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Abstract—The Mars Exploration Rover “Spirit” suffered 
a debilitating anomaly that prevented communication 
with Earth for several anxious days.  With the eyes of the 
world upon us, the anomaly team used each scrap of 
information, our knowledge of the system, and sheer 
determination to analyze and fix the problem, then return 
the vehicle to normal operation.  This paper will discuss 
the Spirit FLASH anomaly, including the drama of the 
investigation, the root cause and the lessons learned from 
the experience.1 
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1. INTRODUCTION 

NASA’s Mars Exploration 
Rovers (MER) project 
landed two rovers, Spirit 
and Opportunity, on Mars 
on January 4 and January 
25, 2004, respectively, 
where they continue to 
operate in extended mission 
mode as of October 2004. 

An anomaly occurred on the MER-A vehicle, Spirit, on 
Sol2 18, or January 21, 2004, which precluded normal 
operation of the vehicle. The anomaly is now well 
understood and changes have been made to both the 
operational procedures and the flight software (FSW) to 
address the root cause.  However, during the anomaly 
event period, the team was faced with the daunting 
challenge of doing detective work at interplanetary 
distances.  Individual challenges included very little data 
to work with and a vehicle that appeared to behave 
differently than designed. 

The vehicle remained in this uncontrolled condition until 
Sol 21 when the vehicle was commanded into a degraded, 
but usable, configuration.  Subsequent diagnostic 
activities occurred over the next 11 sols.  The vehicle was 
finally restored to its normal operational state on Sol 32, 
and nominal science activities resumed on Sol 33. 

The root cause of the anomaly was a design error in the 
software module that provides file system services.  In 
addition, two significant configuration errors 
detrimentally affected the overall behavior of the system 
once the root cause error occurred.  

In addition to the technical factors related to the anomaly, 
there are also programmatic contributors and other 
lessons learned that became apparent as the anomaly 
investigation progressed.  

                                                           
2 A sol is a Martian day, 24 hours 37 minutes long 
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2. SEQUENCE OF EVENTS 

By January 21, the Spirit rover team was euphoric.  The 
rover had been safely landed, all the complex releases and 
deployments went off without a hitch, and we had driven 
her off the Lander and onto the Martian surface.  Every 
science instrument checked out fine and every camera 
worked great.  We had just settled into the fast turn-
around of nominal mission operations.   

A nominal sol consisted of two UHF communication 
windows3 with the overhead orbiters (either Odyssey or 
Mars Global Surveyor), early in morning and in the 
afternoon.  Direct-to-earth (DTE) X-band communication 
windows around 09:00 local solar time (LST) included 
data downlinks and sequence uplinks to the rover for the 
daily activities.  The rovers are designed to “sleep” 
through the night and wakeup autonomously for these 
communication windows.  During sleep, the rover 
electronics, receiver and processor are turned off, but the 
mission clock and battery control board (BCB) remain on. 
The BCB is responsible for turning the processor back on 
and regulating charging the batteries.  

Sol 18  

Sol 18 Plan 

The plan for Sol 18 was for the rover to wake up for an 
early morning UHF communication window with the 
Odyssey orbiter to downlink yestersol’s data.  It would 
then return to sleep until 8:30 LST, when it would wake 
up again to warm up the actuators on the high gain 
antenna (HGA) for the DTE X-band communication 
window with Canberra.  During the DTE window, a 
sequence would be executed to characterize the actuator 
that controls a mirror in the Miniature Thermal Emission 
Spectrometer (MTES).  The purpose of this activity was 
to gather calibration data for operating the mechanism at 
the cold morning temperatures.  The rest of the sol would 
be spent brushing a rock with the Rock Abrasion Tool 
(RAT).  Afternoon DTE and UHF windows were 
scheduled onboard to downlink the engineering and 
science data. 

Sol 18 Observations 

The early morning UHF window telemetry showed no 
problems and the 9:00 LST DTE window started right on 
time, initially indicating that the vehicle was healthy. The 
operations team began the uplink of the sequences. 
Eleven minutes into the window, telemetry showed that 

                                                           
3 The MER vehicles have pre-commanded communication windows. 
The ground specifies the start time, configuration, and duration; the 
vehicle will autonomously power on (if necessary), prepare the 
telemetry, configure the telecommunication hardware, and initiate 
transmission.  

uplink errors were detected onboard.  The downlink 
became spotty.  At approximately 9:16 LST, the signal 
dropped out completely, 14 minutes earlier than 
scheduled. At this point, without any more information, 
poor weather at the ground station was blamed for the 
signal dropout. 

We expected a beep4 at either 10:00 LST to indicate the 
new master sequence was onboard and running, or at 
10:10 LST to tell us the old sequence was still running. 
We did not detect the carrier signal for either beep. 
Again, we blamed the weather at Canberra for the lack of 
any signal. 

At 11:20 LST, we commanded a 30-minute high priority 
HGA communication window, but no signal was 
received. Again, the DSN station was the prime suspect, 
but we were beginning to suspect antenna pointing 
problems or telecom hardware failures. 

At 12:45 LST, we commanded a beep and this one was 
received as predicted, both in start time and duration. This 
told us that the vehicle was commandable and that none 
of the onboard system level fault protection responses, 
that change the uplink rate, had executed.   

We then commanded the afternoon master sequence to 
start and we received the beep embedded in the sequence 
per predict.  The team breathed a sigh of relief, but it was 
short-lived. 

Just a half hour later, the team waited for the planned 
14:00 LST HGA DTE communication window, but no 
carrier signal was detected.  Because the beeps (which 
worked previously) use the LGA (which does not have to 
be pointed by the rover), the speculation was that we 
could have an HGA pointing problem.  Since we still 
hadn’t received modulated data, the problem could still be 
the hardware interface board to the radio or possibly a 
FSW problem. 

During the next two hours, we tested the sequences on the 
highest fidelity test beds and checked out a few theories 
before the next scheduled UHF window.  This was to be 
the first UHF window since the trouble started, but 
unfortunately the Odyssey orbiter detected no signal from 
Spirit.  The testing revealed no suspects either. 

Since UHF communication uses a completely different 
path than the X-band DTE communication, the idea that a 
HGA pointing problem was to blame was thrown out 

                                                           
4 A beep is a sequenced short duration communication window that 
sends a DTE carrier-only signal through the low gain antenna (LGA). 
No data are downlinked to the ground.  Beep sequences can be activated 
either by an immediate command from the operations team or by 
sequence, usually to tell the team that the onboard sequence is running. 
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because there is no pointing of the UHF antenna.  Panic 
started to set in for the operations team. 

Sol 18 Conclusions 

By the end of this sol, we knew the rover had not send 
modulated data to the ground, but it did communicate via 
carrier signal by command.  Potential candidates for the 
observed behavior at this time were a low power 
situation, an overheat condition, a FSW communication 
behavior problem, a problem with the interface card to the 
radios or FSW-initiated resets.  At this point, we formed 
an anomaly team and our now grim project manager, Pete 
Theisinger, reported to the press that "a very serious 
anomaly" had occurred.  

Sol 19  

Sol 19 Plan 

Sol 19 plans were replaced by anomaly response 
activities.  Our objectives for Sol 19 were to establish 
commandability and to establish modulation in an X-band 
communication window. 

Sol 19 Observations 

The next pre-programmed window was an early morning 
Mars Global Surveyor orbiter UHF communication 
window at 1:45 LST.  This orbiter detected the signal 
from Spirit and the window started at the correct time, but 
no valid data were received.  Two minutes and 20 
seconds of repeating pseudo noise (PN) code were the 
only data received.  This told us that the rover woke up 
for the communication window and turned on the UHF 
radio, but it did not pass valid data to it so the radio only 
transmitted PN codes. 

No signal was detected during the scheduled 4:30 LST 
Odyssey window, or the pre-programmed 9:00 LST HGA 
DTE window. 

At this point, the team started commanding beeps again, 
as well as listening for the sequenced beeps5.  If the 
onboard fault protection response to a low power event 
had run, it would have added a communication window at 
11:00 LST, but no signal was observed at this time.  We 
finally received a beep, but it was one that we had 
commanded at the 7.8125 bps uplink rate, which is the 
data rate the onboard fault protection configures when a 
major fault has been detected.  Note that a single 
processor reset will not result in this fault uplink rate. 

                                                           
5 The main (master) sequence usually spanned two sols with the 
expectation that the second sol would have its own master sequence that 
would terminate the prior sol’s master sequence.  The operations team 
embedded beeps in each master sequence that would indicate the new 
master sequence had taken over or, if the beep was received at a later 
time, that the old master sequence was still in control.  

This meant that some new event had occurred on the 
vehicle that caused the behavior to change.  The anomaly 
team was mystified. 

The pre-scheduled afternoon UHF window failed to 
produce a signal, and our commanded DTE window on 
the LGA also failed.  However, the commands were sent 
very close to Earthset and may not have reached the 
rover. 

Sol 19 Conclusions 

We had established commandability, but we had not yet 
received modulated telemetry.   

We knew a system-level fault that changed the uplink rate 
had occurred sometime between Sol 18 13:30 LST and 
Sol 19 14:40 LST.  The only autonomous responses that 
would change the uplink rate were responses to a low 
power event, a mission clock failure, an uplink loss fault 
or an ‘X-band fault’6.  A mission clock failure was 
unlikely since the vehicle had tried to communicate at the 
correct time for the first morning UHF window, and an 
uplink loss response was unlikely because the timer 
wasn’t expected to expire until later the next sol.  There 
were no indications of a power problem from the last 
received telemetry on the morning of Sol 18, and an ‘X-
band fault’ should not affect the UHF communication. 

FSW initiated resets seemed to be the only likely 
behavior for the lack of communication using the two 
separate communication paths, but the response to a reset 
does not automatically change the uplink data rate. 

This was a puzzling sol for anomaly team. Pete 
Theisinger briefed the press that “the spacecraft thinks it's 
in the fault side of the tree somehow, for some reason. 
That would mean that we've got positive power, some 
elements of the software are working, … the X-band 
system is working, … the transponder; all that stuff is 
working, so that would be more information -- good 
news.” 

Sol 20  

Sol 20 Observations 

None of the overnight UHF orbiters received any signal 
from the rover, and two of our attempts at commanded 
beeps in the 9:00 hour failed.  However, we were relieved 
when we received an autonomous 10 bps signal at the 
scheduled 9:55 LST communication window.  The carrier 

                                                           
6 An X-band fault can result when the FSW detects transponder failures, 
failure of a coax switch or the waveguide transfer switch, failure to turn 
on the amplifier, camera mast pointing problems, attitude estimation 
failures that drive the HGA beyond its allowable range, or HGA 
positioning problems during a communication window.  
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signal lasted only 10 minutes, but we did receive a single 
garbled telemetry packet.  The FSW team attempted to 
decode it but quickly determined the data were garbage. 
However, the time of this attempted communication, and 
the data rate, convinced us that an onboard ‘X-band fault’ 
response had run. 

The team commanded an LGA DTE communication 
window and we were overjoyed to receive the first set of 
telemetry, which unfortunately did not include any health 
information.  Our hopes were quickly dashed when we 
discovered the next few packets contained exactly the 
same telemetry.  The same information was sent over and 
over again.  The signal then terminated suddenly, earlier 
than scheduled cut-off time. 

At 11:50 LST, we commanded another LGA DTE 
communication window.  This time, the signal and data 
for the full window duration were received, and the 
telemetry indicated many reset/reboot cycles had 
occurred. The multitude of resets explained much of the 
observed behavior.   

When the FSW detects a severe error, it reacts by forcing 
a reset of the flight computer and a re-initialization of the 
FSW.  If the FSW determines that a reset is necessary 
during the FSW initialization process, the FSW delays the 
actual reset until a minimum time period has passed. This 
process is referred to as a “delayed reset”.   The intent is 
to allow sufficient time for ground intervention.  

When the delayed reset time expires, the reset is initiated. 
The system keeps track of the number of repetitive resets 
and modifies the delayed reset time interval.  The boot 
logic part of the software also keeps track of the number 
of initialization attempts and is designed to load and start 
alternating copies of the FSW with each reset.  By design, 
the time period between resets is set to a fifteen minute 
delay for the first severe error, fifteen minutes for the 
second, and then one hour for the third.  This pattern then 
repeats (see Figure 1).  Commands can be processed and 
communication windows can occur during the delayed 
reset period. 

15 60 1515 15

Repetitive error occurs during early initialization each time

Actual reset is delayed to allow ground intervention

Resets

 

Figure 1:  Delayed reset behavior 

At this point, the telemetry confirmed that the ‘X-band 
fault’ response had executed, and had changed the uplink 

data rate to 7.8125 bps.  We quickly deduced this was 
caused by the fact that the FSW marks the encoder 
position knowledge as “unknown” during actuations 
(saving precise position knowledge would have required 
too many EEPROM writes) and one of the resets had 
occurred during an HGA move.  When the FSW booted 
back up, it recovered the stored encoder positions from 
EEPROM. When the next scheduled HGA 
communication window started, the window failed 
because the encoder positions were “unknown” and the 
FSW could not point the antenna. The FSW declared an 
‘X-band fault’, which aborted the window, changed the 
uplink rate to 7.8125 bps and converted subsequent X-
band communication windows to 10 bps using the LGA.  
Our mystery of why the behavior changed between the 
Sol 18 afternoon and Sol 19 afternoon was solved. 

But Spirit threw us another puzzle.  The power and 
thermal telemetry indicated higher temperatures and a 
lower battery state-of-charge than predicted (given the 
nominal loads and nominal solar array current).  This 
indicated that the rover electronics had been on much 
longer than expected and the vehicle had possibly not 
shut down overnight.  The vehicle should have 
autonomously shut down the processor and electronics 
each afternoon around 15:30 LST to save power and then 
autonomously woken up at approximately 9:30 LST each 
morning via solar wakeup (when the solar array current 
reaches 2.0 amps for the first time each sol). 

The telemetry also indicated that the MTES 
characterization sequence on Sol 18 never completed. 
This information helped pinpoint the first reset event to 
the first Sol 18 HGA communication window.   

At 14:00 LST on Sol 20, the rover performed another pre-
scheduled DTE window at the fault configuration (10 bps 
downlink on the LGA), as predicted. 

Our priority at this point was to shut the vehicle down 
early in the afternoon, in an effort to charge the batteries. 
We commanded a shutdown, which terminated the 
current communication window, and the loss of signal 
occurred at the predicted time.  Fifty minutes later, we 
commanded a beep at 7.8125 bps to alert us if the 
shutdown command did not work, and much to our 
disappointment, the beep was received!  This information 
affirmed our fear that the onboard shutdown process was 
not working. 

At this point we scrambled to delete the next few 
scheduled UHF windows to conserve battery charge, but 
these commands did not reach Spirit successfully.  The 
Earth had set below the horizon. 

Quite surprisingly, the Odyssey communication window 
at 16:23 LST produced 73 Mbits of telemetry for the full 
duration.  This was the first UHF window that lasted the 
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predicted duration since the start of this anomaly. The 
telemetry provided additional indications that multiple 
resets were occurring and that some of the commands we 
sent during the afternoon were not received correctly (due 
to a delayed reset occurring in the middle of the 
transmission).  However, only real-time data generated 
during the window were received.  The majority of the 
telemetry was fill data and no recorded data were ever 
received.  

At this point, the ops team requested the orbiters to delete 
their overnight communication windows to save rover 
power.  The orbiters turned off their beacons so Spirit’s 
transmitter would not attempt to transmit. 

Sol 20 Conclusions 

By the end of Sol 20, we knew FSW was in a continuous 
delayed reset loop.  The first reset occurred during the Sol 
18 morning DTE window coincident with the MTES 
actuator checkout.  Both commanded and autonomous 
shutdowns were failing and the vehicle probably had not 
shut down in a while. 

Memory corruption was unlikely because different FSW 
copies were being loaded and used.  The lack of recorded 
data (which are stored in FLASH memory) indicated that 
the FSW was not accessing FLASH memory, so our 
prime suspects became the FLASH memory, the file 
system and the FSW that reads the data files and creates 
telemetry for downlink. 

Our project manager upgraded Spirit’s condition to 
“critical” at the press conference. 

Sol 21  

Sol 21 Plan 

The plan, at Earthrise, was to send a hardware command 
to place the Spirit in a “crippled mode”.  This command 
tells the FSW “do not use the FLASH file system”7. 

Sol 21 Observations 

Between 8:30 LST to 11:08 LST, we repetitively sent the 
CRIPPLED command.  No signal was detected at 9:35 
LST for the preplanned DTE communication window. 
This should have been an FSW-adjusted LGA DTE 
communication window at 10 bps.  Loss of this window 
was not entirely unexpected given that the vehicle could 
not shutdown overnight and the batteries may have 
drained.  This suspicion was confirmed at 11:00 LST 
                                                           
7 The CRIPPLED mode command is one of a few commands that are 
processed entirely by the command decode hardware.  The command 
only sets individual bits in a software accessible register that the FSW 
interrogates during initialization to ascertain if any off-nominal 
initialization actions are required. 

when we received an LGA communication window that 
was instigated by the onboard ‘low power fault’ response.  

Eight minutes later we forced a reset and commanded a 
LGA DTE communication window with a higher data 
rate.  The telemetry indicated that the BCB hardware fault 
protection8 had tripped between 4:28 and 6:15 LST. The 
rover woke up 8:57 LST via a solar wakeup (neither the 
receiver nor the processor were on until this time).  

When the low power condition was detected by the FSW, 
it executed the ‘low power fault’ response.  The fault 
response changed the communications configuration and 
attempted to shutdown the vehicle. Since this shutdown 
process failed too, the hardware fault protection 
embedded in the BCB took the batteries off the bus and 
the electronics were finally turned off. Note that the 
mission clock is powered directly by the batteries, so the 
system did not lose time.  Upon solar wakeup, the 
onboard FSW fault response eliminated the preplanned 
communication windows and created “fault windows” at 
11:00 LST. 

At 12:20 LST, we commanded the vehicle to shutdown 
for 24 hours.  Thirty minutes later we commanded a beep 
and received no response.  Another beep was commanded 
but not received, which confirmed that the shutdown was 
successful! 

Sol 21 Conclusions 

The rover had browned out overnight and was now in low 
power mode.  We could prevent continuous resets by 
issuing the CRIPPLED command and we could shut the 
vehicle down. 

We knew the vehicle would still boot up into the error 
state in the morning because the CRIPPLED command 
only sets volatile registers, which revert to the nominal 
state after the electronics are powered off. The Spirit 
rover required manual intervention each sol to restart into 
the “CRIPPLED” mode until the FLASH file system 
could be repaired.  If we had to continue to operate in this 
mode, the mission return would be severely impacted due 
to an inability to make use of the FLASH file system to 
buffer science data products.  It would also be impossible 
to support the early morning UHF relay windows. 

However, at this point, we had regained control of Spirit, 
which was extremely important because our other rover 
“Opportunity” was due to land on Mars in the next 12 
hours!  Our Project Manager reported to the media that he 
had upgraded Spirit’s condition from "critical" to just 
"serious". 

                                                           
8 The BCB is responsible for protecting the batteries from completely 
draining and it performed perfectly on this day. 
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The Next 11 Sols  

For the next 11 sols, we attempted to diagnose the precise 
cause of the problem, recover science and engineering 
data still in the FLASH memory, and return the vehicle to 
a science-taking machine.  During this time, the press 
started to refer to us as us “space-age surgeons”. The 
timeline of the anomaly investigation and recovery is 
shown in Figure 2.  

We were limited by the fact that the vehicle would not 
wakeup until at 9:00 LST each sol (on solar wakeup) and 
it was only commandable until 15:30 LST when the Earth 
set.  We could use the afternoon Odyssey orbiter UHF 
window, but morning UHF windows would fail because 
the vehicle would reboot after 15 minutes.  Since all 
transmissions drain energy from the batteries, we had to 
limit the time the rover could send us data. 

An additional challenge was accessing any of the 
diagnostic data or the FLASH file system when the 
system was in CRIPPLED mode.  The team had to invent 
new techniques to capture the error cause and make these 
diagnostic data available in CRIPPLED mode. 

So each sol, a number of activities were performed in 
parallel, including collecting telemetry, planning the next 
sol’s commands, exploring theories in the test bed, 
validating commands in the test bed, communicating with 
the management and the media and trying to get some 
sleep 
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Figure 2: Anomaly events and recovery timeline 

 

.On Sol 25, we calibrated the encoders and regained the 
use of the HGA, which increased our uplink and 
downlink capability.  We also took two hazcam images of 
the science instruments still on the rock Adirondack. All 
of the science instruments and cameras were checked out 
in the subsequent sols. 

On Sol 27, we deleted a large number of obsolete data 
products and their subdirectories left over from the launch 
FSW load (called the R7 data products), booted up in 
nominal mode and verified that the FSW was no longer 
autonomously rebooting. However, we observed 
indications that the FLASH file system was still corrupted 
and we decided to go ahead with the FLASH erase 
procedure.   

On Sol 31, we shut down the vehicle early to fully charge 
the batteries and to cool down the electronics for the next 
sol, where Spirit need to be awake for nine hours. Early 
on Sol 32 at 6:30 LST, we manually booted the rover into 
CRIPPLED mode and copied the FSW image into RAM 
(for insurance).  We then ran a sequence that erased small 
chunks of FLASH at a time, and then checked both FSW 
images (to ensure we didn’t inadvertently corrupt or 
delete an image) after each chunk. This conditional 
sequence would have stopped if any command failed or if 
any FSW image corruption was detected.  We chose this 
conservative strategy because there was a small fear that 
the root cause may still be in the FLASH devices or 
interface hardware. 

After we verified the sequence completion and 
checksums, we commanded a FLASH file system format 
and booted back into normal mode.  The FLASH memory 
was formatted as the system booted back up.  The format 
was successful and the FLASH file system was ready to 
go. 

At this point, the anomaly team declared victory and 
make plans for a work-free weekend! 

3. THE ROOT CAUSE 

DOS File System Usage 

The MER FSW uses a commercial operating system and 
capitalizes upon many of the bundled functions and 
libraries that are included.  Among these functions is a 
bundled file system library, which supports a DOS file 
system structure (referred to as the “DOS Library”).  The 
file system model provides a very convenient and 

intuitive interface for many onboard functions.  It is also 
straightforward to support in a test and simulation 
environment when real hardware is not available. 

There are multiple file systems onboard the vehicle with 
partitioning to accommodate both differences in use and 
differences in the underlying storage media.  There are no 
traditional disk drives on the vehicle.  Each file system 
has RAM, EEPROM, or FLASH as the underlying 
storage media. Table 1 describes the onboard file systems. 

The DOS Library module uses the operating system I/O 
services to interact with the physical memory devices via 
a device driver layer.  Each memory type has its own 
device driver.  In the case of the FLASH file system, an 
additional service layer provides management for erasure, 
write leveling, reading and writing. 

Table 1:  Onboard file systems 

Name Underlying 
Memory 
Type 

Size Purpose 

Ram File 
System 

RAM 4 
Mbytes 

Temporary 
storage of 
uplinked files 

Temporary 
File System 

RAM 2 
Mbytes 

Temporary 
data product 
store 

FLASH File 
System 

FLASH 224 
Mbytes 

Science and 
engineering 
data products 

Primary 
Sequence 

EEPROM 700 
Kbytes 

Sequence 
storage 

Secondary 
Sequence 

EEPROM 700 
Kbytes 

Redundant 
Sequence 
storage 

Primary 
DPT 

EEPROM 50 
Kbytes 

Downlink 
Table Storage 

Secondary 
DPT 

EEPROM 50 
Kbytes 

Redundant 
Downlink 
Table Storage 

 

The DOS file system use on MER includes the use of 
many subdirectories as an organizing mechanism.  Every 
file is stored in a subdirectory (no regular files are stored 
in the “root” directory).  The primary telemetry 
mechanism is through the use of “data products” (see Ref. 
[2]).  Data products are effectively files that contain the 
engineering or science data of interest plus a metadata file 
containing ancillary information (time of collection, 
vehicle orientation, etc.). 
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DOS Library Design Flaw 

A design flaw exists in the DOS Library.  The error is in 
how the DOS Library logic represents deleted files 
internally and how this impacts the size of the interlinked 
data structures held in the DOS Library private memory 
area. 

The DOS Library module creates an interlinked collection 
of data structures9 in the flight computer memory to 
represent the file system structure (directories, sub-
directories, number of files in directories, etc.).  The 
initial memory space for this data structure collection is 
allocated out of the free memory space at initialization 
time. The DOS Library logic replies on the services of 
another bundled OS service (“Mem Library”) to manage 
this private space. 

When a file or a sub-directory is created, this internal 
representation of the file system structure is updated (as is 
the file system itself in FLASH).  As the file system 
structure expands, one or more additional memory 
allocations, from the private area, will be required to 
provide the space for new elements of the data structure 
collection.    

A DOS subdirectory is nothing more than a file itself 
except that it is specially structured as an array10 that 
contains the information about the files and the 
subdirectories.  The information contained within an array 
element includes the file name, attributes, date/time, file 
size, and a pointer to the starting cluster of the file (a 
cluster is the smallest unit of space that can be allocated 
to a file).  When a subdirectory is first created, all of the 
array elements are initialized to the unused state (all zero 
values). As files are created in the subdirectory, the array 
is searched in a linear fashion until the first unused (or the 
first deleted) entry is found; the information for the new 
file is then placed in that entry.  Never-used entries and 
entries for deleted files are treated differently.  When a 
file is deleted, the only action performed is to change the 
value of the first letter in the file name to a special value 
(the infamous hex byte code value E5h).  This is a special 
tag that tells the system "this file has been deleted". 

The DOS Library logic manages both the actual file 
system (on the FLASH) and the private, RAM resident, 
internal data structure collection in parallel.  The internal 
data structure collection is created when the file system is 
“mounted” during initialization and then updated as file 
interactions occur.  This data structure collection is not 
retained when the vehicle is turned off but it is always 
recreated when the processor is turned back on. When the 
file system mount action occurs during initialization, the 
                                                           
9 This was done to optimize performance. 
10 This is the simplistic description.  The detailed description can be 
found in Ref [1]. 

entirety of the file system structure is traversed in order to 
build the initial representation.  Each subdirectory is read 
from the “disk” and traversed in order to create its 
internal data structure collection.  Directory list entries 
that have never been used do not require any 
representation in the data structure collection (since they 
never represented a file) and no memory space is required 
for them. However, deleted file entries are represented.  
The premise being that this is necessary to maintain the 
symmetry between the internal representation and the 
actual file system structure. 

The unfortunate consequence of this feature is that when 
a file is deleted, the space in the file system (on FLASH) 
is freed but the internal data structure space is still 
required. In fact, the space is never released. 

Effectively, the “high water mark” or the maximum 
number of files that ever existed in the subdirectory is the 
direct contributor to the amount of memory space that 
will be needed to represent the file system structure.  

The ramification of this is twofold: simply deleting files 
does not reduce the amount of memory needed to 
represent the file system structure, and the total size of the 
file system structure (from the perspective of the total 
memory space required to represent it) is not expressed 
by the number of current files but by the sum of the 
maximum number of files that had ever existed in each 
subdirectory. 

Configuration Errors 

Two configuration errors conspired to place the system 
into a condition where it would reset repeatedly and also 
prevented the vehicle from autonomously shutting itself 
off to save power.  A configuration error in the DOS 
Library module allowed the size of the private memory 
area to expand by allocating additional space from the 
free system space11.  A configuration error in the Mem 
Library module silently resulted in a suspended task when 
the request for additional memory could not be satisfied.  

DOS Library Configuration Error 

As described above, the DOS Library module creates an 
interlinked collection of data structures in the flight 
computer memory to represent the file system structure. 
The initial amount of memory that was allocated to this 
private area is one of the DOS Library configuration 
parameters.   In the MER configuration, this initial size is 
256K bytes. When new elements need to be added to the 
internal data structure collection, a block of free space 
from this area is used for the new element(s). The DOS 
Library contains logic that allows for the expansion of the 

                                                           
11 The free system memory is > 4 Mbytes normally 
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private memory space by requesting additional space 
from the free system memory area.  However, the MER 
development guidelines do not permit dynamic memory 
allocation.  Unfortunately, this configuration parameter 
was not set correctly; expansion was permitted. In this 
erroneous configuration, when the initial space was 
exhausted, the DOS Library logic made allocation 
requests in increments of 256K bytes from the free 
system memory.  This new space is added to the DOS 
Library private area.  Additionally, a second parameter 
can be set to limit the growth to a maximum amount of 
space.  This second parameter was also in error; no limit 
was specified.  These configuration errors allowed all of 
the free system memory space to be consumed. 

Mem Library Configuration Error 

Another configuration error existed in the Mem Library 
module.  The Mem Library module logic provides a 
simple malloc/free service12 and operates using memory 
space previously provided to it.  When an application 
program (or library) requests a buffer of a given size, the 
Mem Library provides a pointer to a buffer of that size. 
The available space shrinks accordingly.  The actual 
process involves the management of a linked list of data 
structures that represent both the allocated (in use) space 
and the unallocated (free) space.  In the MER 
architecture, the free system memory is managed using 
this service.  

By convention, applications are allowed to request 
memory allocations only during initialization.  This space 
is never returned to the free system memory space.  No 
dynamic allocation and release of system space is 
permitted (by convention). 

The DOS Library consumed the free system memory 
space until no further allocations could be satisfied. 
Ideally, when this occurred, the system should have 
reacted by failing the file system activity in progress 
(such as an file open, file creation, or file write). Instead, 
again due to a configuration error, the task performing the 
file system activity was silently suspended.  The Mem 
Library module can be configured to react in various 
ways when certain usage errors occur.  In the erroneous 
configuration, the MEM Library was configured to 
suspend any task attempting to allocate space when there 
is insufficient free space to satisfy the allocation request. 

The suspension of a task is a severe error and is never 
supposed to occur.  The MER architecture includes a 
“software health” function that continuously checks for 
suspended tasks. When the health monitor function 
identifies a suspended task, it forces a reset of the 
avionics electronics, including the flight computer, and 
the re-initialization of the FSW. 

                                                           
12 Actually it provides a far more general memory management service.  

Repetitive Reset  

As described above, each time the software initializes, the 
FLASH file system is mounted.  This caused the re-
creation of the RAM resident data structures, which, in 
turn, consumed all of the available memory. 
Subsequently, when the FSW attempted to create a new 
file in the FLASH file system, insufficient space existed 
in the private area (the private area has been expanded 
many times already).  The DOS Library attempted to 
allocate additional space from the free system memory, 
but the request could not be satisfied.  The task that 
attempted to add the file was suspended.  The FSW 
“health check” mechanism detected the suspended task 
and signaled a severe error, resulting in a reset (after the 
delay period). 

The cycle then repeated. 

Unfortunate Side Effects 

An unfortunate side effect of the task suspension was that 
the file systems became inaccessible to the other FSW 
tasks.  The DOS Library logic uses semaphores to protect 
critical regions.  Unfortunately, the memory allocation 
failure occurred within one of these critical regions.  With 
the task suspended, the access control semaphore was 
never released and no other tasks could gain access.  This 
side effect prevented recorded telemetry from being 
produced (the task which reads files from the file system 
was blocked attempting access), prevented the shutdown 
(the task which controls the shutdown actions could not 
idle the file system), and was the cause of the repeating 
telemetry (the task which pushes new telemetry data into 
the hardware was also blocked). 

4. HINDSIGHT IS 20-20 

Now that the root cause of the problem is understood and 
the overall behavior of the system can be traced, it is 
possible to correlate the observed behavior and data with 
the actual events that occurred on the vehicle. 

Sol 18 Revisited 

Three FSW resets occurred on Sol 18.  The first was due 
to the creation of the large number of motion history data 
products that resulted in new files being created in the 
FLASH file system.  This increase in the number of files 
required additional space in the DOS Library private 
memory area that led to additional memory allocations 
from the system memory pool.  When one of these 
allocations failed, the Mirror Ram to FLASH (MRF) task 
(which creates data product files in the FLASH file 
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system), was suspended. The health monitoring function 
detected the suspension and forced the first reset. 

The next reset did not occur for another two hours.  A 
scheduled communication window contained a HGA 
encoder calibration to ensure the HGA is pointed 
correctly.  Unfortunately this calibration created more 
motion history report files, leading to another out-of-
memory event and reset. 

The afternoon HGA window failed because the encoders 
were left un-initialized following the reset.  The on-board 
fault protection declared an ‘X-band fault’, aborted the 
window and set the communication rates to the fault 
configuration. 

During the afternoon UHF window, another out-of-
memory event occurred when the FSW autonomously 
created a data summary report file13.  Earlier commanded 
beeps on Sol 18 succeeded because no data summary 
report file is generated for beeps. 

Sol 19 Revisited 

When the rover woke up for the early morning UHF 
window on Sol 19, another out-of-memory event 
occurred.  The reset was delayed 15 minutes, so the FSW 
continued with the communication window, including 
turning on the UHF radio.  The reset took place before 
any data was pushed to the radio and the FSW turned the 
radio off in the next initialization, so the orbiter only 
received PN code for only two minutes and 20 seconds. 

This is the probable start of the continuous delayed resets 
(given the number of resets recorded in telemetry).  Many 
of the future communication windows were interrupted 
because the reset would take place during the setup or 
transmission portion of the window.  

Sol 20 Revisited 

Our first telemetry on Sol 20 was received at the fault 
configuration rate and garbled.  A FSW reset had 
occurred 10 minutes into the window.  Due to the size 
and management of the hardware buffer space, no valid 
data were radiated before the radio was shut off after the 
reset. On the next commanded LGA session, 11 complete 
transfer frames were transmitted, but they were all 
identical.  The reason for this repeating nature was the 
FSW task that packages frames was blocked from 
generating new frames.  The radio's transmitter continued 
to pump out the last frame that was in its hardware 
                                                           
13 This engineering telemetry data product tells operators which data 
products exist.  The report is autonomously produced for each 
communication window. 

buffer.  A delayed reset terminated the session after 
approximately 20 minutes. 

Our next commanded window occurred within the one 
hour delayed reset period, so it was not interrupted by a 
reset as the other windows had been.  Only real-time data 
were received because recorded data is stored in FLASH 
memory and the FSW could not access it. 

The vehicle would not shutdown on Sols 19 and 20 
because the task that suspended during initialization held 
the semaphore that was needed by the shutdown logic to 
gracefully idle the FLASH system.  Since the shutdown 
logic could not access the semaphore and there was no 
timeout or other logic to force the continuation of the 
shutdown actions, the shutdown process halted and the 
processor was never turned off. 

Sol 21 Revisited 

The CRIPPLED mode mechanism allowed us to regain 
control of the vehicle.  This debug feature forces the FSW 
to create a file system in RAM with the same logical 
device name as the FLASH file system.  The file system 
created in RAM is empty; there are no residual files and 
subdirectories.  As result, the memory space necessary is 
considerably less, so the FSW was able to complete the 
initialization without error. 

The system is not as capable in this configuration since 
the RAM based file system is 10 times smaller and 
volatile.  However, all functionality is restored.  All of the 
application and system software uses the logical file 
system name so the change in configuration is completely 
transparent to the rest of the software.   

5. CONTRIBUTING FACTORS &  

LESSONS LEARNED 

Although the anomaly has a precise technical cause, there 
were other contributing factors in which the cause and 
effect relationship is much more subjective.  This section 
describes these other contributing factors and lessons that 
have been identified during and after the anomaly 
investigation. 

Compressed Schedule 

Many of the contributing factors are related to the 
compressed development schedule (three years from 
concept to launch).  The MER project was always 
challenged by the tight schedule and the FSW 
development was tailored to address this reality. During 
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the development process there was a continuous 
reprioritization of activities and focus.  One impact of this 
dynamic process was that only the highest priority issues 
and problems could be addressed.  Several of the 
contributing factors can be described as simply lower 
priority activities whose completion or completeness 
could not be realized. 

Incomplete Development 

The behavior of the DOS Library module, at least in 
regard to expanding the private memory area, was known 
by a subset of the FSW development team.  This was 
identified as a potential problem area and it was 
recognized that the behavior of the system would need to 
be characterized in order to establish the flight 
configuration.  The DOS Library configuration 
parameters were set with the expectation that over the 
course of the test activities, a pattern of use could be 
identified that would permit a final configuration to be 
identified.  The intent was to run the system using the 
initial configuration, then gather data to: 

• Investigate how often requests for additional memory 
occurred (some were expected).  A significant 
difference from what was expected should have 
triggered additional investigation. 

• Identify the maximum amount of space ever 
allocated. 

• Identify any combination of activities or operations 
that resulted in the free system space being entirely 
consumed.   This specific situation never occurred. 

This investigation was never completed so the 
configuration remained unchanged.  No errors were 
identified during testing and as result, there was no 
immediate need to finalize the configuration.  

Lesson: Many lower priority development activities could 
not be completed in the development time frame. This 
was an accepted risk. There should have been a formal 
management of incomplete items that required resolution. 
This would have had the beneficial effect of creating a 
checklist of items requiring closure and thus would have 
insured that this specific investigation was completed. 

Unanticipated Behavior 

There was a belief among the FSW development team 
that the system would not exhibit the behavior that is the 
root cause of the anomaly (even though it was known to 
be a possibility).   This posture affected the priority of 
many activities including the investigation of related 
problem reports, the analysis of test results, and the 

closeout of related investigations.  This unfounded belief 
was based on a number of factors including: 

• A recognition that the DOS Library implementation 
will request and release temporary buffer space from 
the free system memory during its normal operation. 
This is unrelated to the private memory area use.  
This is not an ideal characteristic, but the 
implementation is correct; no memory leaks occur.  It 
had the unfortunate side effect of desensitizing the 
developers and testers to other similar, but incorrect 
behavior, as was seen in the anomaly. 

• A belief that the only limitation regarding the use of 
the FLASH file system was the total file system 
capacity.  At the time there was no indication or 
knowledge regarding the mismanagement of deleted 
files. 

• A false impression that the number of files in the file 
system would be limited to the number of data 
product files that would be allowed to exist.  The data 
product management software limits the number of 
data products to 8192 unique items.   

Lesson:  Understand the behavior of any Commercial 
Off-The-Shelf (COTS) software that is utilized.  There 
should have been an effort to review the implementation 
of the DOS Library module (and others) with an emphasis 
on review of the basic logic and function.  The vendor 
could have participated in these reviews and could have 
been tasked to brief the FSW development team on these 
functions. 

Lesson: Enforce the design guidelines.  There was a 
design guideline that prohibited allocation of space from 
the free system memory space after initialization was 
complete. This guideline was enforced for the JPL-
developed software and it should have been enforced for 
the COTS software as well. 
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Lesson: Verify assumptions regarding the expected 
behavior.  No developer was explicitly assigned to 
investigate or review the DOS Library.  This allowed the 
module to be used without detailed review or scrutiny. 
There needed to be a responsible individual to address 
any design or test issues. 

Inadequate Telemetry 

The telemetry important to detecting the underlying 
problem was not a part of the normal telemetry process. 
The FSW does produce the required information, but it is 
telemetered in a format that does not feed into the normal 
data analysis tools. In fact, only a few FSW team 
members were even aware that the information existed. 

Figure 3 shows Spirit’s in-flight telemetry of the free 
memory space from launch through recovery.  Note we 
did not connect the segments on the figure because that 
would be misleading regarding the rate of decrease in the 
system memory space.  Insufficient data exists to 
extrapolate when each request for new space occurred. 
This data was not examined until the anomaly occurred.  

Lesson: The FSW should have included flight telemetry 
for resources (such as the free system memory space) so 
that the actual and expected behavior of the system can be 
compared.  

 

  

 Figure  3:  Flight telemetry of Spirit's free memory space 
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Test Program Design 

The MER system and FSW test activities were extensive 
and comprehensive.  The test program included unit, 
design, functional, system level, verification, and 
validation activities.  These test activities were performed 
using test beds with various degrees of fidelity including 
multiple test beds with hardware in-the-loop 
configurations.  The test activities were performed by 
multiple organizations within the MER project structure.  

The project performed several realistic test exercises 
intended to demonstrate the performance of the system 
and personnel in a realistic flight-like manner.  There 
were several project operational readiness tests (PORTs) 
where the system was exercised in a manner believed to 
be representative of the actual flight use.  The anomaly 
was never seen during these (or any other) test activities. 
There are several factors that contributed to this result:  

• The operational tests did not exercise the system fully 
in a flight-like way.  This was because both the 
surface operation processes and the FSW were 
immature when the tests were done and this limited 
the activities that were performed during the test.  As 
a result, the operational tests did not produce the 
diversity of data products or the volume of data 
products that were created during the surface 
mission.  

• The number of files on the flight vehicle on Sol 1 
was greater than the number of files on test bed 
during the operational tests. Although we attempted 
to reproduce the flight-like conditions by walking 
through launch, cruise, entry, descent, and landing, 
we did not reproduce every turn, maneuver and 
communication window performed in flight.  

Observation: The operations team exercised the system 
in what was considered a “flight-like” manner during the 
operational tests.  Once the rover reached the surface of 
Mars, the experience and training allowed the operations 
team to develop activities that exceeded the envelope of 
the test activities.  It is not apparent that anything other 
than a longer duration operational test would have 
exposed the anomaly, but a longer operational test (over 
11 sols) was impractical within the overall MER 
schedule.  

Test Data Review 

A post-anomaly review of one operational test showed 
that the memory leak was evident in the data. Figure 4 
shows a portion of the telemetry of free system memory 
space and it indicates a memory consumption trend.  The 
data set is sparse because the telemetry for this data was 
set to a low priority and was not consistently telemetered. 
Unfortunately, we did not analyze this data during the test 
execution or during the post-test data review.  

 

Figure  4:  Project operational test 7/9 free system memory space 
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Observation:  The analysis of this test data by the FSW 
team was a lower priority activity when compared to 
other activities occurring in the same timeframe.  

Lesson: A suite of tests and automated analysis tools 
should have been created early in the development 
process.  The FSW should have included support for 
reporting resource usage.  The system (FSW, test scripts, 
ground support equipment) should have included 
(additional) support for collecting, archiving, and 
analyzing this information. 

Build for the Unexpected 

The idea for CRIPPLED mode originated on the Mars 
Pathfinder project.  Without this capability, the MER 
mission may well have been lost.   

Lesson:  The system design should include the 
mechanisms to address both problems envisioned as well 
as the unforeseen and “unknown-unknowns”. 
Contingency commands and similar mechanisms need to 
be included where they can be put to use to resolve both 
failures and design errors such as the Spirit anomaly 
scenario.  Of course, the contingency commands are 
insufficient unless the system is robust enough to take the 
necessary actions to both maintain a safe configuration 
and to let the operations team know what is happening 
onboard. 

Observation:  The MER design placed the primary 
responsibility for initiating communication on the rover. 
This removed the ambiguity of a situation where no data 
or signal is received, which would force the operations 
team to blindly attempt to initiate contact.  Just knowing 
that the rover was attempting to communicate at a 
particular time gave us clues as to what was happening 
onboard. 

Lesson:  Build in the ability to continue autonomous 
communication, even when onboard fault protection 
responses run.  The onboard fault responses did initiate 
communication at unique times so that even if a full data 
set didn’t get through, the time of the communication 
attempt described what’s happening onboard. 

Other Lessons 

Lesson: A different file system type, or a more robust 
implementation, is required for future missions.  The lack 
of compaction for deleted files in the directory structures 
is a fundamental flaw for long duration missions.  

 

6. OPERATIONAL & FSW CHANGES 

Operational Changes 

The problem can be avoided by better oversight of the file 
system use, at the cost of a more conservative approach to 
gathering science data.  Since the amount of memory 
consumed is directly related to the structure of the file 
system and the number of files, it is possible to monitor 
the free memory space and to terminate activities if the 
amount of free space drops below a designated limit. 

The anomaly team recommended, and the project 
adopted, the following changes and guidelines.  These 
apply to both rovers. 

• Monitor the amount of free memory space in the 
system. If the remaining space drops to 800 Kbytes 
or less, then terminate all science and engineering 
activities.  

• Aggressively command the deletion of received data 
products after they have been received on Earth.  The 
data management team has reduced the latency for 
this action from 48 to 24 hours.  

• Remove subdirectories when no more data product 
files exist.  This action forces the release of memory 
used to represent the subdirectory and eliminates the 
space utilized for deleted file entries.  This 
operational guideline became unnecessary once the 
FSW was updated in April. 

• Permanently upgrade the priority of the data products 
that contain the telemetry generated during 
initialization that shows the free system memory 
space and the results of the autonomous file system 
check.  

Onboard Post-Anomaly FSW Changes 

Several FSW changes were included in the April 2004 
FSW load to address the problems and issues discovered 
during the anomaly investigation.  These changes 
included: 

• Additional logic to remove the directory list structure 
entries for deleted files.  This change “compacts” the 
directory list structure and thus, removes the “high 
water mark” effect.  This compaction action runs 
during the initialization process before the FLASH 
file system is mounted. 

• Additional logic to autonomously enter CRIPPLED 
mode when multiple resets have occurred.  This 
autonomous action allows the system to initialize 
correctly if another similar anomaly should occur. 

Deleted: Similarly, the in-memory 
representation of an active file system 
directory structure is an unnecessary 
complexity that reduces the confidence in 
the correctness of the existing 
implementation.
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• Modifications to the shutdown logic to use the alarm 
clock hardware function as a secondary watchdog. 
This change forces a power cycle of the avionics 
electronics in cases where the FSW cannot perform 
all of the shutdown actions.  If this occurs during the 
night, the vehicle will remain powered off until 
sunrise. 

• The register set by the CRIPPLED command is 
volatile and the value is not retained across power 
cycles.  The FSW was changed to also examine one 
of the spare non-volatile registers bits, so the 
operations team may permanently force the system to 
initialize in CRIPPLED mode, if necessary. 

• Modified the shutdown logic to wait a limited 
amount of time for the FLASH file system to become 
idle.  In the previous FSW version, the shutdown 
logic would wait indefinitely.  This change addressed 
the semaphore/deadlock issue discovered during the 
anomaly investigation. 

FSW Changes Considered but Not Included 

In hindsight, the correct implementation would have been 
to limit the private memory area used by DOS Library to 
a fixed size.  This strategy is consistent with the way all 
application memory space on MER is allocated and 
managed.  In this configuration, the free system memory 
would not have been consumed and no out-of-memory 
event would have occurred.  

However, this change was not incorporated into the new 
FSW.  This was a considered decision that balanced the 
benefit versus risk of performing this optimal change. 
These tradeoffs included: 

• Although a modification to limit the size of the DOS 
Library memory area is straightforward, the change 
might expose other, unexplored, behavior when the 
private memory space is exhausted.  The test 
program to verify the overall behavior of the system 
in all operational modes would be challenging, 
complex, and time consuming. 

• The vehicle lifetime is limited.  A test program of this 
complexity would have significantly delayed the 
upload of the new FSW version.  The new FSW 
version also contained many changes unrelated to the 
anomaly that increased the robustness of the system, 
optimized the collection and processing of science 
data, and enhanced the mobility capabilities of the 
vehicle 

• The operational changes addressed the necessary 
steps to limit the number of active files in the file 
system. 
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8. CONCLUSION 

In January 2004, Spirit suffered an anomaly the prevented 
nominal communication for several days.  Given every 
clue the rover presented us, the anomaly team 
successfully diagnosed the problem and recovered this 
rover back to perfect health.  These clues included when 
the rover communicated (and when it didn't), the rates it 
used to transmit (pre-planned rates vs. onboard fault 
response rates), the type of information it transmitted 
(real-time vs. recorded, repeating event reports, PN code), 
and the commands to which the rover would respond (as 
well as those to which it would not respond).  

The root cause was a design error in the file services FSW 
module that resulted in an out-of-memory event, causing 
a processor reset.  During re-initialization, when it would 
access the FLASH memory, another out-of-memory event 
would occur, so the rover experienced repetitive resets. 
This rippled into difficulties communicating with Earth, 
as well as the inability to shutdown the solar-powered 
rover’s electronics at night to save power. 

The predominant factor that led to this error was the 
compressed design schedule. Incomplete development, 
inadequate telemetry and limited testing were a direct 
result of the breakneck development pace.  In the end, it 
was a dedicated, insightful team that had designed a 
system with built-in diagnostic tools, autonomous 
communication and robust fault protection that led to the 
recovery of Spirit.  
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