2
e j [Vt unstable tdD(€°).
Te In the straight tokamak approximation, all poloidal har-
X - Dt o=——07 g
Oxel1=1/27)) wTj|e|} monics are decoupled. Our GKM gives
i eié 0O, S A4riw
——[1+§Z(§)]], (88) —t+—=+— ef vy Vid3v=0. 90
Kjvy RZ R} c2 2 d (90)

whereé= w/kjv; . Itis sufficient to only keep the gyrocenter Becausef vy Vfd% is the smallest order term appearing in

; ; 2 2

residue of ions, becaud@.me>07m;. As usual, electrons he equation, we can use the lowest order solutioh loére.
are assumed to be hot, thatfis<1, and ions to be cold, that Thq |owest order solution fof from the GKE is

is §&>1. We also assume thai=T;. Working out the al-

gebra straightforwardly, we obtain the dispersion relation, € w—w, kU dFq
f==—"F"7Fol ¢———¢y| +——H;. (93)
2 Tow kHU w de
P i
® * 2\ w 1) Substituting this solution into the quasineutrality condition,
. ignoring all the FLR effects, and making use of the usual
_ l\/;[ (1= nJ2)— 0] 89) cold-ion and hot-electron expansions, we easily get the ex-
ke Dxe e @l pected relationship betweef) and ¢,
wherebg=Tk?/(mQ?). by comes directly from the gyro- = . (92)
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FIG. 2. The gyrokinetic result fobW for a straight tokamak.

This is consistent with ideal MHD in which

E= % v XB. (93)
It is obvious that
EH=—VH¢—}a—A”:—VM—l/fH):O- (94)
c ot

Therefores¢= ¢ in the ideal MHD limit.

When the solution fof and the relationship betweeh
and ¢ are substituted into Equatid0), the eigenequation
is formed:

1 1| . R387p4(r)a’(r) ¢
R_S[w2L1(¢)+L2(¢)]+R_g S(¢p)— B2q%(r)
—o, (95
where
1[1d/ d¢| mPe
=l e e | 0
1d/  do m?¢ 1 dkf,
LA@ZRéraiWoaﬂ_f??T_Fﬁr ’
(97
and
1 m
o= g »

Performing the operatiofijdrr ¢ on Equation(95), we
get

> = ) 2 (99

where
SW= W, + 6W,. (100

SW, is the 2nd order contribution,

Qin, Tang, and Rewoldt

10 01

FIG. 3. The ideal MHD result fosW for a straight tokamak.

2

ak2
5W2=R§f —°[(¢—ri—‘f

ol

+(m2—1)¢2}dr, (101

and 6W, is the 4th order contribution,

—1(a R387Po(r)q’ (1)
TR fo r¢[ S gz ]dr
(102
Using the fact that ; andL, are Sturm-Liouville op-
erators, we can show that if for all trial functiod@®V>0,
then all modes are stable; if there exits a trial functibor
which 6W<0, then there is at least one unstable eigenmode.
We immediately reach the following conclusions:

(i) If m?#1, then the modes are stable withw

~0(€?).
(i) If m=1, q(r=0)>1/n, then the modes are stable
with SW~O(€?).

For the case ofn=1 andq(r=0)<1/n [assumingy(r
=a)>1/n], there exists a rational surface at. We can
choose the trial function as

r, r<rg,
¢(r)=[0’ (>, (103
It is obvious thatéW,=0 and
SW=6W,~O(€e*). (104

The mode is neutral to the ord@(e?), and the insta-
bility is determined byéW,. For the fn,n)=(1,1) case,
using the familiar family ofq profiles:

(1+av)r? (105

q 1_(1_r2)l+v’
we can verify that for a wide range aof and «a, 6W, is
indeed less than zero. Therefore the=1 internal kink
mode is unstable whea(r =0)<<1. In Figure 2 we plotW,
againsta andv.

To compare with the ideal MHD result, we also plot the
minimizing 6W from the ideal MHD energy principle for the
same case (see Figure B Our kinetic results agree with the
classical ideal MHD results reasonably well.
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VIl. CONCLUSIONS of recovering the delicate internal kink mode which cannot
be recovered by the existing reduced systems such as

The gyrokinetic system for arbitrary wavelength electro-Strauss’s reduced MHD. With newly developed symbolic

magnetic modes developed in this paper can cover a wideomputation facilities and the 2D comprehensive numerical
range of phenomena in inhomogeneous plasmas, from tHeode, our fully kinetic approach enables us to investigate
electrostatic drift waves to ideal MHD modes, from the shortimportant kinetic-MHD modes self-consistently in great de-
wavelength ballooning modes to the long wavelength kinktail. It is an effective equation system to use to study the
modes. Even though this system is comprehensive, it is alsmulti-scale-length behavior as well. These topics will be the
reasonably accurate. As we have seen, this system is capaliteus of our future work and publications.

APPENDIX: EXPRESSIONS FOR TERMS IN THE GKM IN CIRCULAR CONCENTRIC TOKAMAK GEOMETRY

2

2 2mnqg(r) 2m?q'(r) 2mn m? n

4 w’Rg 7 p(r) ~ ~ N LS
q(r)? qr)® ra) rqr)? T

e e A

-2mn

2
an oz "

—4w?R2 7 p'(r) 4 w?R% 7 p(r —2mndg(r) 2m?2qg’'(r) 2mén m
omp'(r) o m p(r) 51+ aqq) . a’(r) B

2:

4

O By Bo? T ra0?  ram?®  rPqmn) r2qur?
m? n? 4m? w’RZ 7 p(r)
- ) w0+ —— TP, (A1)
Bo“r
Y P r ) . ( 3n? m? B n+mn+mrq’(r)
w=| (0 2q(r)2 Q(f) i+ 2q(r)2 2q(r)?2 q(r) q(r) q(r)®
_mnrq’(r)) () (—( n2)+m2 n2 m3 mn m3 n _mq’(r)_mzq’(r)
q(r)? it 2r r ram? ran A qn®  q)?
2mn q(r
: q(r)qz( )> o (AZ)
—4wPR3 wr p(r) —10w?RE 7w p(r) 4w®R5mr p'(r)
Diy= e BO;T P ¢"(r)+( wBo27Tp _2e OBWZ P @'(r)
0 0 0
—6m wZRS’?Tp(I') 4m? szg’JTp(I’))
+ B2 1 + " o(r), (A3)
y (1)t mr mn ) o (_3”2+ m m? L .n o mn mrq'(r)
=| —(n?r r -
a 2q(r)2 a(r) Y 2 2q(r)? 2q(r)? a(r) q(r) q(r)®
mnrqg()) P m?n? m3 mn mn mq(r) m?q’(r)
a(r)? )WH 2t 1 rqe ra ran qn® g
2mn g (r)
+—q(r)q2 )w), (A%)
—4w?R2 wr p(r) —10 w?R? () 4 2RZ 71 p/(1)
Uig= u BO;T e ¢”(r)+( wBozwp e OBW P @' (r)
0 0 0

6m szg mp(r) 4m? szg 7 p(r)
+
Bo2r Bo2r

+ )¢(r) , (A5)
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5 _3n2r2+mr2_mnr2 . +3n2r_ m2r+3nr_mnr_mr2q’(r)
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