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Gyrokinetic theory for arbitrary wavelength electromagnetic modes
in tokamaks
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~Received 14 October 1997; accepted 15 January 1998!

A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is developed. A wide
range of modes in inhomogeneous plasmas, such as the internal kink modes, the toroidal Alfve´n
eigenmode~TAE! modes, and the drift modes, can be recovered from this system. The inclusion of
most of the interesting physical factors into a single framework enables one to look at many familiar
modes simultaneously, and thus to study the modifications of and the interactions between them in
a systematic way. Especially, it is possible to investigate self-consistently the kinetic
magnetohydrodynamics~MHD! phenomena entirely from the kinetic side. Phase space Lagrangian
Lie perturbation methods and a newly developed computer algebra package for vector analysis in
general coordinate system are utilized in the analytical derivation. In tokamak geometries, a
two-dimensional finite element code has been developed and tested. In this paper, the basic
theoretical formalism and some of the preliminary results are presented. ©1998 American
Institute of Physics.@S1070-664X~98!04304-3#
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I. INTRODUCTION

The motivation of this research project is twofold:
develop an alternative, more comprehensive, and s
consistent approach for kinetic-MHD theory, and to a
electromagnetic effects to a global kinetic analysis of l
frequency microinstabilities, with the goal of achieving
better understanding of anomalous transport in toroidal
ometry. Basically, the previous focus has been on the e
trostatic drift type instabilities and on pure fluid type MH
modes. However, in order to realistically assess the stab
properties in high temperature~high beta! plasmas, it be-
comes necessary to systematically analyze kinetic M
modes and electromagnetic drift waves. Developing the
quired methods of analysis and the associated codes co
tute fundamental problems in the field of plasma stability
is believed that the interaction between kinetic effects a
MHD modes, such as the fishbone modes and the toro
Alfvén eigenmode~TAE! modes, is the key physical reaso
for many bewildering phenomena in fusion plasmas. In
dition, there are possible new applications of kinetic-MH
such as collisionless reconnection, which is thought to
relevant to magnetic storms in the magnetosphere and to
sawtooth instability commonly seen in modern tokama
For drift type microinstabilities and the associated transp
theory, the inclusion of electromagnetic effects has long b
recognized as being necessary. For example, the examin
of electromagnetich i modes in slab geometry1 and in toroi-
dal geometry2,3 revealed that increasing plasma beta can p
vide a stabilizing effect, especially when finite Larmor radi
~FLR! effects of ions become important.

These problems can be put into a single theoret
framework—the gyrokinetic theory of arbitrary waveleng
electromagnetic modes. On the one hand, including magn
components in the kinetic analysis and extending it to lo
wavelength modes formally lead us into the kinetic-MH
1031070-664X/98/5(4)/1035/15/$15.00
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regime from the kinetic side. An example of this approach
the kinetic-MHD ballooning mode theory.4 Using this for-
malism, we are able to recover those familiar MHD resu
entirely from the kinetic point of view, and more important
to obtain kinetic modifications. Compared with previous h
brid kinetic-MHD theory, the approach from the kinetic sid
is more rigorous, self-consistent, and comprehensive. On
other hand, the drift type microinstabilities and the asso
ated transport can be also investigated systematically in
theoretical framework. Not only do we recover the existi
results, such as the electrostatic limit,5,6 the long wavelength
limit,7 and the ballooning limit, but also we can explo
many new problems, for example, the intermediate wa
length regime and the coupling between drift waves a
shear Alfv́en waves.

Furthermore, in magnetized plasmas there exist a lo
multi-scale-length modes. Actually the well-known intern
kink mode is indeed a multi-scale-length mode. For an
stable internal kink mode, there is a boundary layer arou
the rational surface, inside which the scale length is mu
shorter than that outside. FLR effects are important ins
the boundary layer, whereas outside the boundary layer
just a long wavelength MHD mode. Obviously this structu
cannot be described by the conventional approaches, ne
the long wavelength ideal MHD nor the short waveleng
kinetic theory. An arbitrary wavelength kinetic approach w
provide us with a tool for this kind of multi-scale-lengt
structure.

In this paper, we present our gyrokinetic theory for a
bitrary wavelength electromagnetic modes. First, the lin
gyro-kinetic Vlasov–Maxwell system valid for arbitrar
wavelength is briefly derived using the phase space Lagra
ian Lie perturbation method.8–12 The existing gyrokinetic
systems are mainly derived for the high modenumber~i.e.,
short wavelength! modes,13–19 for which some of the back-
5 © 1998 American Institute of Physics
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ground inhomogeneities are not important and are left o
However the most crucial physical factors driving the lo
wavelength modes, such as the toroidal Alfv´n
eigenmode20,21mode and the internal kink mode,22–24are the
background inhomogeneities which include the inhomoge
ities of the magnetic field, temperature, and density. Par
the inhomogeneity of the magnetic field enters through
current distribution. Then a gyrokinetic system for the sh
Alfvén modes is developed. This system consists of th
basic equations: the gyro-kinetic equation~GKE!, the gyro-
kinetic quasineutrality condition, and the gyro-kinetic m
ment equation~GKM! which is derived by combining the
parallel Ampere’s law and the 0th moment of the gyr
kinetic equation. In this system, all the interesting physi
factors are kept. Many classical results obtained before
different theories can be put into a single framework in t
new approach. Therefore, it is also a good framework
study the modifications of and the interactions between th
classical modes.

The solution methods for this system are also develop
Even though this is a fully kinetic approach, the different
equations which need to be solved numerically can be
rigorously into the configuration dimensions. This is acco
plished by solving the linear GKE using the method of in
grating along characteristic lines, and substituting the so
tion of the distribution function in terms of perturbed field
back into the quasineutrality condition and the GKM. A tw
dimensional~2D! numerical code for tokamak geometrie
has been developed and tested.6,7 The newly developed com
puter algebra package for vector analysis in general coo
nate systems is also utilized in solving the equation syste25

In section II, we briefly derive the linear gyrokineti
Vlasov–Maxwell system for arbitrary wavelength mode
The gyrokinetic system for shear Alfve´n physics is presente
in section III. Then, in section IV we compare our system
other existing equations and especially the ideal MHD eq
tion. Section V is about the analytical and numerical solut
methods. Two simple applications, the local dispersion re
tions for electrostatic drift waves and the instabilities of t
internal kink mode in a straight tokamak, are given in sect
VI. The last section is the conclusions and some discus
on our future work.

II. LINEAR GYRO-KINETIC VLASOV–MAXWELL
SYSTEM FOR ARBITRARY WAVELENGTH
ELECTROMAGNETIC MODES

Different versions of the gyrokinetic system have be
derived many times by different methods in differe
representations.11–19 Usually, it is derived for short wave
length modes for which many of the equilibrium inhomog
neities can be neglected. However the essence of the GK
to average out the fast time scale gyromotion. The wa
length can be left unspecified and all the equilibrium inh
mogeneities can be kept in. We will briefly derive the line
gyrokinetic system for arbitrary wavelength modes using
phase space Lagrangian Lie perturbation method. The d
vation here is similar to those of Hahm and Brizard for t
nonlinear GKE.11,12 However, here we consider arbitrar
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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wavelength modes, and all the equilibrium inhomogeneit
should be fully retained. We use theU representation instea
of ther i representation, whereU is the parallel velocity and
r i[U/V. Also, unnormalized real physical units are used

The equilibrium is assumed to be magnetostatic. In
extended guiding center coordinates (X,U,m,j,w,t), the ex-
tended phase space Lagrangian is8,10,12

gE5ĝE2HEdt

5S e

c
A1mUb2m

mc

e
WD •dX1

mc

e
mdj2wdt

2~H2w!dt, ~1!

whereX is the configuration component of the guiding cen
coordinate,U is the parallel velocity,m is the magnetic mo-
ment,j is the gyrophase angle, and

W5R1
b

2
~b•¹3b!, R5~¹e1!•e2 . ~2!

b5B/B. e1 ande2 are unit vectors in two arbitrarily chose
perpendicular directions, ande1 ande2 are perpendicular to
each other. The regular phase space is extended to inc
the time coordinate and its conjugate coordinate energyw.
ĝE is the extended symplectic structure,HE5H2w is the
extended Hamiltonian, andH is the regular Hamiltonian de
fined as

H5
mU2

2
1mB.

The corresponding Poisson bracket is obtained by inver
the symplectic structureĝEi j ,

$F,G%5
e

mcS ]F

]j

]G

]m
2

]F

]m

]G

]j D2
cb

eBi*

•F S ¹F1W
]F

]j D3S ¹G1W
]G

]j D G1
B*

mBi*

•F S ¹F1W
]F

]j D ]G

]U
2S ¹G1W

]G

]j D ]F

]UG
1S ]F

]w

]G

]t
2

]F

]t

]G

]wD , ~3!

where

B* 5B1
cm

e
U¹3b, Bi* 5b–B* . ~4!

When the perturbed electromagnetic field is introduc
the extended phase space Lagrangian is perturbed ac
ingly:

gE5gE01gE1 ,
~5!

gE15Fe

c
A1~TGC

21X,t !•d~TGC
21X!G2ef1~TGC

21X,t !dt,

whereTGC is the guiding center transformation, andTGC
21 is

its inverse:
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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TGC
21X5X1r01r11O~eB

2 !, ~6!

where

r0[
c

e
A2mm

B
ĵ, ~7!

and eB is the ratio between the gyroradius and the sc
length of the equilibrium magnetic field,

eB5
r0

LB
. ~8!

ĵ is the unit vector pointing from the guiding center to t
particle’s physical position,

r152F S U

V D 2

~b•¹b!12
mB

V2m
¹' ln BG

2bF mB

4V2m
~¹•b!12

U

V S b•¹b•

]r0

]j D G
2

U

2V
r0–F I ~b•¹3b!1

1

2
~b3¹b2¹b3b!G . ~9!

In tokamak geometry,LB;R0. The background~equi-
librium! FLR is represented by the small parametereB and
ignored in linear gyrokinetic theory. Important FLR effec
come from the perturbed magnetic field whose wavelen
could be much shorter than the scale length of the equ
rium structure and could be comparable to the particle gy
radius. This FLR effect is represented by the parameterep

5kr. In general, we keep the FLR effects on the perturb
field to O(ep

2).
To derive the linear GKE, we usually do not need high

orders of the guiding center transformation, because
guiding center transformation is the transformation from
particle ‘‘physical coordinate’’ in an equilibrium magnet
field to the ‘‘guiding center coordinate’’ in the same equili
rium magnetic field. No perturbed field is involved in th
transformation. However, for nonlinear gyrokinetic forma
isms, the background and perturbed fields cannot be s
rated very well; therefore it is necessary to keep ther1 term.
Our current formalism is a linear one. The leading ord
expression,

TGC
21X5X1r0 , ~10!

will be sufficient for our purpose. Expandingd(TGC
21X), we

obtain

gE15
e

c
A1~X1r0 ,t !•F ~11¹r0!•dX1

]r0

]m
dm1

]r0

]j
djG

2ef1~X1r0 ,t !dt. ~11!

The essence of the Lie perturbation method is to int
duce a near identity transformation from the equilibriu
guiding center coordinatesZ5(X,U,m,j,w,t) to the gyro-
center coordinatesZ̄5(X̄,Ū,m̄, j̄ ,w̄, t̄ ) when the perturbed
field is present such that the transformed extended ph
space Lagrangianḡ can be gyrophase independent.
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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We emphasize that there are three different coordin
systems appearing in our formalism. (x,v) is the particle
‘‘physical’’ coordinate system.Z5(X,U,m,j,w,t) is the
~extended! ‘‘guiding center’’ coordinate system in an equ
librium magnetic field. When the time-dependent elect
magnetic field is introduced, we use the ‘‘gyrocenter’’ coo
dinate systemZ̄5(X̄,Ū,m̄, j̄ ,w̄, t̄ ) to describe the gyrocente
motion. Among other things, the most well-known differen
between the guiding center motion and the gyrocenter m
tion is the polarization drift motion due to the time
dependent electrical perturbation. We follow Brizard12 in us-
ing the terms ‘‘gyrocenter’’ and ‘‘guiding center’’ to
distinguish these two different coordinate systems.

For the transformation

Z̄ i5~eGZ! i'Zi1Gi~Z!, ~12!

the leading order transformed extended phase space
grangian is9

ḡE15gE12 i GvE01dS5 ḡ̂ E12H̄E1dt, ~13!

wherevE05dgE0, S is the gauge function, andi GvE0 is the
interior product between the vector fieldG and the two form

vE0. There are several ways to makeĝ̄ andH̄Edt gyrophase
independent. We will chooseG andS such that there is no
perturbation on the symplectic structure,

ĝ̄E150. ~14!

This will transfer the perturbation into the Hamiltonia
Since we choose not to change the time variablet, Gt50.

Other components ofG are solved for fromĝ̄E150,

GX52
c

eBi*
b3S e

c
A11¹SD2

B*

mB*

]S

]U
1O~eB!,

GU5
B*

mBi*
•S e

c
A11¹SD1O~eB!,

Gm5
e

mcS e

c
A1•

]r0

]j
1

]S

]j D , ~15!

Gj52
e

mcS e

c
A1•

]r0

]m
1

]S

]m D1O~eB!,

Gw52
]S

]t
.

The transformed Hamiltonian is

H̄E15HE12Gi
]HE0

]xi
1Gw

5ef1~X̄1r0 ,t !2
e

c
A1~X̄1r0 ,t !•$X̄1r0 ,HE0%

2$S,HE0%, ~16!

in which

$X̄1r0 ,HE0%5v1vd1O~eB!. ~17!
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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In the calculation related to the gyrocenter transformati
we will only keep the lowest order in terms ofeB , because
the background FLR effects normally are not important.

We choose

H̄E15 K ef1~X̄1r0 ,t !2v•

e

c
A1~X̄1r0 ,t !L , ~18!

where^& represents the gyrophase averaging operation. T
leads to the equation determining the gauge functionS:

$S,HE0%5V
]S

]j
1

]S

]t
1

]S

]X̄
•$X,HE0%1

]S

]U
$U,HE0%

5ef̃1~X̄1r0 ,t !2
e

c
v–A 1̃~X̄1r0 ,t !, ~19!

wheref̃1(X̄1r0 ,t) andv–A1(̃(X̄1r0 ,t) are the gyrophase
dependent parts off1(X̄1r0 ,t) and v•A1(X̄1r0 ,t), re-
spectively,

f̃1~X̄1r0 ,t !5f1~X̄1r0 ,t !2^f1~X̄1r0 ,t !&

v–A 1̃~X̄1r0 ,t !5v•A1~X̄1r0 ,t !2^v•A1~X̄1r0 ,t !&.
~20!

To the lowest order,

V
]S

]j
5ef 1̃~X̄1r0 ,t !2

e

c
v–A 1̃~X̄1r0 ,t !. ~21!

SincegC 50, the Poisson bracket in the gyrocenter coordina
is the same as that in the guiding center coordinates, whic
given by Equation~3!.

Now we are ready to obtain the linear GKE. Unless cl
ity requires us to use the barred notation, we will drop
bars for the gyrocenter coordinates hereafter. In the gy
center coordinates (X,U,m,j,w,t), the distribution function
F(X,U,m,j,w,t) satisfies the Vlasov equation:

$F,HE%5
]F

]t
1$F,H%5

]F

]t
1Ẋ

]F

]X
1U̇

]F

]U
1 j̇

]F

]j
50.

~22!

We prove thatF is gyrophase independent. Let

F5F ~0!1eBF ~1!1eB
2F ~2!1•••. ~23!

The leading order is

]F ~0!

]j
50. ~24!

F (0) is gyrophase independent. To the next order:

]F ~0!

]t
1Ẋ

]F ~0!

]X
1U̇

]F ~0!

]U
1 j̇

]F ~1!

]j
50. ~25!

Since all the terms except for]F (1)/]j are gyrophase inde
pendent, gyrophase averaging this equation gives

]F ~0!

]t
1Ẋ

]F ~0!

]X
1U̇

]F ~0!

]U
50, ~26!

and therefore
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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]F ~1!

]j
50. ~27!

By the same way, we can prove thatF is gyrophase inde-
pendent to all orders.

The linear GKE in its geometric form~coordinate-
independent form! can be written as

$ f ,HE%1$F0 ,HE1%50, ~28!

or

] f

]t
1$ f ,H0%52$F0 ,H1%, ~29!

where

F5F01 f ,

H05
mU2

2
1mB, ~30!

H15 K ef1~X1r0 ,t !2
e

c
v•A1~X1r0 ,t !L .

In the coordinates (X,U,m,j,w,t), the linear GKE is

] f

]t
1~Ub1vd!•¹ f 2

1

m
b•¹H0

] f

]U

5
c

eB
b•~¹F03¹H1!2

1

m
b•S ¹F0

]H1

]U
2¹H1

]F0

]U D .

~31!

Another set of gyrocenter coordinates (X,«,m,j,w,t) is
often used.« is the total energy in the unperturbed field, th
is

«5H05
mU2

2
1mB. ~32!

In this set of gyrocenter coordinates, the linear GKE is

] f

]t
1~Ub1vd!•¹ f

5S cb

eB
3¹F0D •¹H11

]F0

]«
~Ub1vd!•¹H1 . ~33!

An alternative form of this equation is written in term of th
nonadiabatic part off ,

g5 f 2H1

]F0

]«
, ~34!

]g

]t
1~Ub1vd!•¹g5S cb

eB
3¹F0•¹2

]F0

]«

]

]t DH1 .

~35!

The gyrokinetic Maxwell equations are as important
the GKE itself. The differences between different versions
the GKE can be usually resolved when the correspond
gyrokinetic Maxwell equations are taken into account in a
propriate coordinate systems.

The Poisson equation is
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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2¹2f~r,t !54p(
j

eE d3v f ~r,t,v !, ~36!

where

E d3v f ~r,t,v !5E d6Z@TGY* f #~Z,t !d~TGC
21X2r!. ~37!

Ampere’s law is

¹3~¹3A~r,t !!5
4p

c (
j

eE d3vv f ~r,t,v !, ~38!

where

E d3v v f ~r,t,v !

5E d6Z @Vgc~Z!#@TGY* f ~Z,t !#d~TGC
21X2r!. ~39!

In above equations, d6Z is understood to be
(Bi* /m) d3X dU dmdj. TGY* is the pull-back transforma
tion, which transforms the perturbed distributionf in the
gyrocenter coordinates into that in the guiding center co
dinates.TGC

21 is the inverse ofTGC that transforms the par
ticle physical coordinates (r,v,t) into the guiding center co
ordinates. We assumeTGC* , TGC , TGY* , andTGY are one–
one onto~bijective!. Generally for a macroscopic quantit
Q(r) in the particle coordinates, we have11,12,17,19

Q~r!5E Q~r,v ! f PH~r,v !d3v

5E d~x2r!Q~z! f PH~z!d6z. ~40!

In the guiding center coordinatesZ5(X,U,m,j),

Q~r!5E @TGC* 21Q#~Z! f GC~Z!d~TGC
212r!d6Z. ~41!

Replacingf GC(Z) by its pull-back from the gyrocenter coo
dinate

Q~r!5E @TGC* 21Q#~Z!@TGY* f GY#~Z!d~TGC
21X2r!d6Z. ~42!

The pull-back transformation from the gyrocenter co
dinates to the guiding center coordinates is easily obtai
from the expression forG given by Equation~15!,

TGY* F5F1LGF

5F2
b

B
3A1•¹F1

e

mc
b•A1

]F

]U

1
e

mcFe

c
A1•

]r0

]j
1

]S

]j G]F

]m
1O~eB!, ~43!

whereLGF represents the Lie derivative ofF with respect to
the vector fieldG.

We will useA andf to notate the perturbed field here
after; the subscript ‘‘1’’ will be dropped.
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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III. ARBITRARY WAVELENGTH ELECTROMAGNETIC
GYRO-KINETIC SYSTEM FOR SHEAR ALFVÉ N
PHYSICS

As discussed before, the most influential factors wh
solely define the characteristics of long wavelength mo
are the background inhomogeneities, including the inhom
geneities of equilibrium temperature, density, magnetic fie
and current. We need to describe these inhomogene
properly in the kinetic context in order to develop a succe
ful kinetic theory for arbitrary wavelength electromagne
modes. At first thought, one would suggest a simple soluti
express all the background inhomogeneities by an inho
geneous and anisotropic equilibrium distribution functio
and carry out the rest of the process straightforwardly. B
for more realistic systems, such as a tokamak, this sim
solution will not work out easily. The reason is that when w
put all the physical effects, the background inhomogeneit
and the kinetic effects into the distribution function, the
entangle together in such a complex way that the problem
not tractable anymore.

Another method is necessary. To proceed, let us obs
some basic facts associated with the anisotropic distribu
function:

F j5
nj~r !

@2pTj~r !/mj #
3/2

expF2
mj@v'

2 1~v i2uj !
2#

2Tj~r !
G . ~44!

The equilibrium current produced by the inhomogeneity
the B field can be separated out from the unperturbed dis
bution function by taking the first moment,

E vF jd
3v5njuj , ~45!

which suggests singling out the equilibrium current in der
ing the GKM equation. Another fact is that the anisotropy
the equilibrium distribution function turns out to be wea
For example, to create the toroidal current for the poloi
field in a tokamak,

J5enu;
c

4p
¹3Bp , u;

cBp

4pena
. ~46!

For standard tokamak parameters,

u2

v th
2

;2
c2

v th
2

1

bp

lD
2

a2
;H 1028, electrons;

1025, ions.
~47!

This estimate suggests that we can almost assume the u
turbed distribution to be isotropic. But we have to assume
anisotropic distribution, since the equilibrium inhomogen
ities cannot be ignored. The answer to this seeming para
is that the bulk of the plasma does not contribute to
magnetic field inhomogeneity; the anisotropic part of t
plasma is the only source for the magnetic field inhomo
neity although its population is extremely small. Hence
cannot throw away the anisotropic component for this r
son. For other effects, like perturbed pressure effects, c
sion effects, and Landau damping, where the contribut
from the isotropic part is nonvanishing, the contribution fro
the anisotropic part can be ignored completely. Our meth
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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ology here is to separate out the terms related to the an
ropy in velocity space during the process of deriving t
GKM, after which the unperturbed distribution function w
be assumed to be isotropic.

Most of the important nonelectrostatic long waveleng
eigenmodes in tokamak geometry are shear Alfve´n waves,
that is, the parallel magnetic perturbation is much sma
than the perpendicular magnetic perturbation. Kink mo
and TAE modes fall into this category. In a homogeneo
medium, the shear Alfve´n wave is the branch with the dis
persion relationv25ki

2vA
2 . It has several characteristics:

~i! B1'(k3B0), v1'(k3B0), B1i50, and v1i50;
~ii ! r150, p150, and ¹•v150.

For the shear Alfve´n wave in an inhomogeneous plasm
these properties are not all true. We will restrict ourselves
large aspect ratio tokamak geometries. We define the s
Alfvén modes in a large aspect ratio tokamak as the mo
with

A'50. ~48!

This definition is consistent with the normal meaning of t
shear Alfvén wave, because from

B15¹3A5¹3~Aib0!5¹Ai3b01Ai¹3b0 , ~49!

we get the estimate

B1i;b0–¹3b0Ai;
Ai

R
!B1';

Ai

r
.

We also have¹•j'0. From

B15¹3~j3B0!52B0¹•j1~B0•¹!j2~j•¹!B0 ,

andB1i!B1' , it is easy to observe that

B1i;2B0~¹•j!1 iB0kij i5 iB0k'•j'! ik'j'B0 .

That isk'•j'!k'j';kj.
Other shear Alfve´n characteristics in a homogeneo

medium generally are not valid in tokamak geometri
However, the pressure perturbation sometimes can be tre
as a small correction by the virtue of the lowb assumption.
This is obvious from the motion equation:

r0

]v
]t

5
1

c
J13B01

1

c
J03B12¹p1 , ~50!

1

c
J13B0;4pB0

2 j

r 2
@¹p1;¹•~j–¹p0!;

j

r 2
p0 .

Overall, the shear Alfve´n waves that we will study in the
large aspect ratio lowb tokamaks are those almost incom
pressible eigenmodes with zero perpendicular vector po
tial perturbations, small parallel magnetic perturbations,
small pressure perturbations.

For shear Alfve´n physics,

A5Aib. ~51!

We need three equations to complete the system. Beside
GKE, the gyrokinetic Poisson equation and the gyrokine
parallel Ampere’s law are used. Carrying out the gyroph
averaging, we obtain
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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H15eJ0f~X!2
e

c
J0UAi~X!. ~52!

In this equation and other equations appearing la
J0(v'¹' / iV) should be viewed as a symbol for the diffe
ential operator defined below:

J0S v'¹'

iV D511
v'

2 ¹'
2

4V
1••• . ~53!

To derive the explicit forms of the gyrokinetic Max
well’s equations, we first look at the pull-back transform
tion TGY* f . The special form of Equation~21! for shear
Alfvén modes is

V
]S

]j
'

e

V
r0•F¹f~X,t !2

1

c
U¹Ai~X,t !G . ~54!

Using Equation~43!, we get the pull-back transformation fo
shear Alfvén modes,

TGY* F5F1
e

mc
Ai~X1r0 ,t !

]F

]U

1
e

BF f̃(X1r0,t)2
1

c
UÃi(X1r0,t) G]F

]m
. ~55!

The perturbed density, perturbed flow, and perturbed cur
can be derived from the general form of Equation~42!:

n1~r!5E f ~Z!d~X2r!d6Z1E @d~X1r02r!

2d~X2r!# f ~Z!d6Z

1E d~X1r02r!H e

mc
Ai~X1r0 ,t !

]F0

]U

1
e

BF f̃~X1r0 ,t !2
1

c
UÃi~X1r0 ,t !G]F0

]m J d6Z.

~56!

The physical meaning of this equation is clear. The pertur
density in particle coordinates consists of three parts,
perturbed density in gyrocenter coordinates, the guiding c
ter residue, and the gyrocenter residue. The guiding ce
residue is related to the equilibrium FLR effects and t
pressure perturbation, and thus can be ignored. After s
lengthy algebra,

n1~r,t !5E f ~r,U,m,t !d3v1
e

m
¹'

n0

V2
¹f~r,t !

1
3

4

ev t
2n0

mV4
¹'

4 f~r,t !, ~57!

where d3v52p(B/m)dUdm. For the perturbed paralle
flow,
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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n0Vi1~r!5E U f ~Z!d~X2r!d6Z1E @d~X1r02r!

2d~X2r!# f ~Z!d6Z1E Ud~X1r02r!

3H e

mc
Ai~X1r0 ,t !

]F0

]U
1

e

BF f̃~X1r0 ,t !

2
1

c
UÃi~X1r0 ,t !G]F0

]m J d6Z. ~58!

Again, the algebra here is straightforward but involved. T
final result is

n0Vi1~r,t !5E U f ~r,U,m,t !d3v1E e

mc
^UAi~r1r0!&

3
]F0

]U
2p

B

m
dmdU1

en0v t
2

2mcV2
¹'

2 Ai . ~59!

Therefore, the quasineutrality condition is

(
j

eF E f d3v1
e

m
¹'

n0

V2
¹'f1

3e

4m

v t
2

V2

n0

V2 ¹'
4 fG50,

~60!

and the parallel Ampere’s law is

@¹3¹3A# i5
4p

c (
j

eE US f 1
]F0

]U

e

mc
^UAi& Dd3v

1
4p

c

e2n0v t
2

2mcV2
¹'

2 Ai . ~61!

In the above equations, the spatial variable is the part
coordinater. Howeverr is a dummy variable. What matter
is the functional forms. We can replacer by the spatial co-
ordinate of the gyrocenter coordinatesZ. The Equations~60!
and~61! will be referred to as the gyrokinetic quasineutral
condition and the gyrokinetic parallel Ampere’s law, respe
tively.

Instead of using the parallel Ampere’s law directly, w
usually combine it with the 0th moment equation of the GK
to get the gyrokinetic moment equation~GKM! and use this
as the third equation in our equation system. This equatio
often referred as the GKM, in spite of the fact that it
distinct from the gyrokinetic equation because Ampere’s l
has been utilized to derive it. We use the linear GKE
(X,U,m,j), Equation~31!. The 0th moment of it is
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
e

le
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]

]tE f d3v1E vd•¹ f d3v1E Ub•¹ f d3v

2
1

mE b•m¹B
] f

]U
d3v

5
cb

eB
•E ¹F03¹H1d3v2

b

m
•E ]~H1¹F0!

]U
d3v

1
b

m
•E ¹S H1

]F0

]U Dd3v. ~62!

It is obvious that the 4th term on the left hand side and
2nd term on the right hand side vanish. Applying( jej , we
have

(
j

e
]

]tE f d3v1(
j

eE FUb•¹ f 2b•¹S H1

m

]F0

]U D Gd3v

2(
j

cb

B
•E ¹F03¹H1d3v1(

j
evd•¹ f d3v50. ~63!

Using the quasineutrality condition, Equation~60!, we re-
place the first term by

2(
j

e
]

]tS e

m
¹'

n

V2
¹'f1

3e

4m

v t
2

V2

n

V2
¹'

4 f D .

For the second term, we have

(
j

eE FUb•¹ f 2b•¹S H1

m

]F

]U D Gd3v

5(
j

eE b•¹S U f 2
H1

m

]F

]U Dd3v

5(
j

B•¹
e

BE S U f 2
H1

m

]F

]U D B

m
2pdmdU

5B–¹H 1

B(
j
E eFU f 1

e

mc
^UAi&

]F

]UG2p
B

m
BdmdUJ

5B•¹H 1

BF c

4p
~¹3¹3Ai! i2(

j

e2n0

mc

v t
2

2V2
¹'

2 AiG J .

~64!

We note that only in (X,U,m,j) coordinates can we freely
moveU in and out of¹. But we should not moveb or B in
and out¹. This is important for arbitrary wavelength mode
for which the equilibrium inhomogeneities are crucial. It w
later be clear that this accuracy enables us to exactly rec
the ideal MHD equation from our gyrokinetic system. F
short wavelength modes, the background variations are
mally ignored, andB, n0, andb can be brought in and out o
¹ when necessary.

After some calculation, the third term is

2(b3¹Ai)•¹
j0i

B
2(

j
cb3¹

en0v t
2

2BV2
•¹¹'

2 f.

As before, no approximations regarding the equilibrium
homogeneities are made in this calculation.

Finally, the GKM is
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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2
]

]tF c2

4p
¹•S 1

VA
2

¹'f D G1
c

4p
~B•¹!

~¹3¹3A!•B

B2
1~¹Ai3b!•¹

j 0i

B

52(
j
E ~evd•¹ f ! jd

3v1
1

4p

c2

vA
2S 3v t

2

4V2D
i

¹'
4 ]f

]t
1B•¹F 1

B(
j

S e2n0

mc

v t
2

2V2D
j

¹'
2 AiG

1b3(
j

¹S cen0v t
2

2BV2 D
j

•¹¹'
2 f, ~65!
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where the*evd•¹ f d3v is evaluated in (X,U,m,j) coordi-
nates. In (X,«,m,j) coordinates, it should be replaced b
*(vd•¹1vd•¹B] f /]«m)d3v. However, in a lowb plasma,

E S vd•¹ f 1vd•¹B
] f

]«
m Dd3v'E vd•¹ f d3v, ~66!

because

vd'2
cm~v i

21v'
2 /2!

eB3
¹B3B. ~67!

We will introduce another field variablec i to replace
Ai . c i is defined by

Ai[
c

iv
~¹c i! i . ~68!

It is easy to solve forf in (X,«,m,j) coordinates. The
nonadiabatic part of the perturbed distribution functionsg is
solved for in terms off andc i from the gyrokinetic equa-
tion ~35! by integrating along the characteristic lines. T
formal solution is given as

g5E
2`

t

dt8H S b

V
3¹F0•¹2

]F0

]E

]

]t DH1J . ~69!

In conclusion, our gyrokinetic system for the arbitra
wavelength shear Alfve´n modes consists of three equation
the gyrokinetic equation, Equation~35!, the gyrokinetic
quasineutrality condition, Equation~60!, and the gyrokinetic
moment equation, Equation~65!.

IV. COMPARISON AND RECOVERY

The importance of the kinetic-MHD effect was realize
long before it was observed in tokamak experiments.26 Re-
cent study of kinetic-MHD is focused on those kinetic-MH
phenomena related to modern tokamak experiments suc
the fishbone mode and the sawtooth mode. Two simpli
versions of our GKM have been derived before to study
netically TAE related problems. The first one is the equat
derived by Rosenbluth and Rutherford;27 this equation was
used by Fu and Van Dam21 as the starting equation for the
kinetic Alfvén modes. Though some inhomogeneities w
kept, many of the important inhomogeneities in toroidal g
ometry were left out. Being aware of this problem, Be
et al.derived a new equation for the same purpose from fl
theory;28 then they replaced the pressure perturbation te
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
,
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d
-
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e
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d
m

by a kinetic counterpart such that the crucial kinetic effe
are able to be picked up. Clearly this is the standard hyb
kinetic-MHD treatment.

The advantage of our fully gyrokinetic formalism an
the GKM equation is apparent by comparison. First, our s
consistent, fully kinetic approach is valid for general inh
mogeneous plasmas, and all the important physical fac
are captured. Therefore, it is capable of delineating the
structure of these long wavelength modes we are intere
in. As we can see from the left hand side of the GKM, t
kink terms are more detailed than those in References 27
21, and also the right hand side, in addition to being s
consistent, has kinetic terms that are more comprehen
than those in References 27, 21, and 28. The kink mod
harder to describe because it appears in the order ofO(e2),
while the TAE comes out in the order ofO(e). Most alter-
native theories, including Strauss’ reduced MHD,29 consider
physical effects only to the orderO(e), and thus are not
capable of providing information to orderO(e2). Specifi-
cally, the internal kink modes cannot be easily recovered
these models.29–31 Our system can recover TAE modes
well as kink modes in tokamaks. It is an alternative approa
for the classical yet still important kink instabilities studie
before by MHD theory. Moreover, with the ability to exam
ine the interaction between ideal MHD kink modes and
netic effects, our system will be a key to investigate syste
atically some bewildering questions in today’s fusion plas
physics. Secondly, the physical features captured in
GKM equation are separated. The background inhomoge
ities responsible for the TAE modes, the kink instabilitie
and other ideal MHD modes is completely isolated in the l
hand side; meanwhile the equilibrium pressure effects,
Landau damping effects, and the FLR effects appear on
right hand side of the equation. It is possible to look at ea
one of them individually. Finally, our formalism is an arb
trary wavelength description. It is able to recover the resu
for short wavelength modes. We will use this as a ben
mark, while concentrating on the long wavelength elect
magnetic modes and their kinetic modifications.

Now, we show that our GKM can recover the ide
MHD equations. From¹• j150, we get

~B0•¹!
j1•B0

B0
2

1¹•

B03~ j13B0!

B0
2

50. ~70!

The linearized motion equation is
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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r0

]v
]t

5
1

c
j13B01

1

c
j03B12¹p1 , ~71!

from which we obtain

cr0

B0

B0
2

3
]v
]t

2
B0

B0
2

3~ j03B1!1c
B0

B0
2

3¹p15
B0

B0
2

3~ j13B0!.

~72!

Also, we have the ideal Ohm’s Law,

B03v5cE1 . ~73!

We combine Equations~70!, ~72!, and~73! to get

~B0•¹!
j1•B0

B0
2

1¹•

c2r0

B0
2

]E1

]t
2¹•

j0~B0•B1!2B1~B0• j0!

B0
2

1c¹p1•¹3
B0

B0
2

50. ~74!

For shear Alfve´n modes, this is

~B0•¹!
j1•B0

B0
2

1 iv¹•

c2r0

B0
2

¹'f1~B1•¹!
j0•B0

B0
2

1c¹p1

•¹3
B0

B0
2

50, ~75!

where B15¹3(Aib0).B1'.¹Ai3b0, j15(c/4p!¹3B1.
This equation is the ideal MHD eigenequation for shear
fvén modes in terms of perturbed electromagnetic fields
can be recovered from our GKM when the FLR effect
neglected and the first term on the left hand side of the G
is replaced by its ideal MHD counterpartc¹p1

•¹3(B0 /B0
2). The kinetic generalization of ideal MHD i

represented by the left hand side of the GKM, i.e., the kin
cally generalized pressure perturbation term and the F
terms. Therefore it is reasonable to expect our kinetic
proach to recover all the important MHD results. Indeed,
the simplest limit, we have28
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
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It

i-
R
-

(
j

eE vd•¹ f d3v5(
j
E mc

B
b3Fv'

2

2

¹B

B
1U2b•¹bG

•¹ f d3v

5
c

BFb3¹B•¹(
j
E f md3v1b3b•¹b

•¹(
j
E f mU2d3vG

;cS b3
¹B

B2
1

¹3b

B D •¹p1

5c¹p1•¹3
B

B2
. ~76!

V. SOLUTION METHODS IN TOKAMAK GEOMETRY

In this section, we discuss briefly the solution metho
for our equation system. More details will be presented
future publications.

One of the difficulties in solving the basics equatio
~35!, ~60!, and~61! is that it is an integral-differential equa
tion system in a six-dimensional~6D! space—3D configura-
tion space and 3D velocity space. Though these equat
can be studied directly by particle simulation, the line
eigenmode problem can be rigorously projected onto the
configuration space by solving the linear GKE for the p
turbed distribution function in terms of field variables, an
substituting the solution back into the the quasineutra
condition and the GKM. When combined with bounda
conditions, an eigenvalue problem is formed.

This method has been successfully applied to the kin
theory of both short wavelength electromagnetic modes
long wavelength electrostatic modes. In the latter case
course, the quasineutrality condition itself will complete t
system; the GKM is not used.

When applying the equation system to the geometries
large aspect ratio tokamaks, we encounter another difficu
As one can imagine, the left hand side of the GKM equat
as a scalar function ofc i andf is extremely complicated in
tokamak geometries. To study the TAE modes kinetica
we have to evaluate this equation to orderO(e). For internal
kink modes, it has to be calculated to orderO(e2). Even
assuming circular concentric magnetic surfaces, the t
number of terms involved in the calculation to orderO(e2)
is about 1,500, which is obviously problematic if calculatin
by hand.

We have developed a computer algebra package for
tor analysis in general coordinate systems, called GVA~Gen-
eral Vector Analysis!, in the context of symbolic computa
tion systemMathematica.25,32 GVA can perform symbolic
vector calculation in any mathematically well-defined coo
dinate system. Asymptotic analysis capability is built in
this package, and any analytical result can be expanded a
asymptotic series. With the help of the GVA, we are able
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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work out the required vector calculation to any order ofe
quickly with 100% accuracy after specifying an equilibriu
magnetic field and a coordinate system.

The simplest toroidal model equilibrium assumes circ
lar, concentric flux surfaces, and uses the coordina
(r ,u,z) shown in Figure 1.

The magnetic field is given by

B5
B0

h~u!S ez1
r

q~r !R0
euD , ~77!

where

h~u![11ecosu, e[
r

R0
. ~78!

Assuming the general 2D expansion,33

~c i ,f!5(
m

~c im~r !,fm~r !!einz2 imu2 ivt, ~79!

let us work out the left hand side of the GKM equation
this coordinate system to the order ofO(e)2. There are more
than 100 terms,

2
]

]t F c2

4p
¹•S 1

VA
2

¹'f D G1
c

4p
~B•¹!

~¹3¹3A!•B

B2

1~¹3A!'•¹
j 0i

B

5
c2

iv4p (
m

einz2 imu2 ivtS O2

R0
2

1
O3

R0
3

1
O4

R0
4 D , ~80!

O35D1eiu1U1e2 iu, ~81!

O45D2e2iu1U2e22iu1S, ~82!

whereO2, O3, O4, etc., are differential operators acting upo
every pair ofc im(r ) andfm(r ). O2, O3 , andO4 areO(e0),
O(e1), andO(e2), respectively. TheO3 term can be sepa
rated intoD1 which couples downward by one poloidal ha
monic, andU1 which couples upward by one poloidal ha
monic; theO4 term can be separated intoD2 which couples
downward by two poloidal harmonics,U2 which couples
upward by two poloidal harmonics, andS which is the self-
coupling term.S can be divided further into the self-couplin
term from a straight tokamakSs and that from toroidicitySt,

FIG. 1. Circular concentric tokamak coordinate system.
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
-
s

i.e., S5Ss1St. Inside every term, there are terms related
c i representing by subscript ‘‘c ’’ and terms related tof
representing the subscript ‘‘f. ’ ’ For example,Ss5Sc

s 1Sf
s .

The expressions for these operators are listed below in
Appendix.

The equation for straight tokamak geometry is a spe
case and can be recovered when the toroidal coupling te
are set to zero. In this case, poloidal harmonics are dec
pled. For each one of them, we have

2
]

]t F c2

4p
¹•S 1

VA
2

¹'f D G1
c

4p
~B•¹!

~¹3¹3A!•B

B2

1~¹3A!'•¹
j 0i

B
5

c2

iv4p S O2

R0
2

1
Ss

R0
4D . ~83!

The equation system in tokamak geometries is gener
a coupled system. There are an infinite number of ordin
differential equations coupled together. However, consid
ing the fact that the inverse aspect ratio is a small parame
we can utilize some perturbation techniques to simplify
system. The important observation is that the coupling
tween different harmonics is proportional toe, as is apparent
from Equation~80!. The orderO(e0) term is O2, which is
decoupled. The orderO(e1) term isO3 which couples to the
harmonics higher by one and lower by one. In the ord
O(e2) term, O4, we find terms coupled to the harmonic
higher by two and lower by two. In other words, the co
pling, like e itself, is a weak effect. The strongest coupling
a harmonic to other harmonics is in orderO(e1), and only to
its nearest neighbors. The longer the interval between
harmonics, the higher order is the coupling between them

The method of asymptotic decoupling, that we propo
is based upon this fact. To orderO(e0), all harmonics are
decoupled. Therefore we can pick an eigenmode fore50,
for example (m,n)5(1,1), and ask what the perturbation o
this mode is when the small parametere is introduced. It is
easy to see that to orderO(e1), two new harmonics appear—
the m21 and m11 harmonics. There are only three ha
monics in the system now. We can solve for them21 and
m11 harmonics and the perturbation on the eigenfreque
and them harmonic. We can go on to the next order,O(e2),
to solve for them22 andm12 harmonics and the secon
order perturbations on other quantities. This process can
carried out to any order.

One thing we need to realize about this asymptotic
coupling method is that the number of differential equatio
involved varies as the perturbation process is carrying o
The higher the order, the more the equations. To or
O(en), there are 2n21 equations in the system, but only
new variables are introduced by each increase of one or

For those modes whose leading order contains many
coupled harmonics, the asymptotic method will become
tractable. A numerical solution is needed. Also, for kine
effects like trapped particle effects, a numerical code incl
ing all the interesting physics are indispensable.

Our gyrokinetic system can be converted into a syst
of coupled ordinary differential equations of the followin
form:
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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ApmS fm9

c im9
D 1BpmS fm8

c im8
D 1CpmS fm

c im
D 50, ~84!

whereApm , Bpm , andCpm are 232 block matrices whose
two rows correspond to the quasineutrality condition and
gyrokinetic moment equation, respectively, with each blo
spanning the poloidal harmonics. Here8 denotes the radia
derivative. Note thatApm , Bpm , andCpm are functions ofr
as well asv.

After truncation to some proper number of poloidal ha
monics, this eigenvalue problem is solved numerically us
a finite element method in the radial direction. The act
code will appear as a version of the two-dimensional kine
code ~KIN-2D! developed over the past 20 years by Tan
Rewoldt, Marchand, and Artun at the Princeton Plas
Physics Laboratory.6,7,34,35
he

r

t

,

-
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VI. TWO SIMPLE APPLICATIONS

In this section we give two simple applications of o
gyrokinetic formalism for arbitrary wavelength electroma
netic modes. As the first application, we derive the lo
dispersion relation of electrostatic drift waves in slab geo
etry. Then we recover the classical ideal MHD result of t
internal kink mode in a straight tokamak. More interesti
applications such as global drift modes, internal kink mod
in toroidal geometry, and TAE modes will be covered
future publications.

For the local dispersion relation of electrostatic dr
waves in slab geometry, we employ the electrostatic limit
Equation~33!,

S ]

]t
1Ub•¹ D f j2

c¹f3b

B
¹F0 j2ej¹f•bU

]F0 j

]«
50, ~85!

whose solution is given by
f j5F0 j

ueuf
Te

Fv* e~12 3/2h j !2v1kiUS 11
Teej

Tj ueu D1v* eh j

«

Tj

v2kiU
11G , ~86!
he
tic
id
yro-
s us

ink
lt

r-

in

n,
al
ex-
where v* j5(k'T/mV) jdnj 0 /dx is the diamagnetic drift
frequency, andh j5d ln Tj /d ln nj0. This solution is substi-
tuted in the quasineutrality condition,

(
j

ejF E f j~X,U,m,t !2pBdmdU1
ej

mj
¹'

nj 0

V j
2

¹'fG50,

~87!

to derive the dispersion relation. Normally,F0 j can be as-
sumed to be Maxwellian in the gyrocenter coordinates. T
the density response in the gyrocenter coordinates can
expressed in the following familiar form:

E f j~X,U,m,t !2pdmdU5
ueuf
Te

n0 j H 2
Teej

Tj ueu
2

Z~j!

kiv t

3Fv* e~121/2h j !1v
Teej

Tj ueuG
2

v* eh jj

kiv t
@11jZ~j!#J , ~88!

wherej5v/kiv t . It is sufficient to only keep the gyrocente
residue of ions, becauseVe

2me@V i
2mi . As usual, electrons

are assumed to be hot, that isje!1, and ions to be cold, tha
is j i@1. We also assume thatTe5Tj . Working out the al-
gebra straightforwardly, we obtain the dispersion relation

12
v* e

v
1bs2

1

2S kiCs

v D 2S 12
v* pi

v D
5

iAp

kiv te
@v* e~12he/2!2v#, ~89!

wherebs5Tek'
2 /(miV i

2). bs comes directly from the gyro
n
be

center residue which is due to the polarization drift in t
perturbed time-dependent electrical field. Without the kine
correction on the right hand side, it is the well-known flu
result. We emphasize that the appearance of the ion g
center residue in the quasineutrality condition guarantee
a complete recovery of the fluid result.

The second application here is the classical internal k
mode in a straight tokamak. The familiar ideal MHD resu
from the energy principle can be summarized as follows:

m2Þ1 all modes are stable toO~e0!,

m51 H q~r 50!.1/n stable toO~e0!,

q~r 50!,1/n neutral toO~e0!,

unstable toO~e2!.

In the straight tokamak approximation, all poloidal ha
monics are decoupled. Our GKM gives

O2

R0
2

1
Ss

R0
4

1
4p iv

c2 (
j

eE vd•¹ f d3v50. ~90!

Because*vd•¹ f d3v is the smallest order term appearing
the equation, we can use the lowest order solution off here.
The lowest order solution forf from the GKE is

f 5
e

T

v2v*
v2kiU

F0S f2
kiU

v
c i D1

]F0

]«
H1 . ~91!

Substituting this solution into the quasineutrality conditio
ignoring all the FLR effects, and making use of the usu
cold-ion and hot-electron expansions, we easily get the
pected relationship betweenc i andf,

c i5f. ~92!
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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This is consistent with ideal MHD in which

E5
1

c
v3B. ~93!

It is obvious that

Ei52¹ if2
1

c

]Ai

]t
52¹ i~f2c i!50. ~94!

Thereforef5c i in the ideal MHD limit.
When the solution forf and the relationship betweenf

andc i are substituted into Equation~90!, the eigenequation
is formed:

1

R0
2 @v2L1~f!1L2~f!#1

1

R0
4FSs~f!2

R0
28pp08~r !q8~r !f

B0
2q3~r !

G
50, ~95!

where

L1~f!52
1

vA0
2 F1

r

d

drS rr
df

dr D2r
m2f

r 2 G , ~96!

L2~f!5R0
2F1

r

d

drS rk i0
df

dr D2ki0
2 m2f

r 2
2

1

r

dki0
2

dr
fG ,

~97!

and

ki0[
1

R0
S n2

m

q D . ~98!

Performing the operation*0
adrrf on Equation~95!, we

get

v2

vA0
2

5
dW

E
0

aF rrS df

dr D 2

1r
m2f2

r Gdr

, ~99!

where

dW5dW21dW4 . ~100!

dW2 is the 2nd order contribution,

FIG. 2. The gyrokinetic result fordW for a straight tokamak.
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dW25R0
2E

0

aki0
2

r F S f2r
df

dr D 2

1~m221!f2Gdr, ~101!

anddW4 is the 4th order contribution,

dW45
21

R0
2 E0

a

rfH Sc
s @f#2

R0
28pp08~r !q8~r !

B0
2q3~r !

fJ dr.

~102!

Using the fact thatL1 and L2 are Sturm–Liouville op-
erators, we can show that if for all trial functionsdW.0,
then all modes are stable; if there exits a trial functionf for
which dW,0, then there is at least one unstable eigenmo

We immediately reach the following conclusions:

~i! If m2Þ1, then the modes are stable withdW
;O(e2).

~ii ! If m51, q(r 50).1/n, then the modes are stab
with dW;O(e2).

For the case ofm51 andq(r 50),1/n @assumingq(r
5a).1/n], there exists a rational surface atr s . We can
choose the trial function as

f~r !5H r , r ,r s ,

0, r .r s .
~103!

It is obvious thatdW250 and

dW5dW4;O~e4!. ~104!

The mode is neutral to the orderO(e2), and the insta-
bility is determined bydW4. For the (m,n)5(1,1) case,
using the familiar family ofq profiles:

q5
~11an!r 2

12~12r 2!11n
, ~105!

we can verify that for a wide range ofn and a, dW4 is
indeed less than zero. Therefore them51 internal kink
mode is unstable whenq(r 50),1. In Figure 2 we plotdW4

againsta andn.
To compare with the ideal MHD result, we also plot th

minimizing dW from the ideal MHD energy principle for the
same case23 ~see Figure 3!. Our kinetic results agree with th
classical ideal MHD results reasonably well.

FIG. 3. The ideal MHD result fordW for a straight tokamak.
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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VII. CONCLUSIONS

The gyrokinetic system for arbitrary wavelength elect
magnetic modes developed in this paper can cover a w
range of phenomena in inhomogeneous plasmas, from
electrostatic drift waves to ideal MHD modes, from the sh
wavelength ballooning modes to the long wavelength k
modes. Even though this system is comprehensive, it is
reasonably accurate. As we have seen, this system is ca
Downloaded 01 Feb 2005 to 198.35.4.131. Redistribution subject to AIP 
-
e

he
t
k
so
ble

of recovering the delicate internal kink mode which cann
be recovered by the existing reduced systems such
Strauss’s reduced MHD. With newly developed symbo
computation facilities and the 2D comprehensive numer
code, our fully kinetic approach enables us to investig
important kinetic-MHD modes self-consistently in great d
tail. It is an effective equation system to use to study
multi-scale-length behavior as well. These topics will be t
focus of our future work and publications.
APPENDIX: EXPRESSIONS FOR TERMS IN THE GKM IN CIRCULAR CONCENTRIC TOKAMAK GEOMETRY

O25S 22 m n

q~r !
1

m2

q~r !2
1n2D c i9~r !2

4 v2R0
2 p r~r !

B0
2

f9~r !1S 2 m n q8~r !

q~r !2
2

2 m2 q8~r !

q~r !3
2

2 m n

r q~r !
1

m2

r q~r !2
1

n2

r D
3c i8~r !1S 24 v2R0

2 p r8~r !

B0
2

2
4 v2R0

2 p r~r !

B0
2 r

D f8~r !1S 22 m n q8~r !

r q~r !2
1

2 m2 q8~r !

r q~r !3
1

2 m3 n

r 2 q~r !
2

m4

r 2 q~r !2

2
m2 n2

r 2 D c i~r !1
4 m2 v2R0

2 p r~r !

B0
2 r 2

f~r !, ~A1!

D1c5S 2~n2 r !2
m r

2 q~r !2
1

m n r

q~r ! D c i9~r !1S 23 n2

2
2

m

2 q~r !2
1

m2

2 q~r !2
2

n

q~r !
1

m n

q~r !
1

m r q8~r !

q~r !3

2
m n r q8~r !

q~r !2 D c i8~r !1S 2~m n2!

2 r
1

m2 n2

r
1

m3

r q~r !2
2

m n

r q~r !
2

m3 n

r q~r !
2

m q8~r !

q~r !3
2

m2 q8~r !

q~r !3

1
2 m n q8~r !

q~r !2 D c i~r !, ~A2!

D1f5
24 v2R0

2 p r r~r !

B0
2

f9~r !1S 210v2R0
2 p r~r !

B0
2

2
4 v2R0

2 p r r8~r !

B0
2 D f8~r !

1S 26 m v2R0
2 p r~r !

B0
2 r

1
4 m2 v2R0

2 p r~r !

B0
2 r

D f~r !, ~A3!

U1c5S 2~n2 r !1
m r

2 q~r !2
1

m n r

q~r ! D c i9~r !1S 23 n2

2
1

m

2 q~r !2
1

m2

2 q~r !2
1

n

q~r !
1

m n

q~r !
2

m r q8~r !

q~r !3

2
m n r q8~r !

q~r !2 D c i8~r !1S m n2

2 r
1

m2 n2

r
2

m3

r q~r !2
2

m n

r q~r !
2

m3 n

r q~r !
1

m q8~r !

q~r !3
2

m2 q8~r !

q~r !3

1
2 m n q8~r !

q~r !2 D c i~r !, ~A4!

U1f5
24 v2R0

2 p r r~r !

B0
2

f9~r !1S 210v2R0
2 p r~r !

B0
2

2
4 v2R0

2 p r r8~r !

B0
2 D f8~r !

1S 6 m v2R0
2 p r~r !

B0
2 r

1
4 m2 v2R0

2 p r~r !

B0
2 r

D f~r ! , ~A5!
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D2c5S 3 n2 r 2

4
1

m r2

4 q~r !2
2

m n r2

2 q~r ! D c i9~r !1S 3 n2 r

2
2

m2 r

4 q~r !2
1

3 n r

2 q~r !
2

m n r

2 q~r !
2

m r2 q8~r !

2 q~r !3

1
m n r2 q8~r !

2 q~r !2 D c i8~r !1S 3 m n2

4
2

3 m2 n2

4
2

m2

4 q~r !2
2

m3

2 q~r !2
1

3 m n

2 q~r !
1

m3 n

2 q~r !
1

m r q8~r !

q~r !3
1

m2 r q8~r !

2 q~r !3

2
3 m n r q8~r !

2 q~r !2 D c i~r !, ~A6!

D2f52
v2R0

2 p r 2 r~r ! f9~r !

B0
2

1S 24 v2R0
2 p r r~r !

B0
2

2
v2R0

2 p r 2 r8~r !

B0
2 D f8~r !

1S 23 m v2R0
2 p r~r !

B0
2

1
m2 v2R0

2 p r~r !

B0
2 D f~r !, ~A7!

U2c5S 3 n2 r 2

4
2

m r2

4 q~r !2
2

m n r2

2 q~r ! D c i9~r !1S 3 n2 r

2
2

m2 r

4 q~r !2
2

3 n r

2 q~r !
2

m n r

2 q~r !
1

m r2 q8~r !

2 q~r !3

1
m n r2 q8~r !

2 q~r !2 D c i8~r !1S 23 m n2

4
2

3 m2 n2

4
2

m2

4 q~r !2
1

m3

2 q~r !2
1

3 m n

2 q~r !
1

m3 n

2 q~r !
2

m r q8~r !

q~r !3

1
m2 r q8~r !

2 q~r !3
2

3 m n r q8~r !

2 q~r !2 D c i~r !, ~A8!

U2f52
v2R0

2 p r 2 r~r ! f9~r !

B0
2

1S 24 v2R0
2 p r r~r !

B0
2

2
v2R0

2 p r 2 r8~r !

B0
2 D f8~r !

1S 3 m v2R0
2 p r~r !

B0
2

1
m2 v2R0

2 p r~r !

B0
2 D f~r !, ~A9!

Sc
s 5S 2

m2 r 2

q~r !4
1

2 m n r2

q~r !3
2

n2 r 2

q~r !2D c i9~r !1S 23 m2 r

q~r !4
1

6 m n r

q~r !3
2

3 n2 r

q~r !2
1

4 m2 r 2 q8~r !

q~r !5
2

6 m n r2 q8~r !

q~r !4

1
2 n2 r 2 q8~r !

q~r !3 D c i8~r !1S 4 m2

q~r !4
1

2 m4

q~r !4
2

4 m n

q~r !3
2

6 m3 n
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6 m2 n2

q~r !2
2

2 m n3
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2

6 m2 r q8~r !

q~r !5
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q~r !4

2
m2 r 2 q8~r !2

q~r !6
1

2 m n r2 q8~r !2

q~r !5
2

n2 r 2 q8~r !2

q~r !4 D c i~r !, ~A10!

Sf
s 5

4 v2R0
2 p r 2 r~r ! f9~r !

B0
2 q~r !2

1S 12v2R0
2 p r r~r !

B0
2 q~r !2

2
8 v2R0

2 p r 2 r~r ! q8~r !

B0
2 q~r !3

1
4 v2R0

2 p r 2 r8~r !

B0
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1S 28 m2 v2R0
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2 q~r !2

1
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B0
2 q~r !

D f~r !, ~A11!
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Sc
t 5S 3 n2 r 2
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2

m n r2
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2 q~r !2
2
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q~r !
1
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