
UML 2 Activity Model
Support for Systems
Engineering Functional
Flow Diagrams*
Conrad Bock†

U.S. National Institute of Standards and Technology, 100 Bureau Drive, MS 8263, Gaithersburg, MD 20899-8263

UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS

Received 22 June 2003; Accepted 18 July 2003
DOI 10.1002/sys.10053

ABSTRACT

This article compares Activity models of the Unified Modeling Language, version 2 (UML 2)
[OMG (Object Management Group), UML 2.0 superstructure specification, August 2003,
http://www.omg.org/cgi-bin/doc?ptc/03-08-02], to a widely-used systems engineering (SE) flow
diagram, the Enhanced Functional Flow Block Diagram (EFFBD) [J. Long, Relationships
between common graphical representations in system engineering, ViTech Corporation,
2002], and to the requirements for functional flow modeling in a systems engineering exten-
sion for UML (UML-SE) [OMG Systems Engineering Domain Special Interest Group (SE-DSIG),
UML for systems engineering RFP, March 2003a, http://www.omg.org/cgi-bin/doc?ad/03-03-41].
Issues are identified in applying UML 2 Activities to EFFBD and to satisfying UML-SE
functional flow requirements. Solutions are suggested to these issues that can be used to
translate between the languages and to develop standards such as revisions to UML 2 or
extensions in UML-SE. *© 2003 Wiley Periodicals, Inc. Syst Eng 6, 249–265, 2003

Key words: functional flow, UML, EFFBD, activity diagram

1. INTRODUCTION

Although systems engineering has existed as a disci-
pline for several decades and been successfully applied
to a wide range of complex products, it still lacks a
standard modeling language. Organizations using mul-
tiple languages have less effective communication, in-
creased project cost, and decreased product quality.
Many of the other disciplines that systems engineering

Regular Paper

*This manuscript is a U.S. Government work, an official contribution
of the National Institute of Standards and Technology, and, as such,
is not subject to copyright in the United States.

† E-mail: Conrad.bock@nist.gov.

Systems Engineering, Vol. 6, No. 4, 2003
© 2003 Wiley Periodicals, Inc.

249

interacts with have adopted standard modeling lan-
guages, most recently software.

To address this issue, the International Council on
Systems Engineering (INCOSE) initiated an effort with
the Object Management Group (OMG) to adapt UML
for full-lifecycle systems engineering [Friedenthal,
2003]. A priority was set on aligning the underlying
meaning of the adapted UML with traditional systems
engineering models. This ensures that tools implement-
ing the adapted UML can reliably interchange system
designs with existing systems engineering tools. A sec-
ond consideration is alignment of notation. It is benefi-
cial for software and system engineers to communicate
with the same diagrams; however, the legacy of existing
notations in each community may delay this. With these
goals, OMG’s Systems Engineering Domain Special
Interest Group (SE-DSIG) [SE-DSIG, 2003b] was
formed and began by providing feedback to UML 2, the
recent major revision of UML, to enhance its support
for systems engineering.

The SE-DSIG also developed requirements for ex-
tending and adapting UML 2 for systems engineering
(UML-SE), which were issued in March 2003 [SE-
DSIG, 2003a]. These requirements are for extensions
to UML 2 supporting the analysis, specification, design,
and verification of a wide range of complex systems,
which may include hardware, software, data, personnel,
procedures, and facilities. They are to provide a com-
plete, consistent, and standards-based representation of
systems across the development lifecycle. The SE-
DSIG also worked closely with the International Or-
ganization for Standardization’s ISO 10303, infor-
mally known as the Standard for the Exchange of
Product model data (STEP), in particular Application
Protocol 233 for systems engineering (AP-233), to
align the requirements of UML-SE with the evolving
AP-233 neutral data interchange standard for systems
engineering. Final submissions to satisfy the require-
ments are expected in 2004.

This article focuses on functional flow in systems
engineering, as embodied in a widely-used systems
engineering diagram, the Enhanced Functional Flow
Block Diagram (EFFBD) [Long, 2002; Long et al.,
1975; Skipper, 2003; Blanchard, 1990; Grady, 1993;
Kockler, 1990; Oliver, Kelliher, and Keegan, 1997], and
to the requirements for functional flow in UML-SE. The
EFFBD, also called a behavior diagram, has been in use
for three decades. Three tools have supported it over
that time, and there is substantial heritage design infor-
mation in existence based on this form of behavior
modeling. EFFBD is also executable and produces tim-
ing information.

UML originated in the software community, and was
intended to support software development, including

representation of structure, behavior, and deployment
of software systems. In addition, UML provides cus-
tomization features that can be used when applying
it to specific disciplines. As a result, it has been
successfully applied in the systems engineering com-
munity, as indicated by the responses to the UML-SE
Request For Information issued by the SE-DSIG
[SE-DSIG, 2002].

UML also defines a repository for storing models
that enables consistency maintenance between vari-
ous views and analyses, connection between require-
ments and concrete entities that satisfy them, and
support for generation of software and formats for
automatic manufacturing. This flexibility includes
multiple notations, so system engineers can employ
familiar diagrams to manipulate and read the reposi-
tory. It can be accessed dynamically as an informa-
tion service, or serially though file-based interchange
[Bock, 2003b].

UML 2 in particular introduces several new features
important to systems engineering [OMG, 2003]. Hier-
archical structure and behavior, component intercon-
nection, and information flow are much more
effectively addressed than in earlier versions. UML 1.5
and 2.0 also introduced models for parameterized func-
tions defined or coordinated by control and data flow.
For the first time UML supports functions that can be
used without objects to host them, as in structured
analysis, while maintaining object-orientation (OO) as
an option. These facilitate application of UML to sys-
tems engineering by supporting traditional structured
approaches, and incremental use of OO for allocating
functions to system components in a flexible manner.
The new features considerably widen potential applica-
tions of UML.

UML 2 defines a model and execution machinery
based on flow modeling intuition, called Activities,
and a set of predefined functions for primitive actions
such as object creation [Bock, 2003a]. These support
systems engineering applications with enhanced data
and control flow constructs and multidimensional
partitions that can represent a component, among
other features, such as cycles and queuing. UML
Activities and State Machines have been completely
executable since UML 1.5 and have always been
partially executable due to their definition of a virtual
machine.

Consequently, UML 2 Activities support flow mod-
eling across a wide variety of domains, from computa-
tional to physical. This makes them ideal for specifying
systems independently of whether the implementation
is software or hardware, and independently of where the
system/environment boundary is drawn. Finally, the
combination of Activities and Actions retains the UML

250 BOCK

1.x capability of reacting to events, so they can be
applied to areas requiring that, such as embedded sys-
tems.

Before UML 2, object-oriented software engineer-
ing did not usually address flow models very well,1 so
there is little existing literature that compares flow
modeling in software and systems engineering. Work
on UML and systems engineering that discusses func-
tional flow does not address the UML 2 flow models
[Ögren, 2000; Pandikow and Törne, 2001a]. Other lit-
erature on systems engineering and UML does not
address functional flow [Axelsson, 2002; Bahill and
Daniels, 2003; Lykins, Friedenthal, and Meilich, 2000].
There is a proposed framework for mapping meta-
models of software and systems engineering models,
but not the actual mapping [Pandikow and Törne,
2001b].

This article contributes to the efforts on bridging
software and systems engineering by comparing the
semantics of flow models of UML 2 and systems engi-
neering. The results can be used to facilitate the integra-
tion of software and systems modeling by translating
between the domains and developing standards sup-
porting such integration, such as revisions to UML 2 or
extensions in UML-SE.

The next section gives a detailed comparison of
UML 2 Activities with EFFBD and with UML-SE
requirements for function-based behavior.2 Each sub-
section describes the aspects of EFFBD and UML-SE
that are supported by UML 2 Activities, and aspects
where EFFBD and UML-SE are not directly sup-
ported by UML 2. EFFBD and UML-SE are de-
scr ibed together when they have the same
characteristics, and separately when they are differ-
ent. Only EFFBD diagrams are used in figures, be-
cause the notation of UML-SE has not been
determined yet.

Suggested solutions for alignment issues are given
in Section 3. These may be due to discrepancies be-
tween EFFBD and UML 2, between UML-SE and
UML 2, or both. Solutions are proposed as changes to
UML 2 or extensions to UML 2 in UML-SE.

2. COMPARISON OF UML 2 ACTIVITIES
WITH FUNCTIONAL FLOW BLOCK
DIAGRAMS AND UML-SE FUNCTIONAL
FLOW REQUIREMENTS

Figures 1 and 2 show an example EFFBD that will be
referenced in the comparison, with one of the elements
in Figure 1 decomposed into the diagram in Figure 2.
Figure 3 gives the corresponding UML 2 Activity Dia-
gram. Both EFFBD and Activity Diagrams give the
sequence and conditions for execution of functions. For
example, function 2.3 in Figure 2 can only begin after
function 2.1 has completed. Both types of diagram also
show how the outputs of one function are passed to the
inputs of others. For example, in Figure 2, function 2.2
takes input of type Item 1 from the output of function
2.1. Function 2.2 cannot start until Item 1 arrives. The
details of EFFBD and Activity Diagram execution are
covered in the subsections below for each construct.

The UML-SE requirements are designed to support
EFFBD, UML 2 Activities, and additional capabilities
to provide a comprehensive model for functional flow
in systems engineering applications. For example,
UML-SE requirements have additional flexibility in
control and data flow compared to EFFBD or UML2,
such as control flow for disabling a function as well as
enabling it, and treating control as a form of input and
output. The details of UML-SE execution are covered
in the subsections for each construct below.

Table I shows the correspondence between con-
structs in the EFFBD, Activity Diagram, and the UML-
SE requirements that are discussed in each subsection.
There are three kinds of construct3:

1. Functional: These describe basic behaviors or
transformations that are coordinated in a func-
tional flow diagram.

2. Data/object/item flow: These are how a flow dia-
gram routes data, objects, and other items, such
as energy and matter, between functions.

3. Control: These are how a flow diagram starts and
stops execution of functions.

For clarity, this paper introduces two terms for con-
cepts that are implicit in EFFBD and UML-SE but not
named (function usage and function port usage). These
are listed in the table next to the equivalent UML 2
terminology.

1A notable exception is James Odell’s Object-oriented Informa-
tion Engineering [Martin and Odell, 1992].
 2UML provides other behavior models, namely, interactions,
which focus on messages between objects, and state machines, which
cover object states and transitions between them. This paper focuses
on Activities because they are the closest UML behavior model to SE
functional flow diagrams, providing for sequencing of function exe-
cution by both control and data.

3Some of the constructs connect categories. For example, inputs
and outputs to a function (function ports in UML-SE) are defined by
the function itself, not the data/object flows that use the function, and
so are classified under functions. However, data/object flows must
use inputs and outputs, and do so through function port usages.
Likewise, multiexit functions are technically a kind of function, but
affect control flow choices in the diagrams that use them. These are
classified under control.

 UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS 251

2.1. Activation ⇔ Execution

A UML-SE activation refers to the running of a function
or behavior in a working system (requirement 6.5.2.2).
It is called an execution in UML 2. Activations and
executions are useful in explaining what a behavior
diagram does, even though they do not actually appear
on a diagram. UML-SE requires that the semantics of
flow diagrams be defined in terms of execution rules
(6.5.2.3), which is the same approach as in UML.
UML-SE also requires a way to specify how long a
function is active and inactive (6.5.2.4.1). The UML 2
time model supports specifying constraints on time
durations.

2.2. Function (or Activity) ⇔ Behavior

An EFFBD or UML-SE function is a reusable defini-
tion of a transformation that accepts inputs and provides
outputs, which can include modifications to objects. A
function has a name and defines the types of entities that
may be accepted as inputs and provided as outputs
(requirement 6.5.2.1.3 a; see Section 2.4). In UML-SE,
functions are required for creation, destruction, moni-
toring, and modification of elements, and a null trans-
formation (requirement 6.5.2.1.3 b).4 Functions can be
decomposed into a complete diagram representing the
next level of hierarchical behavior, as Function 2 is in
Figures 1 and 2 (requirement 6.5.2.1.3 g; see Section
2.4). In UML-SE functions may be defined by mathe-
matical expressions (requirement 6.5.2.1.3 i). UML-SE
provides for allocating behaviors, including functions,
to systems (requirement 6.5.2.5). This means the sys-
tem performs the function.

In UML 2, these are called behaviors and provide
the features above. The inputs and outputs of a behavior
are called parameters (see Section 2.4). They define the

type of entity that is input or output, which are called
classifiers in UML. UML 2 behaviors can be allocated
to any classifier, including a component or system. This
can be shown in an activity diagram using swimlanes
(partitions) that represent components or systems.
Swimlanes divide the diagram into sections. Any usage
of a function within the swimlane is allocated to the
component or system it represents.

Functions and behaviors are usually shown either in
the diagram in which they are used, as Function 2 is in
Figure 2 (see Section 2.3), or they are decomposed into
a complete diagram as in Figure 3.

Three UML-SE requirements on functions are issues
to address in applying UML 2:

• Functions require resources, which are generated,
consumed, produced, and released when the
function executes (requirement 6.5.2.1.3 e).

The effect of behaviors in UML 2 is specified at each
usage of behavior (action; see Section 2.3), and is
limited to effects on the entities that are input or output.
This allows each usage to specify a different effect,
depending on context, but is more cumbersome if the
effects are the same for all uses of a particular behavior.

• Functions may be interruptible or not (require-
ment 6.5.2.1.3 h).

UML 2 does not indicate whether a behavior is
interruptible.

• The number of replicated functions that can con-
currently execute (requirement 6.5.2.1.3 k) is also
specified.

The requirements for replication in EFFBD and
UML-SE are still open; however, they will relate to
Iteration and Loop (see below).

Figure 1. Enhanced functional flow block diagram context for Figure 2.

4Creation and destruction of objects and items does not apply
to conserved entities such as energy. These can only be transformed,
not destroyed.

252 BOCK

Figure 2. Enhanced functional flow block diagram for function 2 in Figure 1.

U

M
L 2 A

C
T

IV
IT

Y M
O

D
E

L S
U

P
P

O
R

T
 FO

R
 S

E
 FU

N
C

T
IO

N
A

L FLO
W

 D
IA

G
R

A
M

S

253

Figure 3. UML 2 Activity diagram corresponding to Figure 2.

254

 B
O

C
K

2.3. (Function Usage) ⇔ Action

EFFBD and UML-SE diagrams use functions without
affecting the internal aspects of those functions (re-
quirement 6.5.2.1.3 c). This is so the same function can
be used multiple times in many diagrams, without con-
straining how the diagram uses the function. For exam-
ple, function 2.2 in Figure 2 happens to be used after
function 2.1 in that particular diagram, but other

EFFBDs could reverse the order by getting Item 1 from
another source. The term function usage is introduced
in this paper to distinguish between a function and
where it appears in diagrams. It is notated in EFFBD as
a rectangle, as shown in Figure 4 below, or the rectan-
gles in Figure 2.

In UML 2, these are called actions and provide the
features above. Actions are a point in the flow of an
Activity that executes a behavior. They are notated as

 Table I. Correspondence between EFFBD Constructs, UML 2 Activity Constructs, and UML-SE
 Requirements

 UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS 255

round-cornered rectangles. It can be thought of as a
behavior usage. UML 2 predefines some actions for
primitive capability such as creating objects, setting
attributes, and so on.5

2.4. External Input/Output, Function Port
⇔ Activity Parameter Node (a Kind of
Object Node)

Inputs and outputs to a function define what types of
entities will be provided to the function and what types
of entities will be the result of the function (6.5.2.1.1 a,
c). They are defined separately from flows (Section 2.5)
so that a function is guaranteed to be provided the same
inputs and expected to provide the same outputs regard-
less of what flow diagrams use it. Sometimes the terms
input and output are used in short to mean the type of
entity being input or output. For example, if a system
takes water as input, then the water is called an input.
However, water per se is not an input, it is an input only
because a system takes it as such.

The inputs and outputs of a function consist of a
name and the type of entity that is input or output. For
example, a system may take an input named coolant
where the type of entity being input is water. These two
aspects can be changed independently, for example, the
type of the coolant input could be changed to air.

UML-SE introduces the term function port to repre-
sent these two aspects of inputs and outputs (require-
ments 6.5.2.1.1 c, 6.5.2.1.3 c). It binds a type of entity
to a function that transforms it. EFFBD uses the terms
external input/output, though this can also mean the
type of entity that is flowing. Entities that are input and
output can be decomposed into constituent parts and
have properties that vary continuously over time (re-
quirement 6.5.2.1.1 a, b). EFFBD inputs and outputs are
notated as a round-cornered rectangle at the beginning
and end of the flow. See Figure 5 below and the nodes
labeled External Input and External Output in Figure 2.

In UML 2, the inputs and outputs to activities are
called parameters and provide the features above. They
are notated as rectangles on the boundary of the Activ-
ity, as shown at the bottom of Figure 5.

The following UML-SE requirement on function
ports is an issue to address in applying UML 2:

• Functions specify how input and output is han-
dled, including how inputs are queued, stored,
discarded, and how they may interrupt an active
function (requirement 6.5.2.1.3 d).

The queuing of inputs in UML 2 is specified for each
usage of a behavior in an Activity (action; see Section
2.3), rather than on behaviors themselves. This allows
each usage to have different queuing rules, but is cum-
bersome if these rules are the same for all uses of a
particular behavior.

UML 2 does not provide explicit specification of
how inputs are stored, discarded, or if they interrupt an
action that is already active. Inputs arriving at an action
that is already active will either start a new execution of
the action in parallel with the existing one, or be queued
until the action finishes, depending on whether the
behavior is reentrant or not.

2.5. Item Flow ⇔ Object Flow;
Item Node, Function Port Usage ⇔ Pin;
Triggering Data Input ⇔ Nonstreaming
Parameter;
Nontriggering Data Input ⇔ Streaming
Parameter (Issues)

A data or item flow in an EFFBD or UML-SE require-
ments specifies how the output of one function is passed
to the input of another (6.5.2.1.3 f). Data/item flows
connect function usages with what this article calls item
nodes. The notation for item nodes is a round-cornered
rectangle. For example, Item 1 in Figure 2 is an item
node. Item flows can also pass the external input of an
EFFBD or UML-SE flow diagram to the input of a
contained function usage, and pass the output of a
function usage to the external output of the containing
diagram (requirement 6.5.2.1.3 g). For example, Figure
2 shows an external input being passed to function 2.1
and function 2.6 passing items to an external output.

Since functions can be reused in many diagrams, the
flows to and from a function are mediated through what
this article calls function port usages, which tie the
flows into and out of a function usage to the input and
output ports of the function itself. This allows a function
to be used in multiple flows without one flow affecting
another. The item flow and item node notation omit the
ports on the function usage they connect, for concise-

Figure 4. EFFBD function usage, UML 2 action.

5These might be considered behaviors, but are modeled directly
as actions in UML 2. Actions achieve reusability by making a new
instance of an action class for each usage in a flow [Bock, 2003a].

256 BOCK

ness. For example, the usage of function 2.1 in Figure
2 has a function port usage outputting a value of type
Item 1 to an input port for the usage of function 2.2.

Item inputs to an EFFBD function usage are called
triggering if they are required to arrive at the usage
before the function can be activated. For example Item
1 in Figure 2 is required to arrive for function 2.2 to be
activated. Item inputs arriving at an EFFBD function
usage that is already activated are queued until the
activation is finished. Triggering item inputs are notated
with an item node that has a double-headed arrow
pointing to the function taking the input. Triggering
items in UML-SE is a special case of a control operator
(see Section 2.12).

UML 2 object flow constructs correspond to EFFBD
and UML-SE constructs as given in the heading (Item
Flow ⇔ Object Flow, etc.), and support the features
above, except for issues with nontriggering inputs (see
below). If a nonstreaming input arrives at an action that
is already executing, it can begin a new execution of the
behavior if the behavior executing is reentrant; other-
wise it is queued. The notation for UML 2 Object Node
is a rectangle, labeled with the type of flowing object.
The rectangle can be shown in the middle of an object
flow, or as two small rectangles for the input and outputs
of actions, which are called pins (Figs. 6–9 below).

Three aspects of EFFBD and UML-SE are issues to
address when applying UML 2:

• Multiple flows coming out of an EFFBD item
node are equivalent to a UML 2 object node with
a fork for the outgoing flows.

For example, Item 2 in Figure 2 has a fork after it to
provide the items to two functions. This is because
UML 2 pins do not copy values that flow out of them
as EFFBD item nodes do (compare to Section 2.6).

• Nontriggering item inputs in EFFBD are not re-
quired for activation, but are used if they are
available when activation starts.

For example, Item 3 in Figure 2 is not required for
function 2.6 to be activated. Nontriggering item inputs
are notated with an item node that has a single-headed
arrow pointing to the function taking the input. Nontrig-
gering item in UML-SE is a special case of a control
operator (see Section 2.12).

UML 2 streaming inputs are not required to start
execution, though they are required to arrive before the
execution terminates. If a streaming input arrives at an
action that is already executing, then the input will be
accepted by the executing behavior.

EFFBD nontriggering inputs do not quite translate
to UML 2 streaming inputs, because EFFBD will queue
nontriggering items when it arrives at a function that is
already activated, whereas UML 2 streaming inputs are

Figure 5. EFFBD external input and output/function port, UML 2 Activity parameters.

Figure 6. EFFBD item flow and UML 2 object flow.

 UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS 257

accepted by the executing behavior. UML streaming
inputs are also required to arrive before the function is
finished executing.

• UML-SE flow diagrams are required to support
functions that transform continuous time varying
inputs into continuous time varying outputs (re-
quirement 6.5.2.1.3 j).

UML 2 defines a discrete virtual machine. This does
not preclude modeling continuous transformations, but
does not guarantee that values arriving at the same time
at the same action are used by the same behavior exe-
cution.

2.6. System Store ⇔ Data Store Node (a
Kind of Object Node, with Issues)

UML-SE requires a persistent store that may be deplet-
able or not (6.5.2.1.2). For example, a water tank is a
depletable store, whereas a database is a nondepletable
store.

UML 2 defines two kinds of Object Node that tem-
porarily store objects in either a depletable or nonde-
pletable fashion. See issues below.

UML 2 Object Nodes only hold objects while their
containing Activity is executing. In particular, the stor-
age of objects or data does not affect persistent struc-
ture, such as attribute values of objects in the system. In
addition, objects and data flow out of UML 2 Object
Nodes as they become available, rather than as they are
needed. Items in a UML-SE store may flow out when
they needed or when they are available.

2.7. Control Flow ⇔ Control Flow

A control flow in an EFFBD or UML-SE requirements
specifies sequential activation constraints. Control flow
connects function usages to indicate that the target

function can only start after the source function is
finished (requirement 6.5.2.2.1 c, e–g, see issues below
regarding deactivation control). For example, function
2.5 in Figure 2 starts after function 2.2 is finished.
UML-SE function usages with no incoming control
flows behave as if they always have their control input
enabled (requirement 6.5.2.2.1 f).

UML 2 control flow supports the features above. It
is shown in the lower part of Figure 10.

Three UML-SE requirements on control flow are
issues to address in applying UML 2:

• Control flow in UML-SE can connect to or from
a control function, which is a kind of function that
processes control values as if they were data (see
Section 2.12).

• EFFBD and UML-SE control can be queued until
the function completes (requirement 6.5.2.2.1 a
with 6.5.2.1.3 d).

Control flows in UML 2 are discarded if they arrive
at an action that is already executing.

• UML-SE control flow can abort an existing acti-
vation of a function. Control values can be either
enable or disable (requirement 6.5.2.2.1 b, d).
There is a requirement to support timeouts, which
also abort an existing activation (requirement
6.5.2.2.1 e).

Control flow in UML 2 only provides for enabling a
new execution, but combinations of other constructs
produce the same functionality.

2.8. Select ⇔ Decision. Merge Branch
Annotation ⇔ Guard

A branch in the flow of an EFFBD or UML-SE flow
diagram in which only one branch is taken at any
particular time is called a Select. In UML-SE, they are

Figure 7. UML 2 pins (a kind of object node).

Figure 8. EFFBD triggering item flow and UML 2 nonstreaming object flow.

258 BOCK

a special case of a control operator (6.5.2.2.2 c; see
Section 2.12). In EFFBD, Selects are shown with a
small circle labeled “OR,” (see Fig. 11). A point in the
flow where selected flows come together is notated the
same way, which in this article is called an End Select.
For example, the circled OR in Figure 2 on the right side
merges flows from function 2.4 and the end of the
iteration over function 2.5. It has not been determined
whether an End Select can be used with incoming flows
that are not exclusive.

Flows coming out of an EFFBD Select are marked
with branch annotations (see Fig. 11). These give con-
ditions for proceeding along the branch they annotate.

UML 2 Decision and Merge support the features of
Select and End Select, respectively. They are notated as
diamonds (see Fig. 11). Merges can be used with in-
coming flows that are not exclusive; that is, any incom-
ing flow during execution will always be passed to the
outgoing flow of the merge, regardless of whether other
flows have arrived before.

UML 2 Guards support the features of branch anno-
tations. They are used on flows coming out of decision
points. They give specific conditions for proceeding
along the flow they are attached to.

One aspect of EFFBD is an issue to address when
applying UML 2:

• EFFBD provides for stochastic choices at Se-
lects. Branch annotations may give probability
distributions for going along one flow or another,
rather than specific instructions. UML 2 Guards

do not provide for expressing probability distri-
butions for decisions.

2.9. Concurrency ⇔ Fork, Join

A branch in a flow where the branches operate concur-
rently is called Concurrency in EFFBD and Fork in
UML-SE (6.5.2.2.2 c). In UML-SE, they are a special
case of a control operator (see Section 2.12). In EFFBD,
Concurrency is shown with a small circle labeled AND,
as shown after function 2.1 in Figure 2. A point where
concurrent flows come together is notated the same
way, and is called an End Concurrency in this article,
as shown before function 2.6 in Figure 2.

UML 2 Fork and Join support the features of Con-
currency and End Concurrency, respectively. See Fig-
ure 12.

2.10. Multiexit Function ⇔ Behavior Using
ParameterSets (with Issues);
Completion Criteria ⇔ Postconditions on
ParameterSets (with Issues)

EFFBD multiexit functions have more than one control
output, but for each activation only one control output
is provided. In UML-SE, they are a special case of
control operators (6.5.2.2.2 c; see Section 2.12). In the
EFFBD example, function 2.2 in Figure 2 is multiexit.

Figure 9. EFFBD nontriggering item flow and UML 2 streaming object flow.

Figure 10. EFFBD and UML 2 control flow.
Figure 11. EFFBD select and branch annotation, UML 2

decision, guard, and merge.

 UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS 259

The conditions that determine which output will be
provided are specified internally to the function. These
completion criteria are notated as annotations on the
flows coming out of multiexit functions. It is an open
question of whether multiexit functions can provide
alternative item outputs.

UML 2 parameter sets are a way of grouping pa-
rameters of a behavior into sets such that each execution
of the behavior provides inputs or outputs for the pa-
rameters in only one of the sets. See issues below for
correspondence to multiexit functions. They are shown
as boxes around pins, as shown on function 2.2 in
Figure 3 and the lower part of Figure 13.

Two aspects of EFFBD multiexit are issues to ad-
dress in applying UML 2:

• EFFBD multiexit is for control flow and UML 2
parameter sets are for data flow.

• EFFBD completion conditions require UML 2 to
have postconditions on parameter sets, but post-
conditions are only supported on parameters cur-
rently.

2.11. Iteration, Loop ⇔ Flow,
Decision, Merge

EFFBD Iteration and Loop are special nodes used to
form cycles in the flow graph. They are used at the
beginning and end of a cycle. In UML-SE, they are a

special case of a control operator (6.5.2.2.2 c; see Sec-
tion 2.12). EFFBD Iteration is notated with a circle
labeled with IT, Loop with a circle labeled with LP. For
example, the circles before and after function 2.5 in
Figure 2 indicate iteration over function 2.5.

EFFBD Iteration determines the number of loops
after the first cycle at runtime. The determination may
be a constant or an expression evaluated at runtime. The
determining expression is recorded on the iteration
node at the end of the cycle, and notated on the flow that
returns to the beginning of the cycle. EFFBD Loop
determines when to stop the cycle each time through at
the end of each cycle. The determination is modeled the
same way as for iteration. EFFBD Replication is a
similar construct that supports multiple activations of
the same function usage. The details of replication are
not completely determined yet.

UML 2 supports cycles by using a Merge at the
beginning of the cycle and a Decision at the end (see
the lower part of Fig. 14).The test for returning to the
beginning of the cycle is on the guards coming out of
the decision, which are notated with brackets annotat-
ing the flow line. See the flow line returning to the
merge before function 2.5 in Figure 2. The same UML
2 action can be executed more than once, if it is invoking
a reentrant behavior.

Two aspects of EFFBD and UML-SE cycles are
issues to address in applying UML 2:

• UML 2 does not explicitly distinguish EFFBD
loops and iterations.

• A UML-SE requirement provides for limiting the
number of concurrently executing activations of
a function (requirement 6.5.2.1.3 k). A UML 2
reentrant behavior can have an unlimited number
of concurrent executions. Other behaviors can
only have one.

Figure 12. EFFBD concurrency, UML 2 fork and join.

Figure 13. EFFBD multiexit function, UML 2 parameter
sets (with issues). Figure 14. EFFBD iteration, UML 2 merge and decision.

260 BOCK

2.12. Control Operator,
Activation/Deactivation Events ⇔ Join with
Join Expression (with Issues)

UML-SE requires a kind of function called a control
operator that takes as input activation/deactivation
events and other events, to combine them into a single
control value to activate or deactivate a function
(6.5.2.2.1 g, 6.5.2.2.2, 6.5.2.2.3). This can occur at any
time based on a set of triggering events and conditions,
and does not necessarily wait for another function to
complete. The specific control constructs for selection,
fork, and so on, are examples of control operators. A
function usage can have a control operator to transform
multiple incoming control flows, to determine how
these are combined to affect the activation (requirement
6.5.2.2.1 a).

UML 2 control flows detect the completion of action
executions and these can be combined with each other
and with data flow using an expression on the Join
construct. UML 2 provides for events as they affect
objects: change events, signal arrival, operation calls,
and time, time being the only global event. UML 2
actions with multiple incoming control flows must wait
for control to arrive on all incoming flows before begin-
ning execution. Actions do not provide for other com-
binations of control. See issues below.

One approach to applying UML 2 to control func-
tions is to use join expressions. This aspect of UML 2
joins can represent any combination of control and data.
However, control flow is limited to detecting comple-
tion of action execution and the invocation of operations
on objects. Interrupted executions and newly started
executions are not detected in UML 2 control flow (see
Section 2.7). Also the combination of control and data
flow in a join always produces a data flow. Joins cannot
be used as the input combiner inside of an action.

Another approach is to extend UML behavior to
manipulate control values directly as if they were data,
and provide these behaviors as input combiners for
actions. See Section 3.1.

3. CHANGES AND EXTENSIONS TO UML
2 ACTIVITIES FOR EFFBD AND UML-SE
FLOW DIAGRAMS

This section proposes solutions to the issues raised in
Section 2 comparing UML 2 Activities with EFFBD
and UML-SE flow diagram requirements. The issues
fall into three categories:

1. Parity between the capabilities of control and
data flow, for example, queuing of control

2. Local versus global specification, for example,
queuing specified at function usages or at func-
tions

3. Other extensions to address continuous time
varying inputs and outputs.

The suggested solutions below can be made as an
extension in UML-SE or more generically to UML 2.
The proposed approach is indicated in some cases be-
low.

3.1. Parity of Control and Data

Some of the features of data flow in EFFBD, UML-SE,
and UML 2 flow diagrams can apply to control, and vice
versa:

• Control queuing: EFFBD and UML-SE flow dia-
grams can queue enabling control values that
arrive at a function usage that is already activated,
whereas UML 2 discards them (Section 2.7).

UML 2 pins can be extended to support control
tokens by defining a special type for control values.
Making control a form of input is more general, since
it resolves the next two items also. See “Control as input
and output” at the last bullet below.

• Multiple control values: UML-SE flow diagrams
provide for two control values, enable and dis-
able, whereas UML 2 only provides enable (Sec-
tion 2.7).

UML 2 has other constructs for halting execution,
for example, interruptible regions, and exception pa-
rameters. These disable actions executing in a region of
the flow graph when particular events occur, and may
be more suitable than disabling control values for some
applications.

Assuming additional control values are needed in
system engineering applications, it may be that more
than enabling and disabling would be useful, such as
suspend, resume, soft disable that allows cleanup be-
haviors, hard disable that has no cleanup behaviors, and
so on. In effect, control values can become almost as
varied as data. However many values are needed, the
semantics of UML 2 control tokens can be extended to
cover them, because they are simple additions to the
existing enabling control value.

It is not determined yet how UML-SE will satisfy
the requirement for multiple control values. For exam-
ple, will control flow lines be marked as dedicated for
enablement or disablement, so modelers can visualize
them easily, or will flow lines carry either kind depend-
ing on runtime dynamics for flexibility? If other control
values are introduced, such as aborts due to exceptional
conditions, how will a function usage specify which

 UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS 261

type of control is to be emitted when it completes? One
possibility is the general solution given below, which is
already required for other features.

It is also not determined how joins should behave
when receiving different control values. Multiple ena-
bling control values arriving at a join are normally
combined into a single enabling control. Any two con-
trol values of the same type can be combined this way,
but what about combining different values? For exam-
ple, how are enabling and disabling control values
combined at a join? Perhaps in this case one might say
that they nullify each other, but it is unclear what
principle is, and consequently cannot be generalized to
other control values that might be introduced later, such
as suspend, soft disable, and so on.

• Multiexit and parameter sets: EFFBD provides
multiexit for control outputs only, whereas UML
2 does the same for data only (Section 2.10).

Both of these capabilities can be provided by making
control a form of output (see the next bullet). EFFBD
multiexit completion conditions translate to post-
conditions on parameter sets, which UML 2 does
not support currently. This feature should be a standard
part of UML 2.

• Control as input and output: UML-SE control
operators require control values as inputs and
outputs (Section 2.12). Providing this capability
to all functions resolves the above issues related
to input and output. Control and data both can be
typed, queued, participate in multiexit, and have
specific values. Some other issues arise, however:
• Control functions operate on control values,

but are not affected by them. For example, a
disablement control arriving at an already ac-
tivated control function does not disable it. A
simple way to distinguish this case is to allow
function usages to have input port usages (pins
in UML 2) that are not bound to function ports
(parameters in UML 2). Port usages without
ports have nowhere to pass the control value,
so the values can be directed to whatever agent
is executing the function.

• UML 2 provides for data arriving at an already
executing function usage and being consumed
by that execution (streaming inputs and out-
puts). For control operators implemented as
Activity models, these can be consumed by
the execution by putting multiple control to-
kens at the initial node at different times
within the same execution of the diagram.

• Symmetry might imply that control disable-
ment will also be queued when arriving at a

function usage that is already disabled. It is
not clear how useful this is, because the
queued disabling control would only come
into effect when the function is reactivated,
immediately deactivating it. Likewise, any
other control values that might be used, such
as suspend, would be queued and present the
issue. The proper application of queued con-
trol values is yet to be determined.

UML-SE function-based behavior requirements
continue a long-term trend of unifying data and control.
Modern flow models treat data as a form of control, by
requiring data to be available for a function to activate,
as compared to the traditional data store that passively
provides information on request from already activated
functions. UML-SE requirements likewise treat control
as a form of data by providing multiple control values,
control queuing, and control functions.6

Other aspects of control and data flow needing align-
ment between EFFBD and UML-SE requirements and
UML 2 Activities are:

• UML-SE function usages with multiple incom-
ing control flows can specify a control operator
to determine how these are combined to affect the
activation (Section 2.7). In UML 2 this is always
“and.”

UML-SE can extend actions with a control combi-
nation function that defaults to conjunction in the case
of UML 2.

• EFFBD provides for nontriggering data inputs,
which can be thought of as optional inputs (Sec-
tion 2.5). A function usage can be activated with-
out nontriggering inputs being available. In UML
2, all inputs are required to arrive, but streaming
inputs may arrive after an action begins execut-
ing, and are consumed by the executing action.
Optional inputs were not included in UML 2 due
to concern that it can introduce inadvertent race
conditions. In particular, inputs arriving late may
have been intended to go with inputs that arrived
earlier.

One resolution is to separate streaming as a feature
from requiredness. Then they can be varied inde-
pendently, providing four combinations. EFFBD sup-
ports nonstreaming inputs, both required and optional.

6The long-term unification of control and data functionality
forms a cycle, because the new capabilities for control suggest new
capabilities for data. For example, if control can have disabling
values, why should data be limited being a form of enabling control?
If data arrive at a function usage that is already active, it might mean
that the old data were incorrect, and the function should be deacti-
vated, and start over.

262 BOCK

• The UML-SE requirement for discarding input
values (Section 2.4) can be modeled as a charac-
teristic of function ports (pins in UML 2), or of
function inputs and outputs globally (Activity
parameters in UML 2) (see Section 3.2). This can
be used for traditional applications that discard
enabling control values arriving at already an
activated function.

Another approach to some of the issues of flexibly
reacting to control and data values is to define all control
and data inputs as streaming, that is, accepted by exe-
cuting actions or activated function usages, and let the
function determine whether inputs should be queued,
discarded, required to start, and so on. This has the
advantage of generality, but it would be difficult for
tools to give an indication in the flow diagram of what
will happen to the inputs, since this is hidden in the
function.

In addition to reacting to control and data values,
UML-SE requirements call for control event detection
beyond traditional function completion, for example,
detection of function activation, interruption, and so on.
This is also generalized to events for the availability and
consumption of data. UML 2 provides for events as they
affect objects: change events, signal arrival, operation
call arrival, and time, time being the only global event.
It is not yet determined how EFFBD will model event
detection, for example, whether they are specified by
special flows for that purpose, or a general publish/sub-
scribe mechanism, or rule-base representation, and so
on.

3.2. Local Versus Global Specification

Since functions exist independently of the EFFBD or
UML-SE flow diagrams that use them, specification
elements can potentially be placed globally on func-
tions, or locally on function usages, or both. For exam-
ple, UML 2 provides for preconditions and
postconditions on behavior to be placed on the behavior
globally, or on individual actions invoking behavior in
a flow. The advantage of local specification is that it can
vary depending on where in a flow it is placed. For
example, local preconditions in UML 2 activities can
take into account particulars of the flow that might
make additional constraints on when an action may take
place, in addition to global preconditions on the behav-
ior being invoked. The advantage of global specifica-
tion is that it is more concise because it applies to all
local usages of a function. For example, a global pre-
condition on a UML 2 behavior will apply to all actions
that invoke that behavior.

Three UML-SE requirements differ from UML 2 in
local versus global specification:

• The specification of how input and output is
handled, that is, queuing, and so on, is on function
ports of the global function, whereas it is local to
actions and pins in UML 2 (Section 2.4). These
are the issues of Section 3.1.

• The specification of resources used by a function
is defined globally (Section 2.2), whereas it is
local to flows in UML 2.

• Although replication is not completely specified
yet, a UML-SE requirement is that functions
define the maximum number of activations that
may exist at one time (Section 2.11). UML 2
currently provides for specifying whether a be-
havior can be executed more than once at the
same time. These are both global specifications,
but UML 2 is not as fine-grained as the UML-SE
requirement. Additional constraints on the num-
ber of simultaneous executions in UML 2 can be
locally specified, as a kind of iteration.

In either case above, UML 2 or UML-SE should
provide both global and local specification elements,
with global ones being shorthands for universally ap-
plied local specifications. This provides maximum
flexibility for the application developer.

3.3. Other Issues

Other EFFBD and UML-SE flow diagram require-
ments to address in applying UML 2 are:

• A UML-SE requirement is that functions specify
whether they are interruptible or not (Section
2.2).

This can be added as an additional attribute to UML
2 or UML-SE behaviors.

• A UML-SE requirement is that functions can
accept inputs and provide outputs in a continuous
fashion (Section 2.5). For example a function
might take a position as input and provide a
velocity as output and do so with values of posi-
tion that vary continuously over time.

UML 2 Activities define a discrete virtual machine,
but do not constrain how closely spaced in time discrete
inputs may be taken and outputs provided by an action.
The mathematical definition of continuity is stated the
same way, in terms of limits.

However, for actions that have more than one input,
a value from each input must be chosen for each execu-
tion of the action. This is not an issue for discrete

 UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS 263

systems, since the values can be queued at each input
and selected as needed for an execution. In continuous
systems, the values must be selected for each execution
by some other criteria, most likely the time at which the
values arrive, either a global time, or time local to the
action. Values arriving at the same time to each input
are taken as inputs to a single execution of the action.
Synchronization of this sort applies to UML joins also,
which combine multiple flows into one.7

It will be useful to have some indication of when a
flow will be continuous. This can be an additional
boolean attribute on flows and notated with a keyword
on the diagram, or a distinction line type.

• EFFBD and UML-SE provide for expressing
probability distributions for a branch, whereas
UML 2 Decision Guards do not (Section 2.8).

Flows can be extended with this information, and
semantics assigned based on the distribution of data or
control tokens passing through that point in the flow
under some conditions.

• Multiple flows coming out of an EFFBD item
node are equivalent to a UML 2 Object Node with
a fork for the outgoing flows (Section 2.5).

Since this is an uncommon case, especially for
physical flows, it is suggested that the fork be used
when items need to be copied.

• UML 2 Object Nodes only hold objects while its
containing Activity is executing, not persistently
across Activity executions as in UML-SE stores
or traditional data stores (Section 2.6). And ob-
jects and data flow out of UML 2 Object Nodes
as they become available, rather than as they are
needed. In this sense, UML 2 uses a form of data
flow that treats data like a control value rather
than storage.

Persistent storage can be achieved by extensions that
use the predefined UML 2 actions for modifying per-
sistent objects. Specifically, an item flow coming into a
UML-SE or traditional data store is equivalent to as-
signing that item or data to a particular place in storage.
For example, the average pressure on a wing surface
might be stored as the value of a particular attribute in

an object that records information about the wing. Or
water flowing into a physical system might be stored in
a tank, which can be modeled as a dynamically chang-
ing characteristic of the tank. This is equivalent to a
UML 2 action for writing attribute values.

Conversely, an item flow going out from a UML-SE
or traditional data store is equivalent to retrieving that
item from a particular place in storage. In the previous
example, the average pressure on the wing is read from
an attribute of the wing object. Or water flowing out of
a physical system might be taken out of a tank. This is
equivalent to a UML 2 action for reading and modifying
attribute values. In this way a UML-SE or traditional
data store can be defined as an aggregate of primitive
actions on persistent storage. A concise graphical nota-
tion for stores can be provided that maps to the complete
action model.

4. CONCLUSION

The UML 2 Activity models, EFFBD and the UML-SE
requirements have similar models for control and
data/item flow, and behavior in general. The UML-SE
requirements specify a comprehensive set of function-
based behavior, including continuous time require-
ments, input/output, stores, and control requirements.
It brings control and data closer together in functional-
ity than UML 2 currently does. This article identifies
areas where UML 2 Activity models, EFFBD, and
UML-SE requirements do not overlap and proposes
changes in UML 2 or UML-SE to align them, and
achieve the same execution traces for the same models.
With the revisions and extensions, the functionality of
EFFBD and the UML-SE requirements are fully sup-
ported by UML 2 Activities.

ACKNOWLEDGMENTS

The author thanks Sanford Friedenthal, James Long,
and Joseph Skipper for input to this article.

REFERENCES

J. Axelsson, Model based systems engineering using a con-
tinuous-time extension of the Unified Modeling Language
(UML), Syst Eng 5(3) (2002), 165–179.

T. Bahill and J. Daniels, Using objected-oriented and UML
tools for hardware design: A case study, Syst Eng 6(1)
(2003), 28–48.

B. Blanchard and W. Fabrycky, System engineering and
analysis, Prentice Hall, Englewood Cliffs, NJ, 1990.

C. Bock, UML 2 activity and action models, J Object Technol
2(4) (July–August 2003a).

7Streaming input and output in UML 2 is also useful in applying
continuous inputs and outputs. For example, a car driver performs an
action to depress the accelerator pedal, and this causes continuously
varying information to be sent to the throttle, either mechanically or
electronically. The action does not terminate while this output is
generated, which is the definition of a streaming output in UML 2.

264 BOCK

C. Bock, UML without pictures, IEEE Software, special issue
on model-driven development, (September/October
2003b).

S. Friedenthal and R. Burkhart, Extending UML from soft-
ware to systems, INCOSE Symp, July 2003.

J. Grady, System requirements analysis, McGraw-Hill, New
York, 1993.

F. Kockler, et al., Systems engineering management guide,
000802001202-5, Defense Systems Management Col-
lege, U.S. Government Printing Office, Washington, DC,
1990.

J. Long, Relationships between common graphical repre-
sentations in system engineering, ViTech Corporation,
2002.

J. Long, M. Alford, M. Dyer, L. Marker, et al., The software
requirements engineering methodology (SREM) note-
book; TRW CDRL A006, BMDATC Contract DASG
60-75-C-0022; December 1975. U.S. National Institute of
Standards, Gaithersburg, MD.

H. Lykins, S. Friedenthal, and A. Meilich, Adapting UML for
an object oriented systems engineering method
(OOSEM), Proc Tenth Annu INCOSE Int Symp, Minnea-
polis, July 16–20, 2000.

J. Martin and J. Odell, Object-oriented analysis and design,
Prentice-Hall, Englewood Cliffs, NJ, 1992.

I. Ögren, Possible tailoring of the UML for systems engineer-
ing purposes, Syst Eng 3(4) (2000), 212–224.

D. Oliver, T. Kelliher, and J. Keegan, Jr., Engineering complex
systems with models and objects, McGraw-Hill, New
York, 1997.

OMG (Object Management Group), UML 2.0 superstructure
specification, August 2003, http://www.omg.org/cgi-
bin/doc?ptc/03-08-02.

A. Pandikow and A. Törne, Support for object-orientation in
AP-233, Proc Eleventh Annu INCOSE Int Symp, Mel-
bourne, July 1–5, 2001a.

A. Pandikow and A. Törne, Integrating modern software
engineering and systems engineering specification tech-
niques, Proc Fourteenth Annu Int Conf Software & Syst
Eng Appl, Paris, December 4–6, 2001.

SE-DSIG (OMG Systems Engineering Domain Special Inter-
est Group), UML for systems engineering RFI, February
1, 2002, http://www.omg.org/technology/documents/
UML_for_Systems_Engineering_RFI.htm.

SE-DSIG (OMG Systems Engineering Domain Special Inter-
est Group), UML for systems engineering RFP, March
2003a, http://www.omg.org/cgi-bin/doc?ad/03-03-41.

SE-DSIG (OMG Systems Engineering Domain Special Inter-
est Group), 2003b, http://syseng.omg.org/.

J. Skipper, private communication, 2003.

Conrad Bock is a Computer Scientist at the U.S. National Institute of Standards and Technology
specializing in process modeling and UML. He studied at Stanford, receiving a B.S. in Physics and an
M.S. in Computer Science. His previous experience includes business process modeling at SAP and
Microsoft. Mr. Bock leads efforts on process modeling in UML at the Object Management Group (OMG),
and is contributing to the submission on UML for Systems Engineering to OMG.

 UML 2 ACTIVITY MODEL SUPPORT FOR SE FUNCTIONAL FLOW DIAGRAMS 265

