

Wavefront Control in a Shaped-Pupil Coronagraph: First Results from the Princeton Testbed

Ruslan Belikov, Amir Give'on, Laurent Pueyo, Eric Cady, Jason Kay, Michael Carr, Robert J. Vanderbei, N. Jeremy Kasdin

TPF@Princeton Lab, Department of Mechanical and Aerospace Engineering, Princeton University, USA Supported by NASA JPL Contract #1254357 and Michelson Science Center

> International TPF/Darwin Workshop, Pasadena, CA, November 2006 Poster converted to slides

- Shaped Pupil Concept
- The TPF@Princeton Lab
- Results
- Conclusions

- Shaped Pupil Concept
- The TPF@Princeton Lab
- Results
- Conclusions

Pupil Apodization Overview

- How do we design shaped pupils?
 - Short answer: nonlinear optimization to find a desired pupil shape for desired PSF. (Developed by Bob Vanderbei)

Some manufactured designs

- Free-standing silicon mask
- Ripple designs easiest to manufacture
- Ripple1
 - TPF aspect ratio
 - 45 degree openings
 - ~12% Airy throughput
 - 10¹⁰ contrast
 - IWA = $4 \lambda/D$
 - OWA~100 λ/D

Ripple3

- Circular
- 90 degree openings,
- ~10% Airy throughput,
- <10⁻⁹ contrast
- IWA=4, OWA~40.
- Both are 25mm in diameter
- Trimming the edges degrades contrast to $\sim 10^{-8} 10^{-7}$

Manufacturing

Design

Aluminum coated side

SEM images

uncoated side

Courtesy of K. Balasubramanian (6265-130)

- Shaped Pupil Concept
- The TPF@Princeton Lab
- Results
- Conclusions

The Princeton Laboratory

- Clean room
- 1.2 x 5 m vibration-isolated optical bench
- Enclosure to eliminate thermal convection, air turbulence, particulate contamination, and stray light

Lab experiments: Princeton testbed

- DM is 11x11mm, so we used a 10mm shaped pupil
- Inserted a removable mirror to examine the pupil plane

DM installed

DM Interferogram

Pupil Plane images

"flat" frame

Difference image (14,19) @ 100V minus flat

۲

Speckle Nulling for Wavefront Control

CCD Image (simulation)

DM (simulation)

- Introduced by Trauger and Burrows (SPIE, 2004)
- Based on iteratively removing brightest speckles
- Phase and amplitude aberrations removed simultaneously on a half-plane, allowing the use of only one DM
- Used primarily to demonstrate high contrast, not a viable method of wavefront correction for planet detection, because it is very slow.
 Algorithm:
 - Look for the brightest pixel in the dark zone
 - Compute a DM ripple that would place a speckle centered on that pixel
 - Find phase which minimizes that pixel
 - Update DM
 - Repeat

- Shaped Pupil Concept
- The TPF@Princeton Lab
- Results
- Conclusions

Princeton Testbed, Classical Speckle Nulling (632nm)

- Average contrast: 10⁻⁶
- However, when we performed this experiment at JPL's HCIT, the contrast was 4 x 10⁻⁸, due to their better equipment

Limiting factor

Simulation slice

C DEI VYB NYMINE

Solution to trimming

Ideal (zoom)

Shaklan Dashing (zoom)

Solution to Speckle Nulling Limitations

Energy Minimization-type algorithm with a trimmed mask

Princeton Testbed, Energy minimization (632nm)

Contrast: 2 x 10⁻⁶ peak 6 x 10⁻⁷ avg

Contrast: 6 x 10^{-7} peak 9 x 10^{-8} avg

18

Contrast vs. # of images taken (Princeton testbed, 632nm)

Summary of Lab Results

Contrast @ 4λ/D	Limiting factors, Milestones, and other effects
>10 ⁻³	Airy pattern
>10-4	 Core of PSF saturates, camera blooms and other undesired artifacts
>10 ⁻⁵	 Contrast with unactuated DM (1" SP) and λ/20 optics Measured on princeton testbed, w/o WF corrections (Jan 2005)
>10 ⁻⁶	 15 micron trimming for 10mm ripple1 Speckle nulling with 10mm ripple1 on princeton testbed (Sep 2006) Light thrown into dark zone by BMC DM quilting orders
>10 ⁻⁷	 Contrast with commercial optics for 2mm SPs Amplitude errors start appearing for 1" SPs at HCIT
>10 ⁻⁸	 DM quilting saturates, need to block with star occulter Occulter scatter on the CCD if they are in the same plane and occulter has rough edges Air (?) Speckle nulling with 25mm ripple3 (Princeton experiment at HCIT) in monochromatic and broadband light (Feb 2006) Energy minimization with 10mm ripple1 in monochromatic light (Dec 2006)
>10 ⁻⁹	 Dust in Princeton testbed (?) Thermal stability of DM w/o thermal control (?)
>10 ⁻¹⁰	 Mechanical stability of testbed (?) Electronic noise (?) DM precision (?) 19

Conclusions

- Shaped pupils are a promising technology for highcontrast imaging
- Initial runs of speckle-nulling-based wavefront correction achieved contrast of 10⁻⁶ for IWA of 5 λ/D
- Simulations show that the limiting factor is the inability of speckle nulling to correct for mask trimming
- Two ways of overcoming this limit: better mask (less affected by trimming), or better estimation algorithm (such as energy minimization). Initial runs of the energy minimization algorithm achieved contrast of 10^{-7} for IWA of 5 λ /D