Roadrunner System Management

Gary Grider & Josip Loncaric, LANL Dave Limpert, IBM Oct. 18, 2007

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFIED

Will Roadrunner Phase 3 be manageable?

Roadrunner Phase 1 is manageable.

Roadrunner Phase 3 is not that different, and we have addressed those differences.

...but how and why?

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Outline

- Experience with the Roadrunner Phase 1 system
- System management enhancements for the Roadrunner Phase 3 system
- Risk reduction through testing
- Hardware inventory
- Power, cooling, space
- Infrastructure, reliability, productivity
- Summary

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Phase 3 system is similar to Phase 1 system

- Roadrunner Phase 1 met requirements
 - Passed over 10,000 acceptance tests
- System management software (xCAT+Warewulf) works well
 - LANL staff gained experience with xCAT+Warewulf on Roadrunner Phase 1 system
 - xCAT: IBM's HPC management solution for Linux and AIX
 - IBM is pursuing xCAT open source license, strategic move helped by partnership with LANL
 - IBM offers organization and support behind xCAT
 - Warewulf is open source (next release renamed Perceus)

• Roadrunner Phase 3 is the same except:

- Each service node must boot & operate 360 Cell blades, 180 Opteron blades, and 12 I/O nodes: 4x workload
- Compute node management: Triblade is 3 hardware components (1 Opteron blade + 2 Cell blades) managed as <u>single</u> logical node
- Distribution of system services (monitoring, control, file access)
- We've addressed these needs in the Roadrunner system management plan

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

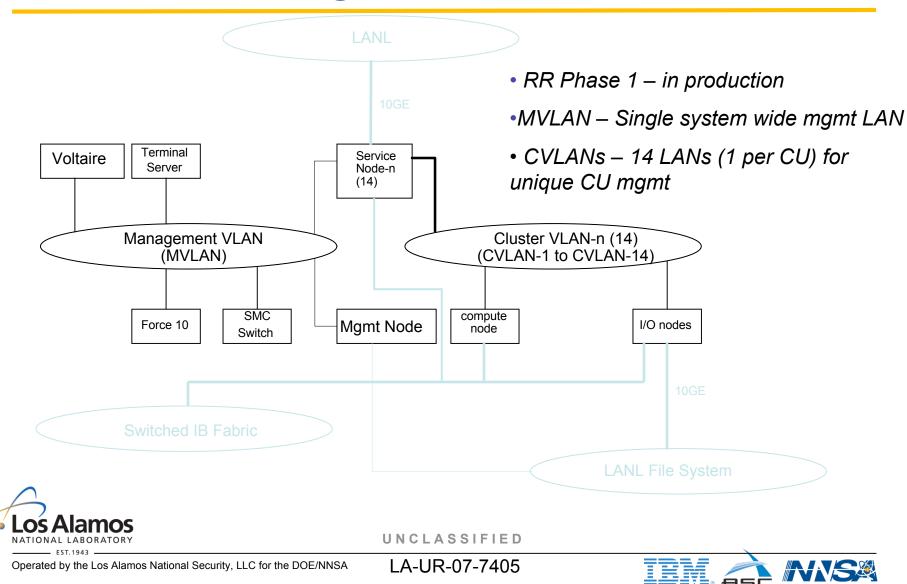
System management plan delivered per contract

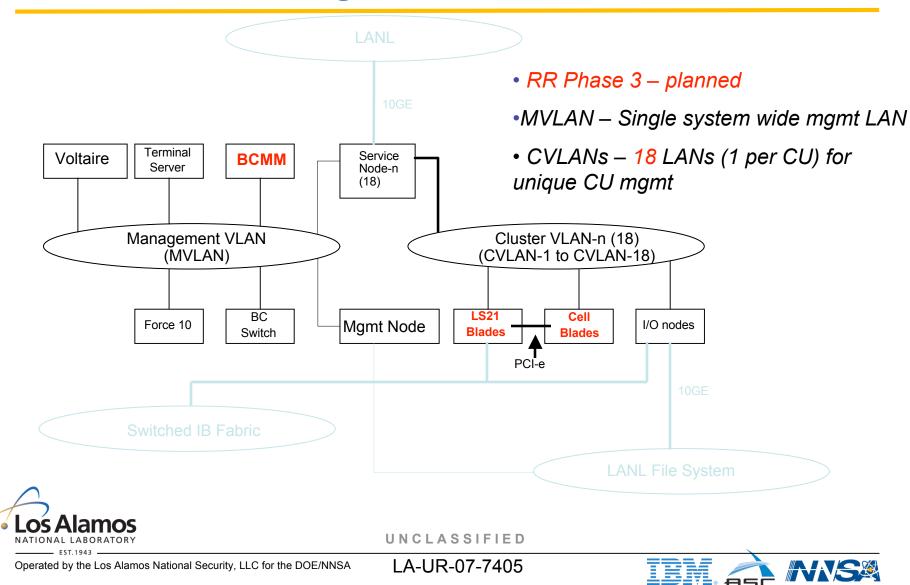
- IBM / LANL partnership
- Scalable system management:
 - One Master node controls Service nodes of 18 connected units (CU)
 - Each Service node controls one CU
 - CU = service node + 12 I/O nodes + 180 triblades
 - Triblade = LS21 (Opteron) + 2*QS22 (Cell blades)
 - I/O node = x3655 (IB, 10G, 4 Opteron cores)
 - Service node = x3655 (10G, 4 Opteron cores, disk)
- Proven xCAT+warewulf clustering tools
 - Widely adopted, including in production at LANL
- Proposed enhancements tested & refined
 - Risks mitigated, details follow

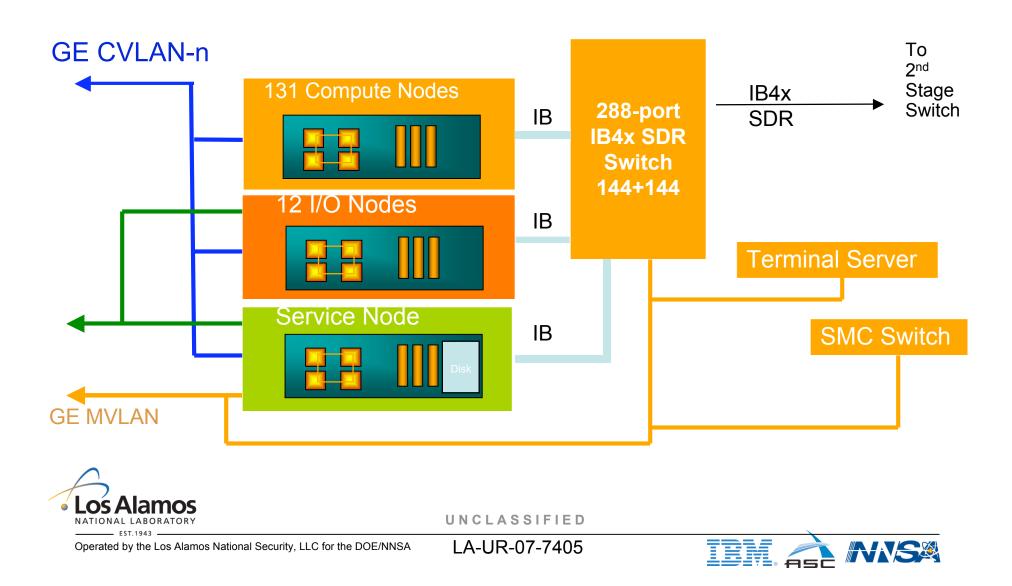
UNCLASSIFIED

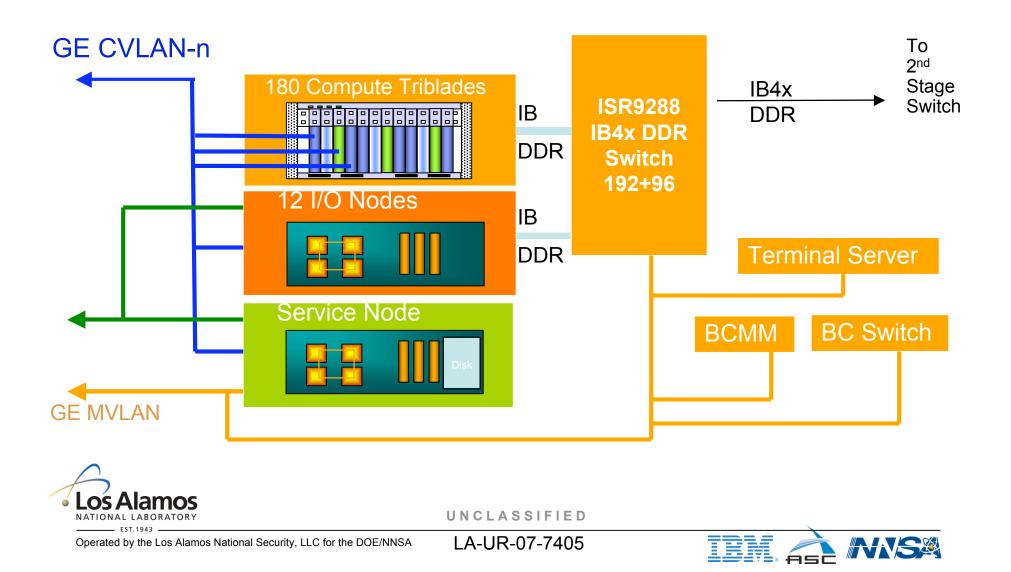
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Key elements of RR Phase 3 management in place


- Management of hybrid compute node's LS21 Opteron host and QS22 Cell accelerator blades with separate physical and combined logical processes
- Management of networks necessary to support system topology
- Remote power on/off and installation/configuration, event/error detection and problem determination.


Operated by the Los Alamos National Security, LLC for the DOE/NNSA


Roadrunner management networks


Roadrunner management networks

Roadrunner Phase 1 CU layout

Roadrunner Phase 3 layout is almost identical

Good I/O node performance measured, new hardware risk mitigated

- New hardware: DDR, new x3655 I/O node, new network cards
- Tested: Good BW & CPU load results on exact Phase 3 hardware:

Test	IB->10G	10G->IB	Units
Unidirectional peak	1014	985	MB/s total
Bidirectional peak	1294	1371	MB/s total
CPU load on I/O node	23%	19%	percent

- Mildly asymmetric IB->10G vs. 10G->IB, but no CPU overload
- Confirmed: I/O node performance exceeds requirements
- I/O software stack needed attention to remove CPU bottleneck

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Booting process provides good performance

- Require: CU boot within 15 minutes
- Risk: 3×180+12=552 system images
 - 4x more systems per service node than Phase 1
 - Deliver possibly 100 GB over 1GbE network, >15 minutes serially
- IBM proposed mitigation: Multicast TFTP boot
 - Single physical system images sent across CVLAN network
 - One image for Cells, one image for Opterons
 - O(1) constant time method, network replicates traffic to nodes
 - Concern: Does mTFTP work reliably?
 - Trust but verify

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Multicast boot operational details

- BIOS initiates PXE boot, gets small kernel using unicast
 - IBM plans to use both PXE and RFC2090 multicast mechanisms
- Client requests large RAM disk image using multicast
- Service node waits 1-30 seconds before multicast
 - Allows more clients to finish unicast stage & subscribe
 - Stragglers will pick up multicast traffic midstream
- Master client ACKs every packet until done
- Next client becomes master & requests missing packets
 Very few packets missed, exceptional cases resolved quickly
- If no more clients, multicast TFTP is done

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Multicast tested, shown as reliable as unicast, will boot large scale systems in constant time

- Test: Reliability
 - 11,500 node reboots =(100 reboots)*(115 nodes in our test cluster)
 - Failures due to PCI or memory errors, no mTFTP protocol failures
 - mTFTP protocol corrected & improved by separating unicast from multicast stages
- Test: Interference
 - NIC filters multicast
 - Nodes don't get interrupts unless they want multicast traffic
- Test: Impact on other activity
 - Node-node netperf sees impact 0.5% or less
- Key observations:
 - Separating unicast from multicast stages improves speed & reliability
 - Multicast and unicast traffic compete at switch ports
 - Booting 115 nodes takes 2-3 minutes using mTFTP, about 2-3x speedup
 - Booting Phase 3 system may take 6-9 minutes (3 distinct images)
 - Time to deliver even large 320 MB images is trivial (13.6 seconds)
 - Expect 50-100x bandwidth gain over unicast at RR Phase 3 scale
 - Parallel 2.5 GiByte/sec demonstrated, expect scaling to ~ 8+ GiByte/s
 - Boot time <u>doesn't</u> grow as number of nodes grows (constant time property)

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Reliable & tight global clock synchronization

- Btime vs. NTP
 - 100x tighter clock tracking with Btime, a lightweight protocol
 - Better resistance to network delays at heavy network load
 - Btime is in production use at LANL, improves system reliability
 - Reasonably correct local clocks required by various timeout logic, timing tools
- Linux kernel 2.6.18 change
 - Timekeeping overhauled
 - New clocksource architecture, tickless kernels
 - Meaning of kernel time structures changed
 - Multi-level clock tracking
 - Btime needs to adapt
- Use NTP until Btime is ready
 - Standard tool, usable until Btime is ready

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Moab scheduler & Torque resource manager

- Moab is the scheduler required by Tri-Labs
- Moab and Torque are in production use on Roadrunner Phase 1
- Function: Organize machine resources for a mix of application development and large production jobs
 - Provide control of machine, users, and jobs
 - Provide interactive and batch user entry interface to the machine
 - Provide user information on machine and job status including job accounting
 - Queue and schedule jobs according to LANL policy
 - Automatically mitigate machine failures reconfiguring resources as required.
- The service nodes will delegate actual scheduling to MOAB on an external management node.

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Other concerns addressed

- Triblade RAM & NIC replacement
 - Can be done by trained LANL operators
 - Return Triblade to IBM only in case of major problems
- Triblade health monitoring
 - Separate error/alerts from Opteron and Cells in Triblade combined into single logical node status
 - Opteron-Cell status communication, Cell-Service node event stream
 - Whole Triblade reboot after failure diagnostics
 - Resource manager responsible for pre/post job cleanup

UNCLASSIFIED

RR Phase 3 will benefit from LANL's centralized system monitoring developed for RR Phase 1

- Roadrunner Phase 1 central monitoring host collects:
 - Event tracking (syslog, snmp, alerts,...)
 - Polled temperatures/voltages/fan speeds & system load
 - Moab scheduler completed jobs data
 - Polled InfiniBand host channel adapter (HCA) status
 - Ethernet fabric anomalies
 - Asset tracking
- Monitoring of Roadrunner Phase 1 is undergoing trials
- Data filtered for presentation to multiple customers
- Objectives
 - Fast problem identification, diagnosis & correction
 - Efficient operation of more hardware without more staff
- Roadrunner Phase 3 will benefit from this technology

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Roadrunner Phase 3 makes petascale possible

- Roadrunner is a petascale system consisting of:
 - 18 connected units, 296 racks total
 - 3240 compute triblades in 1080 chassis
 - 216 I/O nodes
 - 18 service nodes
 - 1 master node
 - 26 InfiniBand 288-port switches
 - Terminal servers, management network switches, etc.
- Roadrunner needs less than 4 MW at full load
- Roadrunner requires less than 1,135 tons of cooling
- Roadrunner footprint is 296 racks
- Roadrunner fits into LANL's existing facilities
 - No further facility upgrades required

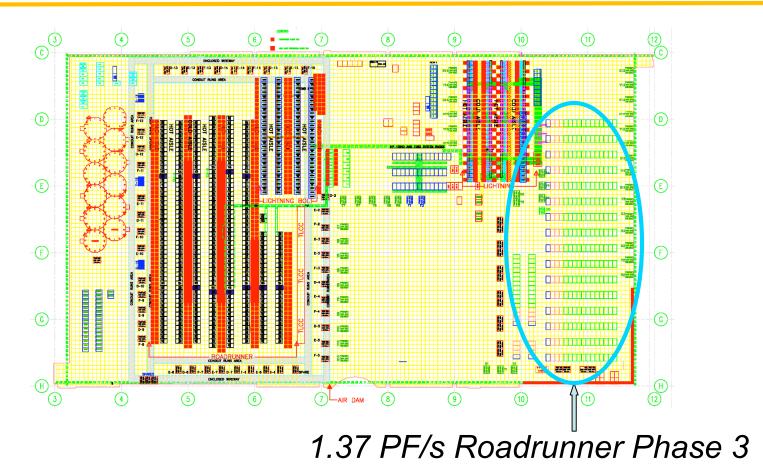
UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Roadrunner Phase 3 is power efficient

System	Power efficiency
Roadrunner Phase 3	0.351 TF/s per kW
BG/L	0.350 TF/s per kW
TLCC	0.197 TF/s per kW
Purple	0.016 TF/s per kW

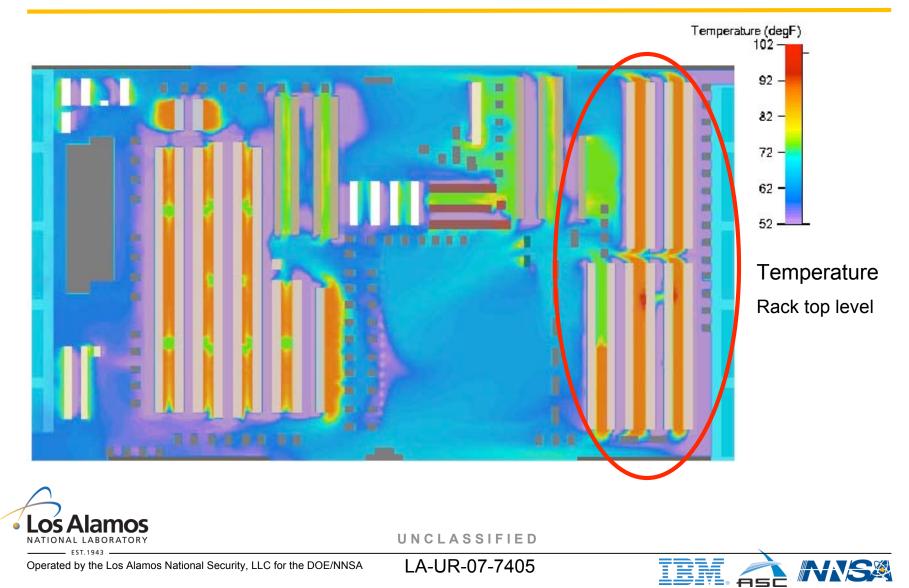
- Roadrunner allows greater performance within LANL's power budget
 - Based on IBM's very conservative power estimates
- "Petascale TLCC" system would need ~80% more power, ~50% more space, and require facility upgrades
 - TLCC = Tri-lab Linux Capacity Clusters to be delivered in 2008 (latest commodity technology)



UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Compact footprint in SCC



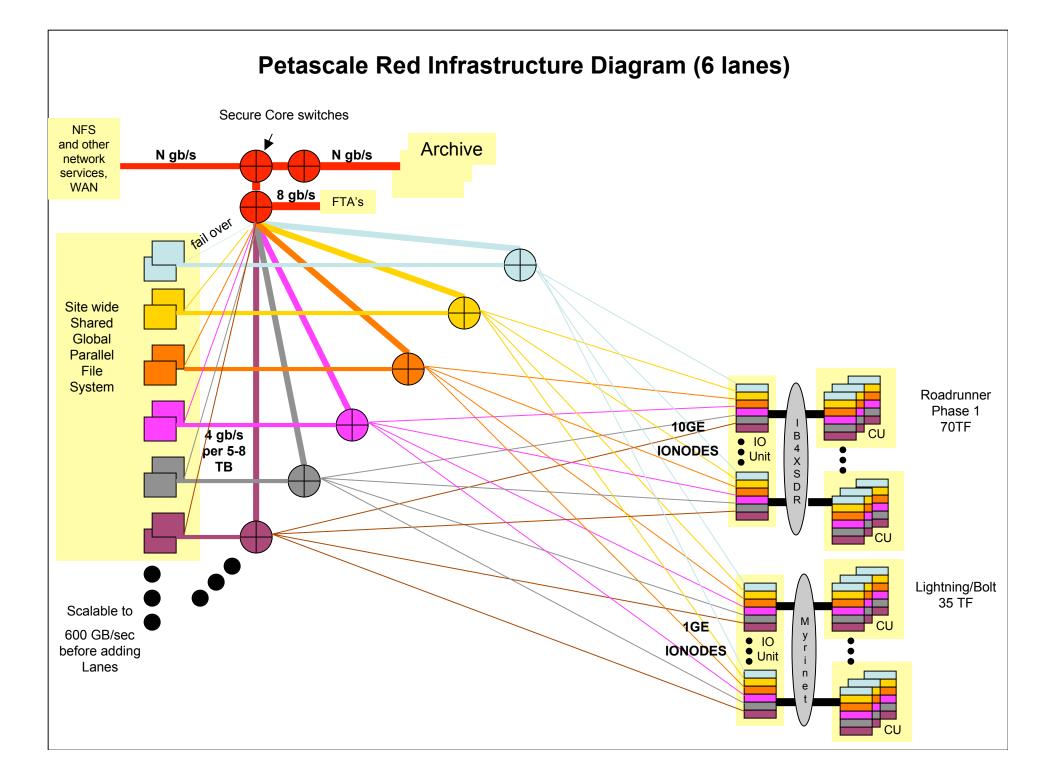
UNCLASSIFIED

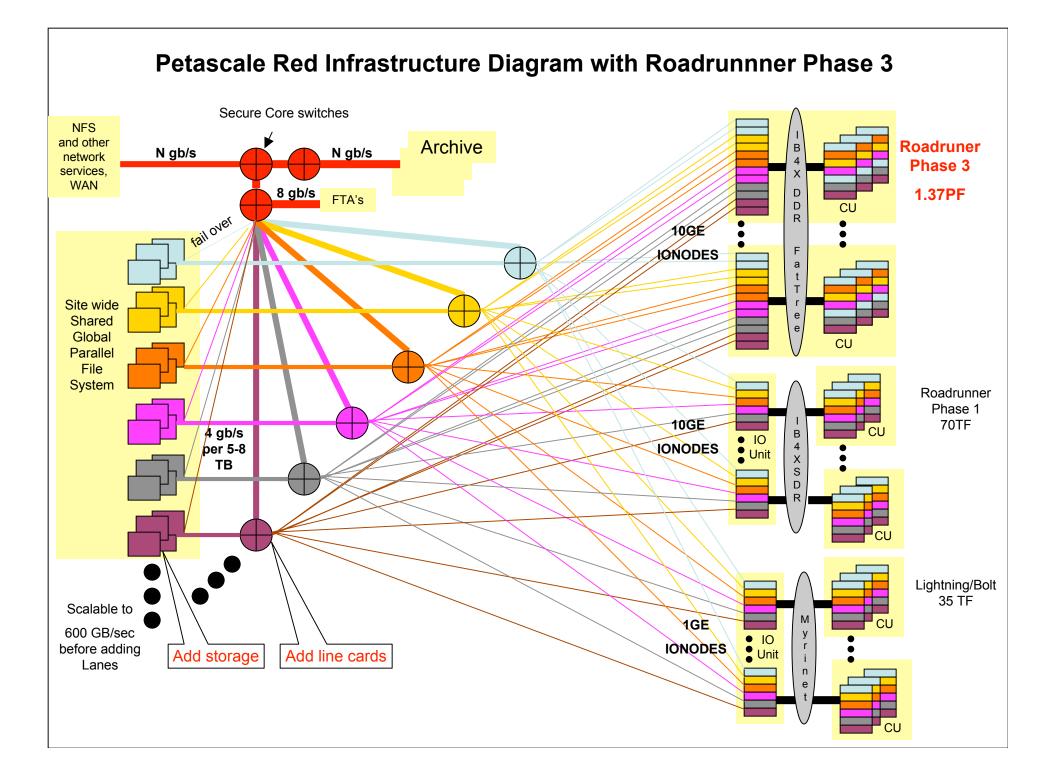
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Roadrunner Phase 3 will be cooled

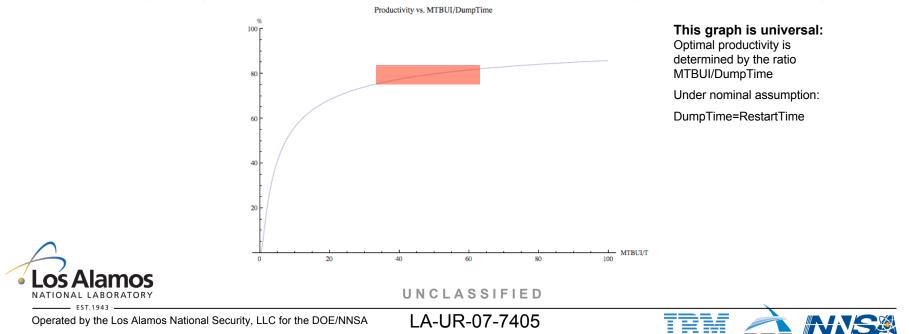
Roadrunner Phase 3 fits into LANL's scalable infrastructure design

- LANL file system and I/O SAN infrastructure is:
 - In place
 - Debugged
 - In use in production
 - Scalable
 - Low risk
- Roadrunner Phase 3 is no different than other systems:
 - Just connect to LANL infrastructure & go



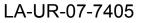

UNCLASSIFIED

LA-UR-07-7405


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Roadrunner Phase 3 will deliver reasonable productivity at petascale

- Active constraint: Time to dump checkpoint files at scale
 - Productivity = SolveTime/<SolveTime+DumpTime+RestartTime+ReworkTime>
 - Don't confuse this definition of productivity with availability (availability target: 100%)
- I/O infrastructure designed to deliver good productivity at optimal checkpoint policy
 - 15-30 minutes to write RR Phase 3 full scale checkpoint files to disks per 2.5-3.5 hrs compute
 - Enough capacity for 15-30 full scale checkpoint files
 - Productivity of 75%-80% expected, based on MTBUI/DumpTime ratio
 - Target range within 5% of maximum return on investment, using optimal checkpointing policy:


Summary: Roadrunner Phase 3 will be manageable

- It is power efficient and will be cooled efficiently
- It will fit into LANL's facilities and infrastructure
- It will deliver good I/O bandwidth, from single CU to full scale
- It will deliver reasonable productivity at petascale, cost effectively
- It will be booted quickly using multicast
- It will effectively manage Triblades as physical and logical entities
- It will be centrally monitored to identify problems quickly
- It will be serviced locally in typical failure cases

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFIED

Roadrunner System Management: Abstract

Roadrunner Phase 1 is a 70 TeraFLOP/s Opteron cluster already in production. Roadrunner Phase 3 will be a similar but larger 1.37 PetaFLOP/s cluster of hybrid Triblade nodes, each consisting of an Opteron blade and two Cell blades. System management of Roadrunner Phase 3 will address those differences, and use methods already proven on the Phase 1 system. Risks have been reduced by testing proposed system management enhancements, and showing that the Phase 3 system can be productive within LANL's power, cooling, space, and I/O infrastructure capabilities.

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

