
 1

The Mars Rover Spirit FLASH Anomaly
Glenn Reeves
Tracy Neilson

Jet Propulsion Laboratory (JPL)
Pasadena, CA 91109

818-393-1051
Glenn.E.Reeves@jpl.nasa.gov, Tracy.A.Neilson@jpl.nasa.gov

Abstract—The Mars Exploration Rover “Spirit” suffered
a debilitating anomaly that prevented communication
with Earth for several anxious days. With the eyes of the
world upon us, the anomaly team used each scrap of
information, our knowledge of the system, and sheer
determination to analyze and fix the problem, then return
the vehicle to normal operation. This paper will discuss
the Spirit FLASH anomaly, including the drama of the
investigation, the root cause and the lessons learned from
the experience.1

TABLE OF CONTENTS

1. INTRODUCTION ..1
2. SEQUENCE OF EVENTS ...2

SOL 18...2
SOL 19...3
SOL 20...3
SOL 21...5
THE NEXT 11 SOLS..6

3. THE ROOT CAUSE ..7
DOS FILE SYSTEM USAGE...7
DOS LIBRARY DESIGN FLAW..8
CONFIGURATION ERRORS..8
REPETITIVE RESET...9
UNFORTUNATE SIDE EFFECTS9

4. HINDSIGHT IS 20-20...9
SOL 18 REVISITED ...9
SOL 19 REVISITED ...10
SOL 20 REVISITED ...10
SOL 21 REVISITED ...10

5. CONTRIBUTING FACTORS & LESSONS LEARNED........10
COMPRESSED SCHEDULE ...10
INCOMPLETE DEVELOPMENT11
UNANTICIPATED BEHAVIOR ..11
INADEQUATE TELEMETRY ...12
TEST PROGRAM DESIGN ..13
TEST DATA REVIEW ..13
BUILD FOR THE UNEXPECTED......................................14
OTHER LESSONS..14

6. OPERATIONAL & FSW CHANGES14
7. ACKNOWLEDGEMENTS ..15
8. CONCLUSION ...15
9. REFERENCES ..16
10. BIOGRAPHY ...16

1 0-7803-8155-6/04/$17.00©2004 IEEE

1. INTRODUCTION

NASA’s Mars Exploration
Rovers (MER) project
landed two rovers, Spirit
and Opportunity, on Mars
on January 4 and January
25, 2004, respectively,
where they continue to
operate in extended mission
mode as of October 2004.

An anomaly occurred on the MER-A vehicle, Spirit, on
Sol2 18, or January 21, 2004, which precluded normal
operation of the vehicle. The anomaly is now well
understood and changes have been made to both the
operational procedures and the flight software (FSW) to
address the root cause. However, during the anomaly
event period, the team was faced with the daunting
challenge of doing detective work at interplanetary
distances. Individual challenges included very little data
to work with and a vehicle that appeared to behave
differently than designed.

The vehicle remained in this uncontrolled condition until
Sol 21 when the vehicle was commanded into a degraded,
but usable, configuration. Subsequent diagnostic
activities occurred over the next 11 sols. The vehicle was
finally restored to its normal operational state on Sol 32,
and nominal science activities resumed on Sol 33.

The root cause of the anomaly was a design error in the
software module that provides file system services. In
addition, two significant configuration errors
detrimentally affected the overall behavior of the system
once the root cause error occurred.

In addition to the technical factors related to the anomaly,
there are also programmatic contributors and other
lessons learned that became apparent as the anomaly
investigation progressed.

2 A sol is a Martian day, 24 hours 37 minutes long

mailto:Glenn.E.Reeves@jpl.nasa.gov
mailto:Tracy.A.Neilson@jpl.nasa.gov

 2

2. SEQUENCE OF EVENTS

By January 21, the Spirit rover team was euphoric. The
rover had been safely landed, all the complex releases and
deployments went off without a hitch, and we had driven
her off the Lander and onto the Martian surface. Every
science instrument checked out fine and every camera
worked great. We had just settled into the fast turn-
around of nominal mission operations.

A nominal sol consisted of two UHF communication
windows3 with the overhead orbiters (either Odyssey or
Mars Global Surveyor), early in morning and in the
afternoon. Direct-to-earth (DTE) X-band communication
windows around 09:00 local solar time (LST) included
data downlinks and sequence uplinks to the rover for the
daily activities. The rovers are designed to “sleep”
through the night and wakeup autonomously for these
communication windows. During sleep, the rover
electronics, receiver and processor are turned off, but the
mission clock and battery control board (BCB) remain on.
The BCB is responsible for turning the processor back on
and regulating charging the batteries.

Sol 18

Sol 18 Plan

The plan for Sol 18 was for the rover to wake up for an
early morning UHF communication window with the
Odyssey orbiter to downlink yestersol’s data. It would
then return to sleep until 8:30 LST, when it would wake
up again to warm up the actuators on the high gain
antenna (HGA) for the DTE X-band communication
window with Canberra. During the DTE window, a
sequence would be executed to characterize the actuator
that controls a mirror in the Miniature Thermal Emission
Spectrometer (MTES). The purpose of this activity was
to gather calibration data for operating the mechanism at
the cold morning temperatures. The rest of the sol would
be spent brushing a rock with the Rock Abrasion Tool
(RAT). Afternoon DTE and UHF windows were
scheduled onboard to downlink the engineering and
science data.

Sol 18 Observations

The early morning UHF window telemetry showed no
problems and the 9:00 LST DTE window started right on
time, initially indicating that the vehicle was healthy. The
operations team began the uplink of the sequences.
Eleven minutes into the window, telemetry showed that

3 The MER vehicles have pre-commanded communication windows.
The ground specifies the start time, configuration, and duration; the
vehicle will autonomously power on (if necessary), prepare the
telemetry, configure the telecommunication hardware, and initiate
transmission.

uplink errors were detected onboard. The downlink
became spotty. At approximately 9:16 LST, the signal
dropped out completely, 14 minutes earlier than
scheduled. At this point, without any more information,
poor weather at the ground station was blamed for the
signal dropout.

We expected a beep4 at either 10:00 LST to indicate the
new master sequence was onboard and running, or at
10:10 LST to tell us the old sequence was still running.
We did not detect the carrier signal for either beep.
Again, we blamed the weather at Canberra for the lack of
any signal.

At 11:20 LST, we commanded a 30-minute high priority
HGA communication window, but no signal was
received. Again, the DSN station was the prime suspect,
but we were beginning to suspect antenna pointing
problems or telecom hardware failures.

At 12:45 LST, we commanded a beep and this one was
received as predicted, both in start time and duration. This
told us that the vehicle was commandable and that none
of the onboard system level fault protection responses,
that change the uplink rate, had executed.

We then commanded the afternoon master sequence to
start and we received the beep embedded in the sequence
per predict. The team breathed a sigh of relief, but it was
short-lived.

Just a half hour later, the team waited for the planned
14:00 LST HGA DTE communication window, but no
carrier signal was detected. Because the beeps (which
worked previously) use the LGA (which does not have to
be pointed by the rover), the speculation was that we
could have an HGA pointing problem. Since we still
hadn’t received modulated data, the problem could still be
the hardware interface board to the radio or possibly a
FSW problem.

During the next two hours, we tested the sequences on the
highest fidelity test beds and checked out a few theories
before the next scheduled UHF window. This was to be
the first UHF window since the trouble started, but
unfortunately the Odyssey orbiter detected no signal from
Spirit. The testing revealed no suspects either.

Since UHF communication uses a completely different
path than the X-band DTE communication, the idea that a
HGA pointing problem was to blame was thrown out

4 A beep is a sequenced short duration communication window that
sends a DTE carrier-only signal through the low gain antenna (LGA).
No data are downlinked to the ground. Beep sequences can be activated
either by an immediate command from the operations team or by
sequence, usually to tell the team that the onboard sequence is running.

 3

because there is no pointing of the UHF antenna. Panic
started to set in for the operations team.

Sol 18 Conclusions

By the end of this sol, we knew the rover had not send
modulated data to the ground, but it did communicate via
carrier signal by command. Potential candidates for the
observed behavior at this time were a low power
situation, an overheat condition, a FSW communication
behavior problem, a problem with the interface card to the
radios or FSW-initiated resets. At this point, we formed
an anomaly team and our now grim project manager, Pete
Theisinger, reported to the press that "a very serious
anomaly" had occurred.

Sol 19

Sol 19 Plan

Sol 19 plans were replaced by anomaly response
activities. Our objectives for Sol 19 were to establish
commandability and to establish modulation in an X-band
communication window.

Sol 19 Observations

The next pre-programmed window was an early morning
Mars Global Surveyor orbiter UHF communication
window at 1:45 LST. This orbiter detected the signal
from Spirit and the window started at the correct time, but
no valid data were received. Two minutes and 20
seconds of repeating pseudo noise (PN) code were the
only data received. This told us that the rover woke up
for the communication window and turned on the UHF
radio, but it did not pass valid data to it so the radio only
transmitted PN codes.

No signal was detected during the scheduled 4:30 LST
Odyssey window, or the pre-programmed 9:00 LST HGA
DTE window.

At this point, the team started commanding beeps again,
as well as listening for the sequenced beeps5. If the
onboard fault protection response to a low power event
had run, it would have added a communication window at
11:00 LST, but no signal was observed at this time. We
finally received a beep, but it was one that we had
commanded at the 7.8125 bps uplink rate, which is the
data rate the onboard fault protection configures when a
major fault has been detected. Note that a single
processor reset will not result in this fault uplink rate.

5 The main (master) sequence usually spanned two sols with the
expectation that the second sol would have its own master sequence that
would terminate the prior sol’s master sequence. The operations team
embedded beeps in each master sequence that would indicate the new
master sequence had taken over or, if the beep was received at a later
time, that the old master sequence was still in control.

This meant that some new event had occurred on the
vehicle that caused the behavior to change. The anomaly
team was mystified.

The pre-scheduled afternoon UHF window failed to
produce a signal, and our commanded DTE window on
the LGA also failed. However, the commands were sent
very close to Earthset and may not have reached the
rover.

Sol 19 Conclusions

We had established commandability, but we had not yet
received modulated telemetry.

We knew a system-level fault that changed the uplink rate
had occurred sometime between Sol 18 13:30 LST and
Sol 19 14:40 LST. The only autonomous responses that
would change the uplink rate were responses to a low
power event, a mission clock failure, an uplink loss fault
or an ‘X-band fault’6. A mission clock failure was
unlikely since the vehicle had tried to communicate at the
correct time for the first morning UHF window, and an
uplink loss response was unlikely because the timer
wasn’t expected to expire until later the next sol. There
were no indications of a power problem from the last
received telemetry on the morning of Sol 18, and an ‘X-
band fault’ should not affect the UHF communication.

FSW initiated resets seemed to be the only likely
behavior for the lack of communication using the two
separate communication paths, but the response to a reset
does not automatically change the uplink data rate.

This was a puzzling sol for anomaly team. Pete
Theisinger briefed the press that “the spacecraft thinks it's
in the fault side of the tree somehow, for some reason.
That would mean that we've got positive power, some
elements of the software are working, … the X-band
system is working, … the transponder; all that stuff is
working, so that would be more information -- good
news.”

Sol 20

Sol 20 Observations

None of the overnight UHF orbiters received any signal
from the rover, and two of our attempts at commanded
beeps in the 9:00 hour failed. However, we were relieved
when we received an autonomous 10 bps signal at the
scheduled 9:55 LST communication window. The carrier

6 An X-band fault can result when the FSW detects transponder failures,
failure of a coax switch or the waveguide transfer switch, failure to turn
on the amplifier, camera mast pointing problems, attitude estimation
failures that drive the HGA beyond its allowable range, or HGA
positioning problems during a communication window.

 4

signal lasted only 10 minutes, but we did receive a single
garbled telemetry packet. The FSW team attempted to
decode it but quickly determined the data were garbage.
However, the time of this attempted communication, and
the data rate, convinced us that an onboard ‘X-band fault’
response had run.

The team commanded an LGA DTE communication
window and we were overjoyed to receive the first set of
telemetry, which unfortunately did not include any health
information. Our hopes were quickly dashed when we
discovered the next few packets contained exactly the
same telemetry. The same information was sent over and
over again. The signal then terminated suddenly, earlier
than scheduled cut-off time.

At 11:50 LST, we commanded another LGA DTE
communication window. This time, the signal and data
for the full window duration were received, and the
telemetry indicated many reset/reboot cycles had
occurred. The multitude of resets explained much of the
observed behavior.

When the FSW detects a severe error, it reacts by forcing
a reset of the flight computer and a re-initialization of the
FSW. If the FSW determines that a reset is necessary
during the FSW initialization process, the FSW delays the
actual reset until a minimum time period has passed. This
process is referred to as a “delayed reset”. The intent is
to allow sufficient time for ground intervention.

When the delayed reset time expires, the reset is initiated.
The system keeps track of the number of repetitive resets
and modifies the delayed reset time interval. The boot
logic part of the software also keeps track of the number
of initialization attempts and is designed to load and start
alternating copies of the FSW with each reset. By design,
the time period between resets is set to a fifteen minute
delay for the first severe error, fifteen minutes for the
second, and then one hour for the third. This pattern then
repeats (see Figure 1). Commands can be processed and
communication windows can occur during the delayed
reset period.

15 60 1515 15

Repetitive error occurs during early initialization each time

Actual reset is delayed to allow ground intervention

Resets

Figure 1: Delayed reset behavior

At this point, the telemetry confirmed that the ‘X-band
fault’ response had executed, and had changed the uplink

data rate to 7.8125 bps. We quickly deduced this was
caused by the fact that the FSW marks the encoder
position knowledge as “unknown” during actuations
(saving precise position knowledge would have required
too many EEPROM writes) and one of the resets had
occurred during an HGA move. When the FSW booted
back up, it recovered the stored encoder positions from
EEPROM. When the next scheduled HGA
communication window started, the window failed
because the encoder positions were “unknown” and the
FSW could not point the antenna. The FSW declared an
‘X-band fault’, which aborted the window, changed the
uplink rate to 7.8125 bps and converted subsequent X-
band communication windows to 10 bps using the LGA.
Our mystery of why the behavior changed between the
Sol 18 afternoon and Sol 19 afternoon was solved.

But Spirit threw us another puzzle. The power and
thermal telemetry indicated higher temperatures and a
lower battery state-of-charge than predicted (given the
nominal loads and nominal solar array current). This
indicated that the rover electronics had been on much
longer than expected and the vehicle had possibly not
shut down overnight. The vehicle should have
autonomously shut down the processor and electronics
each afternoon around 15:30 LST to save power and then
autonomously woken up at approximately 9:30 LST each
morning via solar wakeup (when the solar array current
reaches 2.0 amps for the first time each sol).

The telemetry also indicated that the MTES
characterization sequence on Sol 18 never completed.
This information helped pinpoint the first reset event to
the first Sol 18 HGA communication window.

At 14:00 LST on Sol 20, the rover performed another pre-
scheduled DTE window at the fault configuration (10 bps
downlink on the LGA), as predicted.

Our priority at this point was to shut the vehicle down
early in the afternoon, in an effort to charge the batteries.
We commanded a shutdown, which terminated the
current communication window, and the loss of signal
occurred at the predicted time. Fifty minutes later, we
commanded a beep at 7.8125 bps to alert us if the
shutdown command did not work, and much to our
disappointment, the beep was received! This information
affirmed our fear that the onboard shutdown process was
not working.

At this point we scrambled to delete the next few
scheduled UHF windows to conserve battery charge, but
these commands did not reach Spirit successfully. The
Earth had set below the horizon.

Quite surprisingly, the Odyssey communication window
at 16:23 LST produced 73 Mbits of telemetry for the full
duration. This was the first UHF window that lasted the

 5

predicted duration since the start of this anomaly. The
telemetry provided additional indications that multiple
resets were occurring and that some of the commands we
sent during the afternoon were not received correctly (due
to a delayed reset occurring in the middle of the
transmission). However, only real-time data generated
during the window were received. The majority of the
telemetry was fill data and no recorded data were ever
received.

At this point, the ops team requested the orbiters to delete
their overnight communication windows to save rover
power. The orbiters turned off their beacons so Spirit’s
transmitter would not attempt to transmit.

Sol 20 Conclusions

By the end of Sol 20, we knew FSW was in a continuous
delayed reset loop. The first reset occurred during the Sol
18 morning DTE window coincident with the MTES
actuator checkout. Both commanded and autonomous
shutdowns were failing and the vehicle probably had not
shut down in a while.

Memory corruption was unlikely because different FSW
copies were being loaded and used. The lack of recorded
data (which are stored in FLASH memory) indicated that
the FSW was not accessing FLASH memory, so our
prime suspects became the FLASH memory, the file
system and the FSW that reads the data files and creates
telemetry for downlink.

Our project manager upgraded Spirit’s condition to
“critical” at the press conference.

Sol 21

Sol 21 Plan

The plan, at Earthrise, was to send a hardware command
to place the Spirit in a “crippled mode”. This command
tells the FSW “do not use the FLASH file system”7.

Sol 21 Observations

Between 8:30 LST to 11:08 LST, we repetitively sent the
CRIPPLED command. No signal was detected at 9:35
LST for the preplanned DTE communication window.
This should have been an FSW-adjusted LGA DTE
communication window at 10 bps. Loss of this window
was not entirely unexpected given that the vehicle could
not shutdown overnight and the batteries may have
drained. This suspicion was confirmed at 11:00 LST

7 The CRIPPLED mode command is one of a few commands that are
processed entirely by the command decode hardware. The command
only sets individual bits in a software accessible register that the FSW
interrogates during initialization to ascertain if any off-nominal
initialization actions are required.

when we received an LGA communication window that
was instigated by the onboard ‘low power fault’ response.

Eight minutes later we forced a reset and commanded a
LGA DTE communication window with a higher data
rate. The telemetry indicated that the BCB hardware fault
protection8 had tripped between 4:28 and 6:15 LST. The
rover woke up 8:57 LST via a solar wakeup (neither the
receiver nor the processor were on until this time).

When the low power condition was detected by the FSW,
it executed the ‘low power fault’ response. The fault
response changed the communications configuration and
attempted to shutdown the vehicle. Since this shutdown
process failed too, the hardware fault protection
embedded in the BCB took the batteries off the bus and
the electronics were finally turned off. Note that the
mission clock is powered directly by the batteries, so the
system did not lose time. Upon solar wakeup, the
onboard FSW fault response eliminated the preplanned
communication windows and created “fault windows” at
11:00 LST.

At 12:20 LST, we commanded the vehicle to shutdown
for 24 hours. Thirty minutes later we commanded a beep
and received no response. Another beep was commanded
but not received, which confirmed that the shutdown was
successful!

Sol 21 Conclusions

The rover had browned out overnight and was now in low
power mode. We could prevent continuous resets by
issuing the CRIPPLED command and we could shut the
vehicle down.

We knew the vehicle would still boot up into the error
state in the morning because the CRIPPLED command
only sets volatile registers, which revert to the nominal
state after the electronics are powered off. The Spirit
rover required manual intervention each sol to restart into
the “CRIPPLED” mode until the FLASH file system
could be repaired. If we had to continue to operate in this
mode, the mission return would be severely impacted due
to an inability to make use of the FLASH file system to
buffer science data products. It would also be impossible
to support the early morning UHF relay windows.

However, at this point, we had regained control of Spirit,
which was extremely important because our other rover
“Opportunity” was due to land on Mars in the next 12
hours! Our Project Manager reported to the media that he
had upgraded Spirit’s condition from "critical" to just
"serious".

8 The BCB is responsible for protecting the batteries from completely
draining and it performed perfectly on this day.

 6

The Next 11 Sols

For the next 11 sols, we attempted to diagnose the precise
cause of the problem, recover science and engineering
data still in the FLASH memory, and return the vehicle to
a science-taking machine. During this time, the press
started to refer to us as us “space-age surgeons”. The
timeline of the anomaly investigation and recovery is
shown in Figure 2.

We were limited by the fact that the vehicle would not
wakeup until at 9:00 LST each sol (on solar wakeup) and
it was only commandable until 15:30 LST when the Earth
set. We could use the afternoon Odyssey orbiter UHF
window, but morning UHF windows would fail because
the vehicle would reboot after 15 minutes. Since all
transmissions drain energy from the batteries, we had to
limit the time the rover could send us data.

An additional challenge was accessing any of the
diagnostic data or the FLASH file system when the
system was in CRIPPLED mode. The team had to invent
new techniques to capture the error cause and make these
diagnostic data available in CRIPPLED mode.

So each sol, a number of activities were performed in
parallel, including collecting telemetry, planning the next
sol’s commands, exploring theories in the test bed,
validating commands in the test bed, communicating with
the management and the media and trying to get some
sleep

Opportunity
Landing

Opportunity
Landing

1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030 3131 3232 3333

fir
st

ou
t-o

f-m
em

or
y e

ve
nt

“X
-b

an
d f

au
lt

”
su

cc
es

sfu
l b

ee
p

at
 fa

ult
 ra

te

M
GS

pa
ss

 -
PN

 co
de

 on
ly

br
ow

no
ut/

en
ter

 lo
w

po
we

r m
od

e

fa
ile

d
co

m
m

an
de

d
sh

ut
do

wn

fir
st

te
lem

et
ry

 o
f c

ur
re

nt
 st

at
e

co
m

m
an

de
d

cr
ipp

led
 m

od
e

su
cc

es
sfu

l c
om

m
an

de
d s

hu
tdo

wn

reset occurred each
comm window

de
let

ed
 cr

uis
e

da
ta

 p
ro

du
cts

&
bo

ote
d i

nto
 no

rm
al

m
od

e

task trace
attempts

file system debug
erase FLASH
procedure
design

sh
ut

do
wn

 e
ar

ly
to

 ch
ar

ge
 b

at
te

rie
s

er
as

ed
 &

 fo
rm

att
ed

FL
AS

H
&

bo
ot

no
rm

al

fir
st

tlm
 o

f s
us

pe
nd

ed
 ta

sk

sc
an

 F
LA

SH
 fo

r e
ve

nt
 te

lem
et

ry
ob

ta
ine

d
So

l 1
8

re
co

rd
ed

 te
lem

et
ry

ob
tai

ne
d h

ist
or

y o
f u

nu
se

d m
em

or
y

Re
co

ve
re

d
fro

m
 lo

w
po

we
r m

od
e

pe
rfo

rm
ed

 ID
D/

RA
T/

AP
XS

 a
cti

vit
ies

investigated potential
FSW & hardware
suspects

sta
rte

d
FL

AS
H

file
 d

um
ps

crippled modecrippled modenormal
ops

normal
ops

using FLASH file system
collecting science data

using FLASH file system
collecting science data

fir
st

us
e

of
 H

GA

sta
rte

d
ta

sk
 tr

ac
e

at
te

m
pt

s

Spirit FLASH Anomaly Recovery Timeline

repeating resets
no shutdowns

normal
ops

normal
ops

Sol

PST

 7

Figure 2: Anomaly events and recovery timeline

.On Sol 25, we calibrated the encoders and regained the
use of the HGA, which increased our uplink and
downlink capability. We also took two hazcam images of
the science instruments still on the rock Adirondack. All
of the science instruments and cameras were checked out
in the subsequent sols.

On Sol 27, we deleted a large number of obsolete data
products and their subdirectories left over from the launch
FSW load (called the R7 data products), booted up in
nominal mode and verified that the FSW was no longer
autonomously rebooting. However, we observed
indications that the FLASH file system was still corrupted
and we decided to go ahead with the FLASH erase
procedure.

On Sol 31, we shut down the vehicle early to fully charge
the batteries and to cool down the electronics for the next
sol, where Spirit need to be awake for nine hours. Early
on Sol 32 at 6:30 LST, we manually booted the rover into
CRIPPLED mode and copied the FSW image into RAM
(for insurance). We then ran a sequence that erased small
chunks of FLASH at a time, and then checked both FSW
images (to ensure we didn’t inadvertently corrupt or
delete an image) after each chunk. This conditional
sequence would have stopped if any command failed or if
any FSW image corruption was detected. We chose this
conservative strategy because there was a small fear that
the root cause may still be in the FLASH devices or
interface hardware.

After we verified the sequence completion and
checksums, we commanded a FLASH file system format
and booted back into normal mode. The FLASH memory
was formatted as the system booted back up. The format
was successful and the FLASH file system was ready to
go.

At this point, the anomaly team declared victory and
make plans for a work-free weekend!

3. THE ROOT CAUSE

DOS File System Usage

The MER FSW uses a commercial operating system and
capitalizes upon many of the bundled functions and
libraries that are included. Among these functions is a
bundled file system library, which supports a DOS file
system structure (referred to as the “DOS Library”). The
file system model provides a very convenient and

intuitive interface for many onboard functions. It is also
straightforward to support in a test and simulation
environment when real hardware is not available.

There are multiple file systems onboard the vehicle with
partitioning to accommodate both differences in use and
differences in the underlying storage media. There are no
traditional disk drives on the vehicle. Each file system
has RAM, EEPROM, or FLASH as the underlying
storage media. Table 1 describes the onboard file systems.

The DOS Library module uses the operating system I/O
services to interact with the physical memory devices via
a device driver layer. Each memory type has its own
device driver. In the case of the FLASH file system, an
additional service layer provides management for erasure,
write leveling, reading and writing.

Table 1: Onboard file systems

Name Underlying
Memory
Type

Size Purpose

Ram File
System

RAM 4
Mbytes

Temporary
storage of
uplinked files

Temporary
File System

RAM 2
Mbytes

Temporary
data product
store

FLASH File
System

FLASH 224
Mbytes

Science and
engineering
data products

Primary
Sequence

EEPROM 700
Kbytes

Sequence
storage

Secondary
Sequence

EEPROM 700
Kbytes

Redundant
Sequence
storage

Primary
DPT

EEPROM 50
Kbytes

Downlink
Table Storage

Secondary
DPT

EEPROM 50
Kbytes

Redundant
Downlink
Table Storage

The DOS file system use on MER includes the use of
many subdirectories as an organizing mechanism. Every
file is stored in a subdirectory (no regular files are stored
in the “root” directory). The primary telemetry
mechanism is through the use of “data products” (see Ref.
[2]). Data products are effectively files that contain the
engineering or science data of interest plus a metadata file
containing ancillary information (time of collection,
vehicle orientation, etc.).

 8

DOS Library Design Flaw

A design flaw exists in the DOS Library. The error is in
how the DOS Library logic represents deleted files
internally and how this impacts the size of the interlinked
data structures held in the DOS Library private memory
area.

The DOS Library module creates an interlinked collection
of data structures9 in the flight computer memory to
represent the file system structure (directories, sub-
directories, number of files in directories, etc.). The
initial memory space for this data structure collection is
allocated out of the free memory space at initialization
time. The DOS Library logic replies on the services of
another bundled OS service (“Mem Library”) to manage
this private space.

When a file or a sub-directory is created, this internal
representation of the file system structure is updated (as is
the file system itself in FLASH). As the file system
structure expands, one or more additional memory
allocations, from the private area, will be required to
provide the space for new elements of the data structure
collection.

A DOS subdirectory is nothing more than a file itself
except that it is specially structured as an array10 that
contains the information about the files and the
subdirectories. The information contained within an array
element includes the file name, attributes, date/time, file
size, and a pointer to the starting cluster of the file (a
cluster is the smallest unit of space that can be allocated
to a file). When a subdirectory is first created, all of the
array elements are initialized to the unused state (all zero
values). As files are created in the subdirectory, the array
is searched in a linear fashion until the first unused (or the
first deleted) entry is found; the information for the new
file is then placed in that entry. Never-used entries and
entries for deleted files are treated differently. When a
file is deleted, the only action performed is to change the
value of the first letter in the file name to a special value
(the infamous hex byte code value E5h). This is a special
tag that tells the system "this file has been deleted".

The DOS Library logic manages both the actual file
system (on the FLASH) and the private, RAM resident,
internal data structure collection in parallel. The internal
data structure collection is created when the file system is
“mounted” during initialization and then updated as file
interactions occur. This data structure collection is not
retained when the vehicle is turned off but it is always
recreated when the processor is turned back on. When the
file system mount action occurs during initialization, the

9 This was done to optimize performance.
10 This is the simplistic description. The detailed description can be
found in Ref [1].

entirety of the file system structure is traversed in order to
build the initial representation. Each subdirectory is read
from the “disk” and traversed in order to create its
internal data structure collection. Directory list entries
that have never been used do not require any
representation in the data structure collection (since they
never represented a file) and no memory space is required
for them. However, deleted file entries are represented.
The premise being that this is necessary to maintain the
symmetry between the internal representation and the
actual file system structure.

The unfortunate consequence of this feature is that when
a file is deleted, the space in the file system (on FLASH)
is freed but the internal data structure space is still
required. In fact, the space is never released.

Effectively, the “high water mark” or the maximum
number of files that ever existed in the subdirectory is the
direct contributor to the amount of memory space that
will be needed to represent the file system structure.

The ramification of this is twofold: simply deleting files
does not reduce the amount of memory needed to
represent the file system structure, and the total size of the
file system structure (from the perspective of the total
memory space required to represent it) is not expressed
by the number of current files but by the sum of the
maximum number of files that had ever existed in each
subdirectory.

Configuration Errors

Two configuration errors conspired to place the system
into a condition where it would reset repeatedly and also
prevented the vehicle from autonomously shutting itself
off to save power. A configuration error in the DOS
Library module allowed the size of the private memory
area to expand by allocating additional space from the
free system space11. A configuration error in the Mem
Library module silently resulted in a suspended task when
the request for additional memory could not be satisfied.

DOS Library Configuration Error

As described above, the DOS Library module creates an
interlinked collection of data structures in the flight
computer memory to represent the file system structure.
The initial amount of memory that was allocated to this
private area is one of the DOS Library configuration
parameters. In the MER configuration, this initial size is
256K bytes. When new elements need to be added to the
internal data structure collection, a block of free space
from this area is used for the new element(s). The DOS
Library contains logic that allows for the expansion of the

11 The free system memory is > 4 Mbytes normally

 9

private memory space by requesting additional space
from the free system memory area. However, the MER
development guidelines do not permit dynamic memory
allocation. Unfortunately, this configuration parameter
was not set correctly; expansion was permitted. In this
erroneous configuration, when the initial space was
exhausted, the DOS Library logic made allocation
requests in increments of 256K bytes from the free
system memory. This new space is added to the DOS
Library private area. Additionally, a second parameter
can be set to limit the growth to a maximum amount of
space. This second parameter was also in error; no limit
was specified. These configuration errors allowed all of
the free system memory space to be consumed.

Mem Library Configuration Error

Another configuration error existed in the Mem Library
module. The Mem Library module logic provides a
simple malloc/free service12 and operates using memory
space previously provided to it. When an application
program (or library) requests a buffer of a given size, the
Mem Library provides a pointer to a buffer of that size.
The available space shrinks accordingly. The actual
process involves the management of a linked list of data
structures that represent both the allocated (in use) space
and the unallocated (free) space. In the MER
architecture, the free system memory is managed using
this service.

By convention, applications are allowed to request
memory allocations only during initialization. This space
is never returned to the free system memory space. No
dynamic allocation and release of system space is
permitted (by convention).

The DOS Library consumed the free system memory
space until no further allocations could be satisfied.
Ideally, when this occurred, the system should have
reacted by failing the file system activity in progress
(such as an file open, file creation, or file write). Instead,
again due to a configuration error, the task performing the
file system activity was silently suspended. The Mem
Library module can be configured to react in various
ways when certain usage errors occur. In the erroneous
configuration, the MEM Library was configured to
suspend any task attempting to allocate space when there
is insufficient free space to satisfy the allocation request.

The suspension of a task is a severe error and is never
supposed to occur. The MER architecture includes a
“software health” function that continuously checks for
suspended tasks. When the health monitor function
identifies a suspended task, it forces a reset of the
avionics electronics, including the flight computer, and
the re-initialization of the FSW.

12 Actually it provides a far more general memory management service.

Repetitive Reset

As described above, each time the software initializes, the
FLASH file system is mounted. This caused the re-
creation of the RAM resident data structures, which, in
turn, consumed all of the available memory.
Subsequently, when the FSW attempted to create a new
file in the FLASH file system, insufficient space existed
in the private area (the private area has been expanded
many times already). The DOS Library attempted to
allocate additional space from the free system memory,
but the request could not be satisfied. The task that
attempted to add the file was suspended. The FSW
“health check” mechanism detected the suspended task
and signaled a severe error, resulting in a reset (after the
delay period).

The cycle then repeated.

Unfortunate Side Effects

An unfortunate side effect of the task suspension was that
the file systems became inaccessible to the other FSW
tasks. The DOS Library logic uses semaphores to protect
critical regions. Unfortunately, the memory allocation
failure occurred within one of these critical regions. With
the task suspended, the access control semaphore was
never released and no other tasks could gain access. This
side effect prevented recorded telemetry from being
produced (the task which reads files from the file system
was blocked attempting access), prevented the shutdown
(the task which controls the shutdown actions could not
idle the file system), and was the cause of the repeating
telemetry (the task which pushes new telemetry data into
the hardware was also blocked).

4. HINDSIGHT IS 20-20

Now that the root cause of the problem is understood and
the overall behavior of the system can be traced, it is
possible to correlate the observed behavior and data with
the actual events that occurred on the vehicle.

Sol 18 Revisited

Three FSW resets occurred on Sol 18. The first was due
to the creation of the large number of motion history data
products that resulted in new files being created in the
FLASH file system. This increase in the number of files
required additional space in the DOS Library private
memory area that led to additional memory allocations
from the system memory pool. When one of these
allocations failed, the Mirror Ram to FLASH (MRF) task
(which creates data product files in the FLASH file

 10

system), was suspended. The health monitoring function
detected the suspension and forced the first reset.

The next reset did not occur for another two hours. A
scheduled communication window contained a HGA
encoder calibration to ensure the HGA is pointed
correctly. Unfortunately this calibration created more
motion history report files, leading to another out-of-
memory event and reset.

The afternoon HGA window failed because the encoders
were left un-initialized following the reset. The on-board
fault protection declared an ‘X-band fault’, aborted the
window and set the communication rates to the fault
configuration.

During the afternoon UHF window, another out-of-
memory event occurred when the FSW autonomously
created a data summary report file13. Earlier commanded
beeps on Sol 18 succeeded because no data summary
report file is generated for beeps.

Sol 19 Revisited

When the rover woke up for the early morning UHF
window on Sol 19, another out-of-memory event
occurred. The reset was delayed 15 minutes, so the FSW
continued with the communication window, including
turning on the UHF radio. The reset took place before
any data was pushed to the radio and the FSW turned the
radio off in the next initialization, so the orbiter only
received PN code for only two minutes and 20 seconds.

This is the probable start of the continuous delayed resets
(given the number of resets recorded in telemetry). Many
of the future communication windows were interrupted
because the reset would take place during the setup or
transmission portion of the window.

Sol 20 Revisited

Our first telemetry on Sol 20 was received at the fault
configuration rate and garbled. A FSW reset had
occurred 10 minutes into the window. Due to the size
and management of the hardware buffer space, no valid
data were radiated before the radio was shut off after the
reset. On the next commanded LGA session, 11 complete
transfer frames were transmitted, but they were all
identical. The reason for this repeating nature was the
FSW task that packages frames was blocked from
generating new frames. The radio's transmitter continued
to pump out the last frame that was in its hardware

13 This engineering telemetry data product tells operators which data
products exist. The report is autonomously produced for each
communication window.

buffer. A delayed reset terminated the session after
approximately 20 minutes.

Our next commanded window occurred within the one
hour delayed reset period, so it was not interrupted by a
reset as the other windows had been. Only real-time data
were received because recorded data is stored in FLASH
memory and the FSW could not access it.

The vehicle would not shutdown on Sols 19 and 20
because the task that suspended during initialization held
the semaphore that was needed by the shutdown logic to
gracefully idle the FLASH system. Since the shutdown
logic could not access the semaphore and there was no
timeout or other logic to force the continuation of the
shutdown actions, the shutdown process halted and the
processor was never turned off.

Sol 21 Revisited

The CRIPPLED mode mechanism allowed us to regain
control of the vehicle. This debug feature forces the FSW
to create a file system in RAM with the same logical
device name as the FLASH file system. The file system
created in RAM is empty; there are no residual files and
subdirectories. As result, the memory space necessary is
considerably less, so the FSW was able to complete the
initialization without error.

The system is not as capable in this configuration since
the RAM based file system is 10 times smaller and
volatile. However, all functionality is restored. All of the
application and system software uses the logical file
system name so the change in configuration is completely
transparent to the rest of the software.

5. CONTRIBUTING FACTORS &

LESSONS LEARNED

Although the anomaly has a precise technical cause, there
were other contributing factors in which the cause and
effect relationship is much more subjective. This section
describes these other contributing factors and lessons that
have been identified during and after the anomaly
investigation.

Compressed Schedule

Many of the contributing factors are related to the
compressed development schedule (three years from
concept to launch). The MER project was always
challenged by the tight schedule and the FSW
development was tailored to address this reality. During

 11

the development process there was a continuous
reprioritization of activities and focus. One impact of this
dynamic process was that only the highest priority issues
and problems could be addressed. Several of the
contributing factors can be described as simply lower
priority activities whose completion or completeness
could not be realized.

Incomplete Development

The behavior of the DOS Library module, at least in
regard to expanding the private memory area, was known
by a subset of the FSW development team. This was
identified as a potential problem area and it was
recognized that the behavior of the system would need to
be characterized in order to establish the flight
configuration. The DOS Library configuration
parameters were set with the expectation that over the
course of the test activities, a pattern of use could be
identified that would permit a final configuration to be
identified. The intent was to run the system using the
initial configuration, then gather data to:

• Investigate how often requests for additional memory
occurred (some were expected). A significant
difference from what was expected should have
triggered additional investigation.

• Identify the maximum amount of space ever
allocated.

• Identify any combination of activities or operations
that resulted in the free system space being entirely
consumed. This specific situation never occurred.

This investigation was never completed so the
configuration remained unchanged. No errors were
identified during testing and as result, there was no
immediate need to finalize the configuration.

Lesson: Many lower priority development activities could
not be completed in the development time frame. This
was an accepted risk. There should have been a formal
management of incomplete items that required resolution.
This would have had the beneficial effect of creating a
checklist of items requiring closure and thus would have
insured that this specific investigation was completed.

Unanticipated Behavior

There was a belief among the FSW development team
that the system would not exhibit the behavior that is the
root cause of the anomaly (even though it was known to
be a possibility). This posture affected the priority of
many activities including the investigation of related
problem reports, the analysis of test results, and the

closeout of related investigations. This unfounded belief
was based on a number of factors including:

• A recognition that the DOS Library implementation
will request and release temporary buffer space from
the free system memory during its normal operation.
This is unrelated to the private memory area use.
This is not an ideal characteristic, but the
implementation is correct; no memory leaks occur. It
had the unfortunate side effect of desensitizing the
developers and testers to other similar, but incorrect
behavior, as was seen in the anomaly.

• A belief that the only limitation regarding the use of
the FLASH file system was the total file system
capacity. At the time there was no indication or
knowledge regarding the mismanagement of deleted
files.

• A false impression that the number of files in the file
system would be limited to the number of data
product files that would be allowed to exist. The data
product management software limits the number of
data products to 8192 unique items.

Lesson: Understand the behavior of any Commercial
Off-The-Shelf (COTS) software that is utilized. There
should have been an effort to review the implementation
of the DOS Library module (and others) with an emphasis
on review of the basic logic and function. The vendor
could have participated in these reviews and could have
been tasked to brief the FSW development team on these
functions.

Lesson: Enforce the design guidelines. There was a
design guideline that prohibited allocation of space from
the free system memory space after initialization was
complete. This guideline was enforced for the JPL-
developed software and it should have been enforced for
the COTS software as well.

 12

Lesson: Verify assumptions regarding the expected
behavior. No developer was explicitly assigned to
investigate or review the DOS Library. This allowed the
module to be used without detailed review or scrutiny.
There needed to be a responsible individual to address
any design or test issues.

Inadequate Telemetry

The telemetry important to detecting the underlying
problem was not a part of the normal telemetry process.
The FSW does produce the required information, but it is
telemetered in a format that does not feed into the normal
data analysis tools. In fact, only a few FSW team
members were even aware that the information existed.

Figure 3 shows Spirit’s in-flight telemetry of the free
memory space from launch through recovery. Note we
did not connect the segments on the figure because that
would be misleading regarding the rate of decrease in the
system memory space. Insufficient data exists to
extrapolate when each request for new space occurred.
This data was not examined until the anomaly occurred.

Lesson: The FSW should have included flight telemetry
for resources (such as the free system memory space) so
that the actual and expected behavior of the system can be
compared.

 Figure 3: Flight telemetry of Spirit's free memory space

Free System Memory Space

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

105000000 110000000 115000000 120000000 125000000 130000000

Time (SCLK)

Launch

Surface FSW load
installation

Recovery

Landing

Anomaly

Free System Memory Space

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

105000000 110000000 115000000 120000000 125000000 130000000

Time (SCLK)

Launch

Surface FSW load
installation

Recovery

Landing

Anomaly

 13

Test Program Design

The MER system and FSW test activities were extensive
and comprehensive. The test program included unit,
design, functional, system level, verification, and
validation activities. These test activities were performed
using test beds with various degrees of fidelity including
multiple test beds with hardware in-the-loop
configurations. The test activities were performed by
multiple organizations within the MER project structure.

The project performed several realistic test exercises
intended to demonstrate the performance of the system
and personnel in a realistic flight-like manner. There
were several project operational readiness tests (PORTs)
where the system was exercised in a manner believed to
be representative of the actual flight use. The anomaly
was never seen during these (or any other) test activities.
There are several factors that contributed to this result:

• The operational tests did not exercise the system fully
in a flight-like way. This was because both the
surface operation processes and the FSW were
immature when the tests were done and this limited
the activities that were performed during the test. As
a result, the operational tests did not produce the
diversity of data products or the volume of data
products that were created during the surface
mission.

• The number of files on the flight vehicle on Sol 1
was greater than the number of files on test bed
during the operational tests. Although we attempted
to reproduce the flight-like conditions by walking
through launch, cruise, entry, descent, and landing,
we did not reproduce every turn, maneuver and
communication window performed in flight.

Observation: The operations team exercised the system
in what was considered a “flight-like” manner during the
operational tests. Once the rover reached the surface of
Mars, the experience and training allowed the operations
team to develop activities that exceeded the envelope of
the test activities. It is not apparent that anything other
than a longer duration operational test would have
exposed the anomaly, but a longer operational test (over
11 sols) was impractical within the overall MER
schedule.

Test Data Review

A post-anomaly review of one operational test showed
that the memory leak was evident in the data. Figure 4
shows a portion of the telemetry of free system memory
space and it indicates a memory consumption trend. The
data set is sparse because the telemetry for this data was
set to a low priority and was not consistently telemetered.
Unfortunately, we did not analyze this data during the test
execution or during the post-test data review.

Figure 4: Project operational test 7/9 free system memory space

PORT 7/9 Free System Memory Space

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

128600000 128650000 128700000 128750000 128800000 128850000 128900000 128950000 129000000 129050000

Time (SCLK)

PORT 7/9 Free System Memory Space

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

128600000 128650000 128700000 128750000 128800000 128850000 128900000 128950000 129000000 129050000

Time (SCLK)

 14

Observation: The analysis of this test data by the FSW
team was a lower priority activity when compared to
other activities occurring in the same timeframe.

Lesson: A suite of tests and automated analysis tools
should have been created early in the development
process. The FSW should have included support for
reporting resource usage. The system (FSW, test scripts,
ground support equipment) should have included
(additional) support for collecting, archiving, and
analyzing this information.

Build for the Unexpected

The idea for CRIPPLED mode originated on the Mars
Pathfinder project. Without this capability, the MER
mission may well have been lost.

Lesson: The system design should include the
mechanisms to address both problems envisioned as well
as the unforeseen and “unknown-unknowns”.
Contingency commands and similar mechanisms need to
be included where they can be put to use to resolve both
failures and design errors such as the Spirit anomaly
scenario. Of course, the contingency commands are
insufficient unless the system is robust enough to take the
necessary actions to both maintain a safe configuration
and to let the operations team know what is happening
onboard.

Observation: The MER design placed the primary
responsibility for initiating communication on the rover.
This removed the ambiguity of a situation where no data
or signal is received, which would force the operations
team to blindly attempt to initiate contact. Just knowing
that the rover was attempting to communicate at a
particular time gave us clues as to what was happening
onboard.

Lesson: Build in the ability to continue autonomous
communication, even when onboard fault protection
responses run. The onboard fault responses did initiate
communication at unique times so that even if a full data
set didn’t get through, the time of the communication
attempt described what’s happening onboard.

Other Lessons

Lesson: A different file system type, or a more robust
implementation, is required for future missions. The lack
of compaction for deleted files in the directory structures
is a fundamental flaw for long duration missions.

6. OPERATIONAL & FSW CHANGES

Operational Changes

The problem can be avoided by better oversight of the file
system use, at the cost of a more conservative approach to
gathering science data. Since the amount of memory
consumed is directly related to the structure of the file
system and the number of files, it is possible to monitor
the free memory space and to terminate activities if the
amount of free space drops below a designated limit.

The anomaly team recommended, and the project
adopted, the following changes and guidelines. These
apply to both rovers.

• Monitor the amount of free memory space in the
system. If the remaining space drops to 800 Kbytes
or less, then terminate all science and engineering
activities.

• Aggressively command the deletion of received data
products after they have been received on Earth. The
data management team has reduced the latency for
this action from 48 to 24 hours.

• Remove subdirectories when no more data product
files exist. This action forces the release of memory
used to represent the subdirectory and eliminates the
space utilized for deleted file entries. This
operational guideline became unnecessary once the
FSW was updated in April.

• Permanently upgrade the priority of the data products
that contain the telemetry generated during
initialization that shows the free system memory
space and the results of the autonomous file system
check.

Onboard Post-Anomaly FSW Changes

Several FSW changes were included in the April 2004
FSW load to address the problems and issues discovered
during the anomaly investigation. These changes
included:

• Additional logic to remove the directory list structure
entries for deleted files. This change “compacts” the
directory list structure and thus, removes the “high
water mark” effect. This compaction action runs
during the initialization process before the FLASH
file system is mounted.

• Additional logic to autonomously enter CRIPPLED
mode when multiple resets have occurred. This
autonomous action allows the system to initialize
correctly if another similar anomaly should occur.

Deleted: Similarly, the in-memory
representation of an active file system
directory structure is an unnecessary
complexity that reduces the confidence in
the correctness of the existing
implementation.

 15

• Modifications to the shutdown logic to use the alarm
clock hardware function as a secondary watchdog.
This change forces a power cycle of the avionics
electronics in cases where the FSW cannot perform
all of the shutdown actions. If this occurs during the
night, the vehicle will remain powered off until
sunrise.

• The register set by the CRIPPLED command is
volatile and the value is not retained across power
cycles. The FSW was changed to also examine one
of the spare non-volatile registers bits, so the
operations team may permanently force the system to
initialize in CRIPPLED mode, if necessary.

• Modified the shutdown logic to wait a limited
amount of time for the FLASH file system to become
idle. In the previous FSW version, the shutdown
logic would wait indefinitely. This change addressed
the semaphore/deadlock issue discovered during the
anomaly investigation.

FSW Changes Considered but Not Included

In hindsight, the correct implementation would have been
to limit the private memory area used by DOS Library to
a fixed size. This strategy is consistent with the way all
application memory space on MER is allocated and
managed. In this configuration, the free system memory
would not have been consumed and no out-of-memory
event would have occurred.

However, this change was not incorporated into the new
FSW. This was a considered decision that balanced the
benefit versus risk of performing this optimal change.
These tradeoffs included:

• Although a modification to limit the size of the DOS
Library memory area is straightforward, the change
might expose other, unexplored, behavior when the
private memory space is exhausted. The test
program to verify the overall behavior of the system
in all operational modes would be challenging,
complex, and time consuming.

• The vehicle lifetime is limited. A test program of this
complexity would have significantly delayed the
upload of the new FSW version. The new FSW
version also contained many changes unrelated to the
anomaly that increased the robustness of the system,
optimized the collection and processing of science
data, and enhanced the mobility capabilities of the
vehicle

• The operational changes addressed the necessary
steps to limit the number of active files in the file
system.

7. ACKNOWLEDGEMENTS

The recovery of the vehicle was truly a team effort.
Many members of the operations team, including the
mission managers, the flight directors and the subsystem
teams made extremely valuable contributions to the
recovering from this anomaly.

There is a small group of individuals the authors would
like to recognize for their extraordinary effort: Khaled
Ali, Jeff Biesiadecki, Mike Deliman, Jim Donaldson, Ed
Gamble Jr., David Hecox, Roger Klemm, Todd Litwin,
Cindy Oda, Ed Odell, David Smyth and Joseph Snyder.

The rover design described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics
and Space Administration.

8. CONCLUSION

In January 2004, Spirit suffered an anomaly the prevented
nominal communication for several days. Given every
clue the rover presented us, the anomaly team
successfully diagnosed the problem and recovered this
rover back to perfect health. These clues included when
the rover communicated (and when it didn't), the rates it
used to transmit (pre-planned rates vs. onboard fault
response rates), the type of information it transmitted
(real-time vs. recorded, repeating event reports, PN code),
and the commands to which the rover would respond (as
well as those to which it would not respond).

The root cause was a design error in the file services FSW
module that resulted in an out-of-memory event, causing
a processor reset. During re-initialization, when it would
access the FLASH memory, another out-of-memory event
would occur, so the rover experienced repetitive resets.
This rippled into difficulties communicating with Earth,
as well as the inability to shutdown the solar-powered
rover’s electronics at night to save power.

The predominant factor that led to this error was the
compressed design schedule. Incomplete development,
inadequate telemetry and limited testing were a direct
result of the breakneck development pace. In the end, it
was a dedicated, insightful team that had designed a
system with built-in diagnostic tools, autonomous
communication and robust fault protection that led to the
recovery of Spirit.

 16

9. REFERENCES

[1] Glenn Reeves, Tracy Neilson & Todd Litwin, “Mars
Exploration Rover Spirit Vehicle Anomaly Report,” Jet
Propulsion Laboratory Document No. D-22919, July 5,
2004.

[2] Joseph F. Snyder, David E. Smyth, “Data Management
for Mars Exploration Rovers”, Jet Propulsion
Laboratory Document No. D-30712, July 19, 2004.

10. BIOGRAPHY

 Glenn E. Reeves is a Principal Engineer at the Jet
Propulsion Laboratory. Most
recently he was the Flight
Software Architect and team
leader for the Mars Exploration
Rover project. He also
performed a very similar role
for the Mars Pathfinder
mission. The flight software
architecture he developed for
the Mars Pathfinder mission

has been adapted and used on several subsequent
spacecraft. Glenn’s professional passion is the
development of evolutionary and revolutionary spacecraft
autonomy. His current assignmennt is with the JPL
Office of the Chief Engineer.

Tracy Neilson is a Senior Engineer in the flight systems
engineering section at the JPL.
Her role on the MER project was
fault protection lead and she
designed various onboard
algorithms for the cruise and
surface phases. Tracy’s previous
assignments included launch
behavior specification and on-
onboard fault protection design
for the Deep Space 1 mission (a

project that flight-tested new technologies such as ion
propulsion in deep space and autonomous navigation)
and the international Gravity and Climate Recovery
Experiment (GRACE) mission. She was also the Attitude
and Articulation Control Subsystem lead for the Galileo
mission’s Jupiter orbit insertion and probe relay, and for
the first two years of orbital operations.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

	Sol 18
	Sol 19
	Sol 20
	Sol 21
	The Next 11 Sols
	DOS File System Usage
	DOS Library Design Flaw
	Configuration Errors
	Repetitive Reset
	Unfortunate Side Effects
	Sol 18 Revisited
	Sol 19 Revisited
	Sol 20 Revisited
	Sol 21 Revisited
	Compressed Schedule
	Incomplete Development
	Unanticipated Behavior
	Inadequate Telemetry
	Test Program Design
	Test Data Review
	Build for the Unexpected
	Other Lessons

