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A.4 Eigensystems

1. The eigenvalue problem for a matrix A is defined as
A =Xz or [A—MN]z=0
and the generalized eigenvalue problem, including the matrix B, as

AZ =ABz or [A—ABlJz=0

2. If a square matrix with real elements is symmetric, its eigenvalues are all
real. If it is skew-symmetric, they are all imaginary.

3. Gershgorin’s theorem: The eigenvalues of a matrix lie in the complex
plane in the union of circles having centers located by the diagonals with
radii equal to the sum of the absolute values of the corresponding off-
diagonal row elements.

4. In general, an m x m matrix A has n; linearly independent eigenvectors
with nz < m and ny distinct eigenvalues (A;) with ny < n: <m.

5. A set of eigenvectors is said to be linearly independent if

a-§m+b-§n¢§k , m#EN#k

for any complex a and b and for all combinations of vectors in the set.
6. If A posseses m linearly independent eigenvectors then A is diagonaliz-
able, i.e.,
X1Ax =4

where X is a matrix whose columns are the eigenvectors,

-

o o
X = [ml,mz,...,wm

and A is the diagonal matrix

M 0 - 0
A= |0 R :
PO T (|
0 --- 0 An

If A can be diagonalized, its eigenvectors completely span the space, and
A is said to have a complete eigensystem.

7. If A has m distinct eigenvalues, then A is always diagonalizable. With
each distinct eigenvalue there is one associated eigenvector, and this
eigenvector cannot be formed from a linear combination of any of the
other eigenvectors.
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. In general, the eigenvalues of a matrix may not be distinct, in which case

the possibility exists that it cannot be diagonalized. If the eigenvalues of
a matrix are not distinct, but all of the eigenvectors are linearly indepen-
dent, the matrix is said to be derogatory, and it can still be diagonalized.

. If a matrix does not have a complete set of linearly independent eigenvec-

tors, it cannot be diagonalized. The eigenvectors of such a matrix cannot
span the space, and the matrix is said to have a defective eigensystem.
Defective matrices cannot be diagonalized, but they can still be put into
a compact form by a similarity transform, S, such that

J=stas=|" %
Do .0
0 - 0 Jp

where there are k linearly independent eigenvectors, and J; is either a
Jordan subblock or A;.
A Jordan submatrix has the form

N 1 0 -0
0 X\ :
Ji=fo 0o N .00
: IR |
0 - 0 0 X\

Use of the transform S is known as putting A into its Jordan Canonical
form. A repeated root in a Jordan block is referred to as a defective eigen-
value. For each Jordan submatrix with an eigenvalue \; of multiplicity
r, there exists one eigenvector. The other r — 1 vectors associated with
this eigenvalue are referred to as principal vectors. The complete set of
principal vectors and eigenvectors are all linearly independent.

Note that if P is the permutation matrix

0 01
P=]0 10 , Pl=p1l=p
1 00
then
A1 0 A0 O
P10 x 1|P=]1 X 0
0 0 X\ 01 X\

Some of the Jordan blocks may have the same eigenvalue. For example,
the matrix
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is both defective and derogatory, having:
9 eigenvalues

3 distinct eigenvalues

3 Jordan blocks

5 linearly independent eigenvectors

3 principal vectors with A;

1 principal vector with Ao

A.5 Vector and Matrix Norms

U(A) = |Um|maw

where o, are the eigenvalues of the matrix A.

2. A p-norm of the vector ¥ is defined as

M 1/p
llollp = { Y [vl”
=1
3. A pnorm of a matrix A is defined as
|| Av]]
||A]lp = max -
a0 o]l

must have the properties

Al =0,
lle- Al = Il - [|All

14+ BI| < ||All + [1B]|
1A Bl < |[A]l-1B]|

[|4|| = 0 implies A =0

1. The spectral radius of a matrix A is symbolized by o(A4) such that
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4. Let A and B be square matrices of the same order. All matrix norms
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5. Special p-norms are

[|Alli = maxj—i,..m Egl |a;j| maximum column sum
-T

[[All2 = (A" - A)

[|Alloe = maxj—1,2,...m Z]Ail la;j|  maximum row sum

where ||A||, is referred to as the L, norm of A.

6. In general o(A) does not satisfy the conditions in 4, so in general o(A)
is not a true norm.

7. When A is normal, 6(A) is a true norm; in fact, in this case it is the Lo
norm.

8. The spectral radius of A, a(A), is the lower bound of all the norms of A.



B. SOME PROPERTIES OF TRIDIAGONAL
MATRICES

B.1 Standard Eigensystem for Simple Tridiagonal
Matrices

In this work tridiagonal banded matrices are prevalent. It is useful to list
some of their properties. Many of these can be derived by solving the simple
linear difference equations that arise in deriving recursion relations.

Let us consider a simple tridiagonal matrix, i.e., a tridiagonal matrix with
constant scalar elements a, b, and ¢; see Section 3.3.2. If we examine the
conditions under which the determinant of this matrix is zero, we find (by a
recursion exercise)

det[B(M :a,b,c)] =0

if
b+2\/%c0s<Mm:1>=0 , m=12--- M
From this it follows at once that the eigenvalues of B(a, b, c) are
mn
/\m=b+2\/cﬁcos<M+1) , m=1,2,---.M (B.1)

The right-hand eigenvector of B(a, b, ¢) that is associated with the eigenvalue
A satisfies the equation

B(a,b,¢)Zm = AmZm (B.2)

and is given by

j—1
- a9~ . [.[ mm
xmz(mj)mz(z) Sln|:]<M+1):| , m=1,2--- M (B.3)

These vectors are the columns of the right-hand eigenvector matrix, the ele-
ments of which are
a '7.—2—_ 1 ymT j=1,2 M
X:(xjm):<—) sin['] ] , J=hs (B.4)

c m=1,2,---, M
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Notice that if a = —1 and ¢ = 1,

(%)L_rl _ 0§ (B.5)

The left-hand eigenvector matrix of B(a,b,c) can be written

2 m -
-1 (C)—Q—Sin[ mjm ] .om 1,2,---, M

In this case notice that ifa = -1 andec=1
¢ m—1 im—1) T
(5)_2_:6_1 m=vy (B.6)

B.2 Generalized Eigensystem for Simple Tridiagonal
Matrices

This system is defined as follows

b ¢ 1 e f T
a b c T2 d e f T2
a b T3 | =\ d e z3
. . f .
a b Ty d e TMm
In this case one can show after some algebra that
det[B(a — Ad,b— Ae,c — Af] =0 (B.7)
if
mm
_ _ _ = =1.2.---. M
b—Ame + 2v/(a — \nd)(c )\mf)cos<M+1) 0, m=12---,
If we define
[ J— mn = cosé
then

_eb—2(cd+ af)p?, + 2pm\/(ec — fb)(ea— bd) + [(cd — af)pm)®

i e? —Afdp?,
The right-hand eigenvectors are
j—1
P [emdmd] T m=1,2,---,M
Tm = C—)\mf > Jom ’ j=1;27"'7M

These relations are useful in studying relaxation methods.
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B.3 The Inverse of a Simple Tridiagonal Matrix

The inverse of B(a,b,c) can also be written in analytic form. Let Dps repre-
sent the determinant of B(M : a,b,c)

Dy = det[B(M : a,b,c)]

Defining Dg to be 1, it is simple to derive the first few determinants, thus

Dy=1
D1 = b
Dy =b% —ac
D3 = b® — 2abc (B.8)
One can also find the recursion relation
DM = bDM,1 — aCDM,Q (B.g)

Eq. B.9 is a linear OAE, the solution of which was discussed in Section 6.3.
Its characteristic polynomial is P(E) = E? — bE + ac, and the two roots to
P(o) = 0 result in the solution

MA1
b% — 4ac]

M+1
b+ Vb2 = 4ac] _ [b -
2 2

M=0,1,2,--- (B.10)

where we have made use of the initial conditions Dy = 1 and D; = b. In the
limiting case when b? — 4ac = 0, one can show that

pu=arsn(2)”

Then for M =4

D3 —CD2

1 — aD2 D1D2
D_4 a2D1 —aD1 D1

- a3 D() a2D1

02D1 —C3 DO
—CD1 D1 C2D1
D2D1 —CD2

—a_D2 D3

B =

and for M =5

_D4 —C.D3 62D2 —C3D1 C4D0

1 - aD3
B™'=_—| a’D,
5 - a3D1

a4D0

D, D
—aD1D2
a2D1D1

—a3D1

—CDl _D2
D>D->
—aD2D1
(12D2

62D1D1

—CD2D1
D3D;
—(ng

—C3 D1
02 D2
—CD3

Dy
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The general element d,,,, is

Upper triangle:
m=12---M-1 , n=m+1m+2,--- M

dmn = Dm—lDM—n(_c)nim/DM

Diagonal:
n=m=12--- M

dmm = Dy 1Dy /Dy

Lower triangle:
m=n+1n+2,--- M |, n=1,2,---,M—1

dmn = DMmenfl(_a)min/DM

B.4 Eigensystems of Circulant Matrices

B.4.1 Standard Tridiagonal Matrices
Consider the circulant (see Section 3.3.4) tridiagonal matrix
B,(M : a,b,c) (B.11)

The eigenvalues are

Am =b+ (a+c)cos (%7m> —i(a—c¢)sin (%Tm) ,
m=0,1,2,--,M—1 (B.12)
The right-hand eigenvector that satisfies By(a, b, O)Zm = AmTm is
T = (2) = TETM) =01 M —1 (B.13)
where i = /=1, and the right-hand eigenvector matrix has the form

A 2mm .
ij =0,1,---,M -1
X = (zjm) = e (M) , %:0,1,---, 1

The left-hand eigenvector matrix with elements z' is

. (27)
Xty Lom(F) | om=onm
= Tmi) = 37 r =01, ,M—1

)

Note that both X and X ! are symmetric and that X' = ﬁX H where
X*H is the conjugate transpose of X.
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B.4.2 General Circulant Systems

Notice the remarkable fact that the elements of the eigenvector matrices X
and X ~! for the tridiagonal circulant matrix given by Eq. B.11 do not depend
on the elements a,b, ¢ in the matrix. In fact, all circulant matrices of order
M have the same set of linearly independent eigenvectors, even if they are
completely dense. An example of a dense circulant matrix of order M = 4 is

bo by by b3
bs bo b1 bo
ba b3 bo by
b1 b2 b3 bo

(B.14)

The eigenvectors are always given by Eq. B.13, and further examination shows
that the elements in these eigenvectors correspond to the elements in a com-
plex harmonic analysis or complex discrete Fourier series.

Although the eigenvectors of a circulant matrix are independent of its
elements, the eigenvalues are not. For the element indexing shown in Eq.
B.14 they have the general form

M—-1

Am — Z bjei(Zﬂjm/M)

j=0

of which Eq. B.12 is a special case.

B.5 Special Cases Found From Symmetries

Consider a mesh with an even number of interior points, such as that shown
in Fig. B.1. One can seek from the tridiagonal matrix B(2M : a,b,a,) the
eigenvector subset that has even symmetry when spanning the interval 0 <
z < w. For example, we seek the set of eigenvectors Em for which

(b a T [21] [21]
b a To T
a A
a
a b a To To
B a bl L L Z1 ]

This leads to the subsystem of order M which has the form
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b a -
ab a
B(M :a,b,a)im= | ¢ Zm = AmZm (B.15)
g
ab a
ab+a |

By folding the known eigenvectors of B(2M : a,b,a) about the center, one
can show from previous results that the eigenvalues of Eq. B.15 are

_ 2m -7 _
/\m—b+2acos( M1 , m=1,2--- M (B.16)

and the corresponding eigenvectors are

a:"m = sin (‘77(377]\}[111)#) )
j = 1727 o 'JM

Imposing symmetry about the same interval but for a mesh with an odd
number of points (see Fig. B.1) leads to the matrix

b 4 -
a b a
B(M :a,b,a) = @
a
a b a
2a b

By folding the known eigenvalues of B(2M —1 : a, b, a) about the center, one
can show from previous results that the eigenvalues of Eq. B.16 are

2m — D7

_ ( _
/\m_b+2acos< Wi , m=1,2,--- M

and the corresponding eigenvectors are

. ( j(2m — )r

T, = sin i ) , 1=12,---'M
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Line of Symmetry

a. An even-numbered mesh

Line of Symmetry

b. An odd-numbered mesh

Figure B.1 — Symmetrical folds for
special cases

B.6 Special Cases Involving Boundary Conditions

We consider two special cases for the matrix operator representing the 3-point
central difference approximation for the second derivative 6% /0x? at all points
away from the boundaries, combined with special conditions imposed at the
boundaries.
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Note: In both cases

m=1,2,---, M
J = 527 ’M
—2 4 2cos(a) = —4sin®(a/2)

When the boundary conditions are Dirichlet on both sides,

|
— N

A =—2+2cos(M )
= s [ (2 ] (B.17)

|
— N =
— N =

1
-2

When one boundary condition is Dirichlet and the other is Neumann (and a
diagonal preconditioner is applied to scale the last equation),

2M +1

2 1
1-2 1 Am = —2+ 2cos @m —1)n
oM +1
1-2 1 B (2m — 1) (B.18)
|2 Zm = sin [J(M)]
1



