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Abstract: We examined mortality of Abies concolor (Gord. & Glend.) Lindl. (white fir) and Pinus lambertiana Dougl.
(sugar pine) by developing logistic models using three growth indices obtained from tree rings: average growth, growth
trend, and count of abrupt growth declines. For P. lambertiana, models with average growth, growth trend, and count of
abrupt declines improved overall prediction (78.6% dead trees correctly classified, 83.7% live trees correctly classified)
compared with a model with average recent growth alone (69.6% dead trees correctly classified, 67.3% live trees correctly
classified). For A. concolor, counts of abrupt declines and longer time intervals improved overall classification (trees with
DBH ‡20 cm: 78.9% dead trees correctly classified and 76.7% live trees correctly classified vs. 64.9% dead trees correctly
classified and 77.9% live trees correctly classified; trees with DBH <20 cm: 71.6% dead trees correctly classified and
71.0% live trees correctly classified vs. 67.2% dead trees correctly classified and 66.7% live trees correctly classified). In
general, count of abrupt declines improved live-tree classification. External validation of A. concolor models showed that
they functioned well at stands not used in model development, and the development of size-specific models demonstrated
important differences in mortality risk between understory and canopy trees. Population-level mortality-risk models were
developed for A. concolor and generated realistic mortality rates at two sites. Our results support the contention that a
more comprehensive use of the growth record yields a more robust assessment of mortality risk.

Résumé : Nous avons étudié la mortalité chez Abies concolor (Gord. & Glend.) Lindl. et Pinus lambertiana Dougl. en
élaborant des modèles logistiques à l’aide de trois indices de croissance obtenus à partir des cernes annuels : la croissance
moyenne, la tendance de la croissance et le dénombrement des diminutions abruptes de croissance. Dans le cas de P. lam-
bertiana, les modèles qui incorporaient la croissance moyenne, la tendance de la croissance et le dénombrement des dimin-
utions abruptes de croissance ont globalement amélioré les prédictions (78,6 % des arbres morts et 83,7 % des arbres
vivants ont été correctement classifiés) comparativement à la croissance moyenne récente seule (69,6 % des arbres morts
et 67,3 % des arbres vivants ont été correctement classifiés). Dans le cas de A. concolor, le dénombrement des diminutions
abruptes de croissance et l’utilisation d’intervalles de temps plus long ont globalement amélioré la classification des arbres
avec un DHP ‡ 20 cm (78,9 % des arbres morts et 76,7 % des arbres vivants vs. 64,9 % des arbres morts et 77,9 % des
arbres vivants ont été correctement classifiées) et des arbres avec un DHP < 20 cm (71,6 % des arbres morts et 71,0 %
des arbres vivants vs 67,2 % des arbres morts et 66,7 % des arbres vivants ont été correctement classifiés). En général, les
diminutions abruptes de croissance ont amélioré la classification des arbres vivants. Une validation externe des modèles
pour A. concolor a montré qu’ils fonctionnent bien dans des peuplements qui n’ont pas été utilisés pour élaborer le mod-
èle. L’élaboration de modèles propres à différentes dimensions a mis en évidence d’importantes différences dans le risque
de mortalité entre les arbres de la canopée et ceux du sous-bois. Des modèles de risque de mortalité à l’échelle de la popu-
lation ont été élaborés pour A. concolor et ces modèles ont généré des taux de mortalité réalistes dans deux stations. Nos
résultats supportent l’assertion voulant qu’une utilisation plus poussée des données de croissance permette d’obtenir une
évaluation plus robuste du risque de mortalité.

[Traduit par la Rédaction]

Introduction

Forests today face a suite of novel stressors, including at-
tack by exotic pests, fire suppression, land-use alteration,
climate change, and air pollution (Liebhold et al. 1995;

Vitousek et al. 1997; Miller and Urban 2000; Lenihan et al.
2003). If we are to understand how forests will change, we
must improve our understanding of how the trees within
them die. Yet one of the most difficult challenges in the
study of long-lived organisms is quantifying the process
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that leads to their mortality. In the case of tree death, typical
approaches to modeling individual mortality have often
focused on short-term measures such as average recent
growth, usually taking into account no more than 5 years of
growth (e.g., Pacala et al. 1996; Keane et al. 2001; Bigler
and Bugmann 2004). Although several studies have docu-
mented a relationship between longer term growth character-
istics and tree decline (Phipps and Whiton 1988; Leblanc
1990; Pedersen 1998b; Ogle et al. 2000; Cherubini et al.
2002; Duchesne et al. 2002, 2003; Suarez et al. 2004), rela-
tively few attempts have been made to incorporate these
characteristics when modeling the probability of mortality
(Bigler and Bugmann 2003, 2004; Bigler et al. 2004).

The idea that tree death can be the result of a life-long
accumulation of injuries (sensu Mangel and Bonsall 2004)
was implicit in Franklin et al.’s (1987) landmark paper.
They presented a conceptual model based on Manion’s
(1981) disease spiral to characterize the events that eventu-
ally lead to the demise of a tree. The key insight was that
past events that reduce vigor increase future susceptibility
to mortality agents. These mortality agents, which can in-
clude competition, biotic attack, and environmental stress,
contribute either independently or synergistically to the
death of a tree (Franklin et al. 1987; Keane et al. 2001).

In a broad sense, then, mortality can be conceptualized as
a cumulative process (Anderson 2000) where the events that
occur over the lifetime of an organism influence its likeli-
hood of survival (Mangel and Bonsall 2004). Temperate-
zone trees are particularly amenable to such an approach, as
many species record a detailed history of these life events in
their annual growth rings. A given tree’s growth, then, can
be understood as an integrated measure of the physiological
realities that contribute to its likelihood of survival (Kyto et
al. 1996).

Our goal in this study was to quantify aspects of the tree-
ring record that provide reliable indicators of future mortal-
ity. We incorporated the concept of a cumulative mortality
process by examining not only growth over time but also
changes in growth over time. In this sense we defined the
‘‘cumulative’’ approach as one that takes into account addi-
tional aspects of the growth record to help specify the like-
lihood of mortality. We explicitly evaluated whether
additional aspects of the growth record might give a more
accurate assessment of a tree’s health than a 5 year snap-
shot.

Several studies using average recent growth have demon-
strated that slow growth is correlated with risk of mortality
(e.g., Kobe et al. 1995; Yao et al. 2001). However, more in-
formation might be contained in the growth record. For ex-
ample, Pedersen (1998b) showed that events leading to
mortality often occur two decades before actual death and
are characterized by abrupt growth decreases rather than
just slow growth. Furthermore, Bigler and Bugmann (2003)
demonstrated that the addition of a linear growth trend can
significantly improve prediction.

In this study, we built general predictive models of tree
mortality that combined measures of average growth, growth
trend, and abrupt growth decreases to examine the relation-
ship between a tree’s growth history and probability of mor-
tality. While Pedersen (1998b) was the first to demonstrate
that the inclusion of terms that model abrupt decreases in

growth significantly improved mortality models for Mid-
western oaks, his analysis only examined growth decreases
in years that were identified as being more environmentally
stressful than average. This approach detected stressful peri-
ods for all the trees in a stand but did not allow for noncli-
matic or local stresses that a given tree might be
experiencing. Bigler and Bugmann (2003) were specifically
interested in trees that had died as a result of competition,
so their study design intentionally avoided trees that showed
obvious signs of attack by strong pathogens or insects.
These exclusions limit the generality of their study, given
the importance of insects and pathogens in many ecosystems
(Waters et al. 1985; Schowalter and Filip 1993; Hansen and
Goheen 2000; Maloney and Rizzo 2002).

In contrast, we did not screen the tree-ring record for
stressful years, nor did we exclude certain causes of mortal-
ity. Instead, we evaluated the ability of a suite of growth
measures, individually and in combination, to predict the
probability of all forms of mortality. Moreover we compared
these models of mortality for two species of trees that share
habitat but have different life-history characteristics. Our
contention was that if tree death is a cumulative process,
then the cumulative record of growth would be a superior
predictor of mortality regardless of the specific circumstan-
ces of an individual population or species.

Materials and methods
We developed mortality models for two common conifer

species in the Sierra Nevada of California: Pinus lambertiana
Dougl. (sugar pine) and Abies concolor (Gord. & Glend.)
Lindl. (white fir). Pinus lambertiana is a moderately tolerant
gap-adapted species and A. concolor is a late-successional
shade-tolerant species (Burns and Honkala 1990). These two
species also provided different population trajectories in
modern Sierran forests. With fire suppression, A. concolor
has become an increasingly dominant species in the mixed-
conifer forest, while P. lambertiana, because of a host of fac-
tors, has been declining in importance (Kinloch and Dulitz
1990; Ansley and Battles 1998; van Mantgem et al. 2004).

Site
The study sites were located in the mixed-conifer forest in

Sequoia National Park (118835’W, 368 35’N) on the western
slope of the Sierra Nevada at an elevation of approximately
2000 m. Soils are generally coarse loams derived from gran-
itic parent material. Annual precipitation averages 1200 mm/
year, with most falling between December and March
(35%–65% as snow). Mean January temperature is 0 8C,
while mean July temperature is 17 8C. The sites had never
been logged, and had not experienced any stand-replacing
disturbances in several centuries. Before Euro-American set-
tlement, low- to moderate-intensity surface fires were com-
mon, with the mean fire-return interval at a nearby site
reported at 7 years (Caprio and Swetnam 1993).

The forests are dominated by a mix of A. concolor, Abies
magnifica A. Murr. (California red fir), Calocedrus decur-
rens (Torr.) Florin (incense cedar), and P. lambertiana. In
addition, some areas contain significant numbers of Se-
quoiadendron giganteum (Lindl.) Buchh. (giant sequoia).
Abies concolor consitutes 30%–75% of stand density and
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33%–56% of stand basal area. Pinus lambertiana consitutes
0.5%–7% of stand density and 2%–20% of stand basal area.

Model construction was based on data from a 3.375 ha
permanent vegetation plot sited along Suwanee Creek that
was established in 1982 and 1983 following the methods of
Riegel et al. (1988). All living trees taller than 1.37 m were
mapped and tagged and their diameters were measured at
breast height (1.37 m). Trees were checked annually for
mortality. At 5 year intervals, tree diameters were remeas-
ured and newly established trees were mapped and meas-
ured.

Data from two other stands located in Sequoia National
Park were used to validate the A. concolor models. We
were unable to obtain an adequate second sample of P. lam-
bertiana, owing to its relative scarcity. The first site con-
tained plots totaling 6.625 ha located along Log Creek,
ranging from 2100 to 2200 m in elevation. In terms of de-
sign and monitoring, these plots were identical with those at
Suwanee Creek. This site was used for validation and for es-
timating mortality rates (see below). The second site was a
true fir forest located near Clover Creek at an elevation of
2150 m. In 1992, a 1 ha plot was logged at the site to pro-
vide space for a new hotel. This site was used for estimating
mortality rates (see below). All three sites were located be-
tween 4 and 7 km from one another.

Sampling design and data collection
Field assessments of newly dead P. lambertiana and A.

concolor encountered during the annual censuses at the Su-
wanee Creek plot indicated that trees of both species died
from a variety of proximate factors ranging from apparent
competitive stress (i.e., no obvious biotic/mechanical fac-
tors) to mechanical mortality (e.g., windthrow, crushing) to
attack by pathogens or insects. Given that the availability of
recently dead trees was the limiting factor, we used a case-
control research design for model development (Schles-
selman and Stolley 1982), where the dead trees served as
cases and a matching set of live trees was collected as a
control. This contrasts with a cohort study in which an entire
population would be followed and the ratio of live and dead
trees would be representative of actual mortality rates.

At the Suwanee Creek and Log Creek sites, we sampled
dead trees and then matched them to live trees in terms of
species and approximate size. Specifically, we collected in-
crement cores for all dead trees with DBH over 20 cm that
had died since plot establishment and for which an intact
core could be obtained. For trees less than 20 cm, samples
were collected from trees that had died in the last 5 years
(2002–1998), as smaller trees were less likely to remain in-
tact over time. Note that all trees that had reached 1.37 m in
height before mortality were eligible for sampling. To avoid
damaging live trees in the long-term vegetation plots, incre-
ment cores for the live tree sample were collected outside
each plot. All live trees in a narrow band around the plot
perimeter were sampled and then additional trees were col-
lected in widening concentric bands until a given species
and size class was adequately represented (i.e., enough live
trees of each species and size were sampled to at least
match the dead-tree sample). This procedure resulted in
more live than dead trees in some size classes.

All cores were collected on the sides of the tree parallel to

the slope of the plot, generally below 1 m height and above
any basal swell. For live trees greater than 60 cm DBH, two
samples were collected from opposite sides of the tree. The
two cores from the larger trees were used for developing the
master chronology for the species at the site. For all other
trees, we ensured that at least one good core was obtained.

At Clover Creek, basal stem sections of live trees were
collected in conjunction with the logging operation. Samples
were collected from all live trees with a DBH greater than
25 cm over the whole plot and from all live trees greater
than 20 cm in height in nested subplots (the approximate to-
tal area subsampled was 0.4 ha). No dead-tree samples were
available for this plot.

Cores were sanded until individual cells were visible
under magnification. Tree rings were then measured to
0.01 mm using a dissecting microscope and a sliding-stage
micrometer. Master chronologies were built for each species
using all live trees greater than 60 cm DBH with the aid of
the computer program COFECHA1 (Grissino-Mayer 2001).
Errors (missing or false rings) in the remaining cores were
then identified by comparing them against the chronology
using COFECHA1 (Grissino-Mayer 2001). Corrections
were made after errors were confirmed by visual inspection
of the core. This check was done for all cores that could be
cross-dated. The vast majority of corrections were for miss-
ing rings, and dead trees were far more prone to this prob-
lem. Thus, an inability to cross-date certain samples should
generally have resulted in conservative errors, i.e., an over-
estimate of growth in the dead-tree sample. Therefore, cores
were not excluded on the basis of an inability to cross-date,
to avoid a bias against trees with strong ecological signals in
their growth record.

We only used cores with at least 40 years of growth to
enable comparison between models (see below). Our sam-
pling design and data criteria produced 253 P. lambertiana
(123 live, 130 dead) and 180 A. concolor (101 live, 79
dead) records for Suwanee Creek, 279 (155 live, 124 dead)
A. concolor records for Log Creek, and 185 live A. concolor
records for Clover Creek.

Growth index calculations
We calculated all growth indices using absolute annual ra-

dial increment. Other measures were considered and tested,
including basal area increment and relative basal area incre-
ment (basal area increment/total initial tree basal area). For
our data, however, we found radial growth to be the best
metric (see Appendix A).

We identified three growth indices that have proven to be
important for predicting mortality: average growth (Kobe et
al. 1995; Yao et al. 2001), growth trend (Bigler and
Bugmann 2003), and frequency of abrupt annual growth de-
clines (Pedersen 1998b). For each sample, we calculated
these indices at 5 year intervals from 5 to 40 years of age.
Average growth was calculated as the mean ring width for
the time interval (average growth for the last 5 years,
10 years, etc.); growth trend was calculated as the linear
rate of increase or decrease in ring width for the given time
interval; and abrupt growth declines were counted for a
given time interval.

Based on the literature (Schweingruber 1985, 1986; Innes
1993; Pedersen 1998b) and preliminary analyses, we defined
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abrupt growth declines as year-to-year growth rate decreases
of more than 50% — a shift of about 1 standard deviation
from the mean of all year-to-year growth rate changes
(mean = 7%, SD = 46%, excluding large outliers). To avoid
including large relative changes in an otherwise slow-grow-
ing tree, abrupt declines represented at least a 0.05 mm
change in growth.

In addition to the growth indices calculated above, we
also included one size-related design variable in our models.
Although we did not see the typical negative exponential
growth bias in the growth behavior of small versus large
live trees for our data set (Appendix A), the possibility re-
mained that mortality processes varied in nature across size
classes (e.g., Pacala et al. 1996). We defined our size varia-
ble from the observed relationship between tree size and
canopy position. For these plots, the vast majority of trees
below 20 cm DBH were classified as subcanopy, while the
vast majority above 20 cm DBH were classified as inter-
mediate, codominant, or dominant. Therefore, we generated
the size variable, where size = 1 for trees with DBH less
than 20 cm and size = 0 for trees with DBH 20 cm or
more. Ultimately, the size variable was only used for P.
lambertiana, as separate A. concolor models were built for
each size category (see below).

Model development

For P. lambertiana we randomly split the data from Su-
wanee Creek into parameterization (n = 155; 77 live, 78
dead) and internal-validation (n = 105; 49 live, 56 dead)
sets. Only the parameterization set was used for model
building. For A. concolor the Suwanee Creek data were
used for model building and the Log Creek data for valida-
tion. Furthermore, as preliminary analysis showed that size
was an important factor for A. concolor (see Appendix B),
models were built separately for trees with DBH 20 cm or
more (61 live, 45 dead in the model set; 86 live, 57 dead in
the validation set) and for trees with DBH less than 20 cm
(45 live and 36 dead in the model set; 69 live and 67 dead
in the validation set). Tree-diameter distributions were con-
sistent between model and validation (both external and in-
ternal) sets (Fig. 1).

Survival probability was modeled using the logistic func-
tion

½1� �ðxÞ ¼ egðxÞ

1 þ egðxÞ

where �(x) is survival probability and g(x) is a linear func-
tion of growth indices. Models were fit using the lrm func-
tion in the Splus1 6.2 (Insightful Corp., Seattle,
Washington) design library.

For model development and selection we adopted an in-
formation theoretic approach using Akaike’s Information
Criterion (AIC) (Burnham and Anderson 1998). AIC values
were calculated for each model as well as AIC difference
values (�AIC, the difference in AIC values between a given
model and the model with the lowest AIC value) and
Akaike weights (wi), a measure of the proportional likeli-
hood that a model is the best model). Note that lower AIC
values indicate better models and that AIC calculations pe-
nalize models with increased numbers of parameters.

Models were selected as follows. First, single-variable
models were calculated for each growth index (with and
without the size variable) in each category (e.g., average of
5 years of growth, average of 10 years of growth, ..., aver-
age of 40 years of growth) and compared using AIC values.
The top two variables in each category were then selected,
as well as any variables with a wi value of 0.10 or greater.
Models were then generated with all possible combinations
of these selected variables (including the size variable) with
the restriction that no model could have more than one vari-
able from a given category. Single- and two-variable models
were also included.

We assessed the five top-ranked models and any with
�AIC less than 2 according to their ability to classify live
and dead trees in validation sets. We also included three
reference models: an average recent growth model (most re-
cent 5 years of growth), the best abrupt-decline model, and
the best average growth / growth trend model. The form of
these reference models was based on published growth–
mortality functions, and they provided a priori standards
of performance.

Model diagnostics
We calculated the area under the receiver operating char-

acteristic (ROC) curve for each model — a fit criterion re-
lated to the classification technique we used for model
comparison. The statistic is a threshold-independent meas-
ure of model discrimination where 0.5 suggests no discrim-
ination, 0.7–0.8 suggests acceptable discrimination, and
0.8–0.9 suggests excellent discrimination (Hosmer and Le-
meshow 2000). We also calculated variance inflation fac-
tors (VIF) for each model because of the sensitivity of
logistic regression to multicollinearity among the predictor
variables (Hosmer and Lemeshow 2000). VIFs above 10
are frequently taken as an indication that multicollinearity
may be problematic for parameter estimation (Neter et al.
1996).

Model validation
For P. lambertiana, which lacked external validation data,

an internal validation was done. For the size-specific A. con-
color models we performed an external validation using
models developed from the full Suwanee Creek data set to
classify trees from the Log Creek data set. Trees in the vali-
dation sets were classified as live or dead based on whether
the model-generated survival probability for a given tree
was above a predetermined cut point (i.e., if the survival
probability was greater than or equal to the cut point the
tree was classified as live and otherwise classified as dead).
An ‘‘optimal’’ cut point was determined for each model by
plotting the sensitivity curve (proportion of live trees cor-
rectly classified in the model-development set over the range
of cut points) and the specificity curve (proportion of dead
trees correctly classified in the model-development set for
the range of cut points) and choosing the cut point at which
the specificity and sensitivity curves cross (Hosmer and
Lemeshow 2000). The kappa coefficient, k, — a measure
of the proportional improvement by the classifier over a
purely random assignment to classes — was also calculated
for each model (Fleiss 1981).
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Model interpretation
The models generated above were developed from a

matched sample of live and dead trees (i.e., a case-control

design), meaning that the data set did not represent the pro-
portion of live and dead trees in the population. Thus, sur-
vival probabilities generated from these models were not

Fig. 1. Size distributions of live and dead Pinus lambertiana (PILA) and Abies concolor (ABCO) for both model and validation sets. (a)
Live P. lambertiana in the model set for Suwanee Creek (n = 77). (b) Dead P. lambertiana in the model set for Suwanee Creek (n = 78). (c)
Live P. lambertiana in the validation set for Suwanee Creek (n = 56). (d) Dead P. lambertiana in the model set for Suwanee Creek (n =
49). (e) Live A. concolor in the Suwanee Creek (model-building) set (n = 106). (f) Dead A. concolor in the Suwanee Creek (model-building)
set (n = 81). (g) Live A. concolor in the Log Creek (validation) set (n = 155). (h) Dead A. concolor in the Log Creek (validation) set (n =
124). (i) Live A. concolor in the Clover Creek set (no dead trees for this set; n = 185).
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the true survival probabilities because the generated inter-
cept was not the true intercept (Hosmer and Lemeshow
2000). However, using odds ratios to interpret and compare
the model parameters was valid (Hosmer and Lemeshow
2000).

For a continuous variable, x, odds ratios approximate, all
else being equal, how much more likely an outcome is at
x + a relative to x, where a is a meaningful increment (e.g.,
one additional abrupt decline). For example, an odds ratio of
2 suggests that the odds of survival at x + a are twice those
at x. For trees, where the likelihood of dying is quite small,
this equates roughly to stating that the probability of dying
at x + a is half that at x (for a full explanation see Hosmer
and Lemeshow 2000). Odds ratios were calculated for the
best classifying models.

Estimating annual survival probabilities at the
population level

To estimate survival at the population level we used a re-
sampling technique similar to that used by Wyckoff and
Clark (2002). The goal was to generate a sample population
from our Suwanee Creek data set that represented the true
population. Expected population values were based on plot
data and annual mortality censuses from the Suwanee Creek
plots. For each species we resampled to simulate the ob-
served numbers of dead and live trees, the observed size dis-
tribution, and the observed size-specific mortality rates.
Logistic-regression models based on the best classifying
models from our case-control analysis were then estimated.
The resampling process was repeated 1000 times. Final pa-
rameter values for the models were taken as the mean of
each parameter for the 1000 trials, and 95% confidence in-
tervals (CI) were taken as the interval bounded by the 25th
and 975th values of each parameter when ranked from
smallest to largest.

For A. concolor we tested whether these new models
would reproduce realistic mortality rates by using data from
the Log Creek and Clover Creek sites. We generated re-
sampled populations from the live-tree samples taken from
these sites, again matching the expected size distribution in-
dicated by the plot data for each site. Survival probabilities
were then estimated for each tree in the test populations us-
ing our population-level models. This process was repeated
1000 times each for the Log Creek and Clover Creek sites.

Mortality rates for these test populations were determined
in a similar manner to that used by many individual-based
forest simulation models (Bugmann 2001; Bigler and Bug-
mann 2004). For each tree a random number between 0 and
1 was picked. If the number chosen was greater than the sur-
vival probability for that tree, then the tree died; otherwise it
survived. This procedure was repeated 1000 times for each
test population, and an average mortality rate was then de-
termined for that population. An average mortality rate and
95% CI for each site were then determined from the distri-
bution of test-population mortality rates.

Results

Pinus lambertiana
For P. lambertiana, 9 of the top 12 models (Table 1) con-

tained all three growth indices. The combination of short-
term growth (5 or 10 years), long-term trend (35 or 40 years)
and short-term counts of abrupt decline (5 or 10 years) more
fully captured survival probability than any one measure
alone. Differences in mortality indicators between large and
small trees appeared to be marginal, as only two models
contained the size variable. All the top models provided ex-
cellent or near-excellent discrimination, and multicollinear-
ity was not apparent (VIF < 1.15).

In addition to ranking far higher than the average recent-
growth model (P45), the more complex models also classi-
fied the internal-validation set more effectively. (Note that
‘‘P’’ in the model names refers to P. lambertiana and the ac-
companying number denotes the model rank.) For example,
the best classifying model (P1) had 9.0% fewer dead-tree
misclassifications, 16.4% fewer live-tree misclassifications,
and 12.4% fewer misclassifications overall.

In general, counting abrupt declines in growth improved
our ability to classify live trees (see model P49), suggesting
that the lack of such declines was indicative of survival.
This improvement was illustrated by comparing models P25
and P8, where the abrupt-decline term improved live-tree
classification by 6.1%. In addition, removal of the abrupt-
decline term from model P1 (not shown) caused a 7.2% in-
crease in live-tree misclassification

Models with a 5 year count of abrupt declines were con-
sistently better classifiers than those with a 10 year count.
Apparently, the increase in mortality risk indicated by an
abrupt decline was relatively short-lived. In contrast, as can
be seen comparing models P45 and P25, the addition of a
long-term trend tended to improve overall classification, in-
dicating that long-term changes in growth had strong impli-
cations for tree health.

Abies concolor, DBH 20 cm or greater
All of the top models for large A. concolor (Table 2) con-

tained both a long-term average growth index (20 or
25 years) and a short-term count of abrupt declines. Again,
a combination of measures, as well as longer term measures,
improved our ability to assess mortality risk. Though the top
two models (which accounted for most of the AIC weight)
contained a short-term trend index, neither offered an im-
provement in classification over their two-variable counter-
parts (Alarge3 and Alarge4). All the top models provided
excellent discrimination, and none showed indications of
multicollinearity (VIF < 1.5).

More complex models outperformed all of the reference
models in the classification of the external-validation set
(Table 2). For example, the best classifying model (Alarge4)
yielded 4.9% fewer misclassifications overall, 1.2% more
live-tree misclassifications, and 14.0% fewer dead-tree mis-
classifications than a model with average recent growth
alone (Alarge26). Overall, the models suggested that a longer
record of growth provided a better estimate of the health of
large A. concolor and that abrupt declines in growth indi-
cated a short period of high mortality risk (or at least the
lack of them indicated improved prospects for survival).
Count of abrupt declines again effectively classified live
trees (see Alarge27), and the addition of this term in the
more complex models improved live-tree classification
(compare Alarge1 with Alarge20).
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Abies concolor, DBH less than 20 cm
Many of the top-ranked models for small A. concolor

were able to correctly classify trees in the validation set at
a rate of about 70% (Table 3). These classification rates
were 5–10 percentage points worse than for the best P. lam-
bertiana (Table 1) and large A. concolor models (Table 2).
This relatively poor performance occurred despite the excel-
lent discrimination indicated by the ROC curves and the
lack of multicollinearity (VIF < 1.9). Nonetheless, models
with long-term average growth indices (20–30 years) out-
ranked and generally out-performed the model with only
average recent growth (Asmall56). One of the best classifying
models (Asmall3) yielded 4.4% fewer misclassifications over-
all, 4.3% fewer live-tree misclassifications, and 4.4% fewer
dead-ree misclassifications. In essence, longer records of
growth were more indicative of tree health. Also, count of
abrupt declines, despite classifying poorly in a single-varia-
ble model (Asmall46), still tended to improve live-tree classi-
fication (compare Asmall2 with Asmall1 and Asmall3), and in
combination with long-term average growth resulted in the
best classifying models overall (Asmall3 and Asmall11).

The importance of trend in estimating the health of small
A. concolor was more equivocal. The short-term trend
(10 years) tended to improve dead-tree classification at the
expense of live-tree classification (compare Asmall4 with
Asmall15), and long-term trend (30–40 years), as part of
three-variable models, tended to improve classification over-
all (compare Asmall1 with Asmall13, Asmall14, and Asmall16).
However, none of these models classified better than a sim-
pler two-variable model with a count of abrupt declines
(Asmall3). In summary, although one model with only trend
and average growth (Asmall18) classified quite well, the evi-
dence for the importance of trend was certainly weaker for
small A. concolor than for P. lambertiana.

Comparison of model parameters
Odds ratios (Table 4) and probability surfaces (Fig. 2)

were used to compare models between size classes and spe-
cies. We show only probability surfaces generated from the
population-level models, as parameter estimates for these
models did not differ markedly from those for the case-
control models (see below). Odds ratios are shown for two
average growth increments, a moderate increase (0.1 mm/
year) and a large increase (0.5 mm/year); for a trend in-
crease of 0.01 mm/year; and for one more or less abrupt
decline. These changes are well within the range of ob-
served values for these growth indices (Table 4).

These results indicated that P. lambertiana were more
sensitive to growth trend than to average growth, as the
odds ratio for a moderate change in trend was larger than
that for a moderate change in growth (Table 4). Trend also
had a stronger effect on survival probability across its range
than did average growth (Figs. 2a and 2b). Large A. con-
color were more sensitive to abrupt declines and less sensi-
tive to average growth than small ones (Table 4; Figs. 2c
and 2d), and based on odds ratios, A. concolor were more
sensitive to changes in average growth than P. lambertiana,
though, overall, small A. concolor were less likely to die
(Fig. 2d).T
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Estimation of annual survival probabilities at the
population level

The models that best classified the internal validation set
for P. lambertiana, P1, and the external validation sets for
A. concolor, Alarge4 and Asmall3, were chosen for building
the population-level mortality models via resampling. The
parameter results from the original models (directly from
the case-control set) all fell within the confidence intervals
of the parameters generated for the population-level models
(Table 5), except for the intercept, as expected. Odds ratios
were consistent with those found in the original models
(Table 4). For A. concolor models, the parameters demon-
strated that, all else being equal, for most of the range of
growth, small trees had a higher survival probability than
large trees for the same growth rate. This relationship was
consistent with results found for the non-size-specific mod-
els (Appendix B) and was evident in the probability surfaces
(Figs. 2c and 2d). These surfaces also demonstrated the pre-
dictive power of abrupt declines, even for trees with very
slow growth.

Mortality rates predicted for A. concolor by the popula-
tion-level models were 1.25%/year (95% CI, 1.05–1.51%/
year) at the Log Creek site and 1.35%/year (95% CI, 1.10–
1.72%/year) at the Clover Creek site. CIs for these predic-
tions overlapped that of the observed mortality rate of
1.2%/year (95% CI, 1.0% and 1.4%/year) determined from
plot data for Log Creek. Since Clover Creek is located at a
similar elevation, a similar mortality rate would be expected
for this site (Stephenson and van Mantgem 2005). In short,
our population-level models were capable of producing real-
istic survival probabilities and mortality rates at sites not
used in model development and, in the case of Clover
Creek, in a different forest type.

Discussion
Our results supported the contention that a cumulative re-

cord of tree growth would provide a better estimate of mor-
tality probability than average recent growth alone.
Moreover our models applied to the general case where no
effort was made to screen for type of mortality or to corre-
late growth changes with specific events (i.e., droughts). The
best models included more than one growth index and con-
sidered more than the last 5 years of growth (Table 5). Not
only did such models have higher AIC rankings, they were
consistently more effective at classifying validation sets. Fi-
nally, we demonstrated that for A. concolor our best models
were able to reproduce realistic mortality rates at stands not
used in model development.

These results were also consistent with the expectation
that tree growth is a reliable predictor of mortality (e.g.,
Kobe et al. 1995; Yao et al. 2001). More specifically, the
importance of abrupt declines was in keeping with Peder-
sen’s (1998b) finding of better fits for time-series regres-
sions that contained an abrupt decline term. In addition, the
inclusion of the long-term growth trend in the best P. lam-
bertiana model was in line with Bigler and Bugmann’s
(2003) finding that a 25 year growth trend was a good pre-
dictor of Picea abies (L.) Karst.(Norway spruce) mortality.
Our classification results were also on par with those of Bi-
gler and Bugmann (2003), who achieved between 70% and
80% accuracy in their validation sets. Although they did not
use abrupt declines in their models, they excluded dead trees
that showed signs of pathogen or insect attack. This exclu-
sion may account for the effectiveness of their models with-
out an abrupt-decline term, as they noted that misclassified
trees were often characterized by abrupt declines.

As with any tree-mortality study, our work had its attend-

Table 4. Odds ratios for the best classifying models listed in Tables 1–3 (the case-control modelsand simulated
population-level models).

Average growth Abrupt

0.1 mm
increase

0.5 mm
increase

Trend,
0.01 mm/year
increase

One more
decline

One less
decline

Case-control models
Pinus lambertiana

P1: avg10 + trend40 + abrupt 5 1.05 1.27 1.34 0.37 2.71
Abies concolor

Alarge4: avg20 + abrupt5 1.16 2.17 — 0.22 4.50
Asmall3: avg25 + abrupt 25 1.46 6.81 — 0.80 1.25

Population-level models
Pinus lambertiana

P1: avg10 + trend40 + abrupt 5 1.10 1.64 1.43 0.36 2.74
Abies concolor

Alarge4: avg20 + abrupt5 1.09 1.58 — 0.14 7.32
Asmall3: avg25 + abrupt 25 1.62 11.13 — 0.84 1.19

Note: ‘‘Average growth’’ refers to an annual average increase in radial growth, ‘‘trend’’ refers to a rate increase in the radial
growth trend, and ‘‘abrupt’’ refers to a change in the number of abrupt growth declines. The results represent a multiplicative
change in the odds of survival with the listed change in the growth index. For example, the odds of survival in P1 increase 1.05
times for each increase in average growth of 0.1 mm. For reference, median average-growth values for the relevant indices for P.
lambertiana and large and small A. concolor were 0.81, 0.97, and 0.33 mm/year, respectively, and ranged between 0.04 and
5.69 mm/year. The trend for P. lambertiana had a median value of 0.00 mm/year and ranged between –0.09 and 0.10 mm/year.
The median 5 year count of abrupt declines for both species regardless of size was 0 (range 0–2), and the median 25 year count
of abrupt declines for small A. concolor was 3 (range 0–8).
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ant limitations. Because of the nature of our case-control de-
sign, in which we matched the size distributions of live and
dead trees, we were unable to fully explore the effect of tree
size on mortality risk. Clearly, size is an important correlate
of tree mortality rate (e.g., Eid and Tuhus 2001; Fridman
and Stahl 2001; Bravo-Oviedo et al. 2006), and even our
two-category analysis showed size-specific differences for
at least one species (see Appendix B). We also did not ac-
count for the spatial circumstances of a given tree that might
not be reflected in its growth but still might influence its
survival. For example, the proximity of conspecific neigh-
bors could influence the likelihood of infection by root
pathogens (e.g., Garbelotto et al. 1999; Hansen and Goheen
2000). In addition, the definition of abrupt decline was nec-
essarily arbitrary, though we defined it in the context of pre-
vious work (Schweingruber 1985, 1986). Moreover, our
results were not particularly sensitive to the exact definition

of abrupt decline. Sensitivity analyses showed that while us-
ing a 60% drop in growth to define abrupt declines resulted
in somewhat poorer mortality classification (i.e., too strict a
definition), a 40% decline gave roughly the same results as a
50% decline. Finally, there were also unavoidable biases
that came with the sampling of dead trees. Trees that died
of rot, for instance, may have been underrepresented, owing
to a potentially lower frequency of such trees from which
readable cores could be obtained. We also decided not to
exclude trees that could not be confidently cross-dated, re-
sulting in the inclusion of samples with uncorrected errors.
As noted in the Methods, we considered these errors to be
conservative, and we were more concerned with the poten-
tial bias caused by excluding trees with a strong ecological
signal, an especially frequent occurrence in very unhealthy
trees.

Nonetheless, despite their limitations, we believe that our

Fig. 2. Conditional probabilities of survival generated by the population-level models shown in Table 5. (a) Population-level P. lambertiana
model holding the slope at its average value for the data set (–0.004 mm/year). (b) Population-level P. lambertiana model holding average
10 years of growth at its average value for the dat set (1.13 mm). (c) Population-level model for A. concolor with DBH 20 cm or greater.
(d) Population-level model for A. concolor with DBH less than 20 cm.
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best models captured more of the biological processes in-
volved in mortality than their simpler counterparts. As is as-
sumed in many studies (e.g., Pacala et al. 1996; Yao et al.
2001; Wyckoff and Clark 2002), average diameter growth
was an indicator of a given tree’s health. It was included in
all three of our best models (Table 4). However, without any
context for how that rate was reached, the information was
incomplete. Abrupt declines and growth trend, which meas-
ure changes in growth, helped provide that context. For ex-
ample, for both P. lambertiana and large A. concolor, our
best models suggested that for two trees growing at the
same rate, the one that had reached that rate through a re-
cent abrupt decline in growth was more likely to die. Also,
in the case of P. lambertiana, a tree that had declined over a
long period was more likely to die than one that had grown
steadily.

While we cannot pinpoint the exact biological mecha-
nisms that underlie the predictive power of these changes in
growth, there are plausible explanations. For example,
Pedersen (1998b), Schweingruber et. al (1990), and
Schweingruber (1985, 1986) have directly linked abrupt de-
clines in growth to droughts, climate fluctuations, and pollu-
tion. Such declines could also be caused by biotic agents,
such as root-rot infection (e.g., Cherubini et al. 2002), or
even by physical damage. Decreasing trends are likewise
probably related to an accumulation of biological or physical
stressors that gradually lead to tree mortality, as described
by Franklin et al. (1987). Alternatively, these declining
growth trends could result from the imposition of a single
stressor from which the tree does not recover. For instance,
Pedersen (1998a) demonstrated theoretically how exposure
to a stress could trigger a positive feedback mechanism that
results in a long-term slide toward death.

The differences between our two species in the mortality
models were also consistent with known life-history charac-
teristics. The fact that A. concolor were better modeled by a
long-term average growth index (20 or 25 years) and
P. lambertiana by a short-term index (5 or 10 years) is con-

sistent with the expectation that a more shade-tolerant spe-
cies, such as A. concolor (Burns and Honkala 1990), would
be more tolerant of slow growth. It makes sense that a
shade-tolerant species could sustain a longer period of slow
growth before being considered at risk of death. Further,
also in keeping with relative shade tolerance, the intercept
and growth coefficients for the population-level models
(Table 5) demonstrated that A. concolor were more likely to
survive at a given annual growth rate than P. lambertiana in
the absence of a declining growth trend or abrupt declines,
although these models are admittedly not directly compara-
ble, owing to the different time periods over which average
growth rates were determined.

Relative shade tolerance might also explain why trend
was a more powerful predictor for P. lambertiana than for
A. concolor. As a shade-tolerant species, A. concolor would
be more likely to persist at low growth rates for extended
periods rather than dying immediately after a gradual declin-
ing trend in growth. In contrast, P. lambertiana, being less
shade-tolerant, would be more likely to suffer mortality just
after such a declining trend. The lesser importance of aver-
age growth compared with trend for P. lambertiana (Table 4)
can be explained by the same argument (i.e., P. lambertiana
would not frequently persist at low growth rates but would
instead show a declining trend just prior to mortality).

As a final example of the potential biological relevance of
these models, we note that A. concolor model results
showed distinct differences between small and large trees,
with small A. concolor having a higher survival probability
at most growth rates (see the coefficients in Table 5 and
size variable in Appendix B). Woody plants are known to
go through various life stages (Greenwood 1995), and trees
undergo numerous physiological changes as they age and
grow taller, including some that may affect shade tolerance
(Niinemets 1998; Fraga et al. 2003; Lusk 2004). Kneeshaw
et al. (2006), for instance, found that trees became less
shade-tolerant with increasing size. We suggest that our
model differences were also due to some loss of shade toler-
ance by larger A. concolor, perhaps because the ability to
persist at low growth rates becomes less relevant as trees
grow into the canopy. In contrast, as P. lambertiana do not
have the same survival strategy (i.e., persisting in the under-
story), one would not necessarily expect differences in how
large and small trees respond to slow growth.

Given, then, that a more comprehensive use of the growth
record appears to better capture mortality probability, what
are the implications for mortality prediction? In general, we
suggest that the use of average recent growth alone may not
be adequate for reliable mortality prediction for all species.
In particular, such models may be overly sensitive to short-
term changes in growth rate and miss factors that indicate
survival. We know, for example, that the inclusion of
abrupt-decline terms tends to improve live-tree classifica-
tion, apparently increasing the ability of models to distin-
guish between slow-growing trees that die and those that
survive.

The ability to correctly classify live trees is especially im-
portant for predicting mortality, given the predominance of
live trees in the population. One might argue that the im-
provement in classification by our models, particularly in
the case of A. concolor, was fairly modest. In our sample,

Table 5. Model parameters for estimating annual survival prob-
ability generated by the resampling procedure described in the
Methods.

Model Parameter estimate 95% CI

Pinus lambertiana model (P1)
Intercept 2.43 2.25 to 2.61
Avg10 0.99 0.78 to 1.24
Trend40 35.53 31.25 to 39.84
Abrupt5 –1.01 –1.16 to –0.84

Abies concolor models
Large-tree model Alarge4

Intercept 4.47 3.69 to 5.36
Avg20 0.91 0.37 to 1.53
Abrupt5 –1.99 –2.78 to –1.18

Small-tree model Asmall3
Intercept 3.24 2.37 to 4.10
Avg25 4.82 3.08 to 6.94
Abrupt25 –0.17 –0.29 to –0.06

Note: Model forms were chosen on the basis of the best classifiers from
Tables 1–3.
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however, live and dead trees were artificially close in num-
ber, giving roughly equal weights to misclassifications. In
natural populations, live trees greatly outnumber dead trees
in a given year, so errors that result in underestimation of
the number of trees that survive could have far more impact
on mortality prediction. For example, a stand of 1000 trees
with 1% annual mortality would have 990 live trees and 10
dead trees after the first year. Underestimating the number
of dead trees by 5% (9.5 dead trees / 1000 trees in total)
would result in a mortality rate of 0.95%. In contrast, under-
estimating the number of live trees by 5% would result in a
mortality rate of 4.95% ((990–0.95(990) / 1000 trees in to-
tal). Therefore, capturing mechanisms — as abrupt declines
appear to do — that indicate increased survival becomes a
great deal more important.

However, incremental improvements in classification are
less critical than our confidence that a given mortality model
adequately captures realistic mortality processes. For exam-
ple, we have shown that our more complex models can re-
produce realistic mortality rates, but an average recent
growth model can be calibrated to do the same. In fact, an
intercept-only model could effectively mimic current mortal-
ity rates but not the mortality process, thereby limiting the
model’s application to novel conditions.

In developing our models, we have been informed by the
fact that, for trees, mortality processes can operate over dec-
ades and by the idea that indices that account for an accu-
mulation of injuries should yield a better picture of a given
tree’s survival probability. We have also demonstrated that
our model results dovetail nicely with what we know about
the life history of each species. Therefore, we argue that
these types of models, despite being more complex, are
more likely to be robust to changing conditions. As our
AIC and external-validation results indicate, we have not
‘‘overfit’’ our particular data set.

Such considerations are important, as model choice can
have large implications for understanding the effect of novel
events (e.g., climate change) on forests. Forest-gap models,
for instance, frequently use mortality functions based on the
premise that probability of mortality increases when average
growth drops below some threshold (Keane et al. 2001;
Bigler and Bugmann 2004). Many such models predict
rapid, large-scale forest dieback with changing climate
(Loehle 1996). Loehle and LeBlanc (1996) argued that the
mechanisms underlying these mortality functions are unreal-
istic and that such diebacks are unlikely. Bigler and
Bugmann (2004) further demonstrated that these mortality
functions performed relatively poorly when confronted with
actual growth data.

Even in empirically parameterized models such as
SORTIE1 (Pacala et al. 1996), the mortality function does
not capture a generalized mechanism of mortality. All trees
are given a baseline mortality probability of 0.01 so as to
mimic a ‘‘natural low-disturbance stand’’, then additional
mortality risk is assessed on the basis of a growth–mortality
relationship parameterized from sapling data. This procedure
essentially sets a 1% annual mortality rate to which the
growth–mortality risk is added, and because of the nature of
the growth functions of SORTIE1, the growth–mortality
portion of the mortality submodel acts almost exclusively
on saplings.

In addition to demonstrating the potential for overestimat-
ing the sensitivity of many species to changes in growth
(Loehle and LeBlanc 1996), our research also suggests that
mortality functions based only on average recent growth
may fail to account for the importance of other aspects of
growth history in determining mortality probability. Given
the sensitivity of gap models to the mortality function (Bug-
mann 2001), it is crucial to improve our understanding of
tree mortality and to try to capture the underlying biological
processes that drive it.

In this pursuit we do need to recognize the dangers of in-
creasing the complexity of models. As Pacala et al. (1996)
pointed out, increasing their complexity risks introducing er-
rors that can swamp biological signals. In addition, calcula-
tion of long-term growth indices, as we have advocated
here, is not always possible or relevant, as when studying
young saplings or seedlings (e.g., Kobe et al. 2002). None-
theless, we must balance a desire for simplicity with the
need to account for biological complexity. For long-lived or-
ganisms like trees, looking further back in history and at the
character of that history may prove important.
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Appendix A. Use of radial increment
All growth indices were calculated using radial increment.

We wished to use a measure that was as size-independent as
possible. Some researchers have preferred to use basal area
increment for this purpose (e.g., Pedersen 1998; Bigler and
Bugmann 2003). The attraction of using basal area incre-
ment lies in the assumption that once a tree reaches a certain
minimum size, all else being equal, it will add a constant
amount of basal area each year, at least relative to growth

increment. If this is true, as a tree grows, its ring width will
decrease in proportion to the square of its radius, thereby
making basal area increment a better indicator of individual
tree health across size classes.

This is clearly not true in all cases, such as white oaks in
Connecticut (Phipps and Whiton 1988) and the more extreme
case of giant sequoia in the Sierra Nevada (Stephenson and
Demetry 1995). In fact, deviations from an increasing trend in
basal area increment have been used to indicate declining
stand health (Phipps and Whiton 1988; Leblanc 1990; Duch-
esne et al. 2002, 2003). In addition, in a preliminary analysis
of tree samples from California, Yoo and Wright (2000) found
that the growth trend in ring width with age is often nearly flat.

In our live-tree sample, basal area increment increases
markedly with size, while radial increment shows no ob-
vious trend (Fig. A1). Furthermore, preliminary analyses
were done using both absolute and relative basal area incre-
ments (basal area increment/total initial tree basal area) and
compared with the results reported in this article. Neither
measure provided any improvement with regard to fit or
classification and in many cases performed more poorly.
We therefore opted to use radial increment rather than a
transformed version of it (i.e., basal area increment).

A separate, although related, concern when using ring
widths as an indicator of tree health across size classes
is the commonly observed negative exponential pattern
in ring widths for a given tree, which would result in
small trees growing faster than large trees and exhibiting
a strong decreasing trend regardless of health. We have
not observed the negative exponential pattern with any
consistency in our data set, at least for the 40 year
span that was used in data analysis. In fact, large A.
concolor from our live tree data set grew, on average,
faster than small trees (by 0.6731 mm/year (95% CI =
0.3031 mm/year), p = 0.000) and had a slightly decreas-
ing trend (–0.009 mm/year (95% CI = 0.006 mm/year),
p = 0.002). The average trend for small A. concolor,
on the other hand, did not differ significantly from 0
(0.004 mm/year (95% CI = 0.006 mm/year), p =
0.295). For P. lambertiana, large trees again grew faster
than small trees (by 1.08 mm/year (95% CI = 0.47 mm/
year), p = 0.000), while the slopes did not differ signif-
icantly from one another (the difference was 0.001 mm/
year (95% CI = 0.01 mm/year), p = 0.8192). In addi-
tion, rather than decreasing, the slopes for both catego-
ries of trees increased slightly (large trees: 0.011 mm/
year (95% CI = 0.007 mm/year); small trees:
0.009 mm/year (95% CI = 0.006 mm/year)).

Although these results contradict those typically ex-
pected, the difference in average growth rates between
large and small trees is marked. It is difficult to say a pri-
ori whether such differences are simply an indication of
the fact that subcanopy trees are less likely to survive
(and therefore should behave similarly in our models) or
if there is some intrinsic difference in the relationship be-
tween growth and mortality. For this reason we have in-
cluded a size-specific variable, as discussed in the
Methods and Results sections.
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Appendix B. Model results for A. concolor
using all tree sizes

For preliminary analysis, A. concolor models were built
using all A. concolor samples from the Suwanee Creek site.
This was done following the procedure given in the Methods
for the size-specific models except that the size variable was
included to account for the differences between large and
small trees (size = 1 for DBH less than 20 cm; size = 0 for
DBH 20 cm or greater). External validation was performed
using the A. concolor data set from Log Creek.

All of the five top-ranked models (Table B1) include
both an average-growth term as well as an abrupt-decline
term, with 20 or 25 years of average growth and 25 or
30 year counts of abrupt declines providing the best fits.
Two of the five have a trend term, with 5 or 35 year
trends providing the best fits. The reference models (A17,
A50, A52) are ranked more poorly in comparison,
although the best growth and growth trend model is
ranked in the top 20.

All of the best models contained the size variable, sug-
gesting a difference in the growth-related mortality risk for
small trees. The coefficient for this term is always positive,
indicating that smaller trees have a higher survival rate for
the same growth characteristics (i.e., smaller trees have a
higher capacity to survive slow growth).

The area under the ROC curve indicates excellent dis-
crimination for the top five models as well as the best
growth and growth trend model (A17). The average recent
growth model (A50) and the best abrupt-decline model
(A52) provided acceptable discrimination.

Variance inflation factors were below 1.4 for all aver-
age growth and growth trend indices. However, they rose
as high as 3.5 for the abrupt-decline indices and the size
variable. This is still well below the ‘‘warning’’ value, 10,
but it does suggest a potentially problematic correlation
between the number of abrupt declines and size. This
result provided a further incentive for us to develop size-
specific models for this species.

External validation of these models on the Log Creek
data (Table B1) shows that the top five models
consistently classified better than the reference models.
The best classifying model, A1, performed better in all
categories, with 4.1% fewer dead-tree misclassifications,
5.2% fewer live-tree classifications, and 4.7% fewer mis-
classifications overall.

The best average growth and growth trend model, A17,
though performing more poorly than the five top-ranked
models, yielded only 1.5% more misclassifications than
the best model (A1). It is worth noting that in this case,
A1, A2, and the best growth and growth trend model
(A17) are closely related: A2 is simply A17 with the
addition of an abrupt-decline term and A1 simply A2
without a trend term. The addition of trend to A1
actually increases misclassifications, while the addition of
abrupt declines to A17 decreases them. In light of this
result, if one is forced to choose between a trend and T
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abrupt-decline term, the latter will probably prove to be a
more powerful classifier.

The best abrupt-decline term again showed a pattern of
accurate classification of live trees and relatively poor
classification of dead trees.

Odds ratios (Table B2) show that A. concolor is quite sen-
sitive to average growth relative to P. lambertiana (Table 4).

Table B2. Odds ratios for the best classifying all-tree A. conco-
lor model.

Odds ratio

Model

0.1 mm
increase
in
average
growth

0.5 mm
increase in
average
growth

One
more
abrupt
decline

One less
abrupt
decline

A1: avg25 +
abrupt25 +
size

1.19 2.43 0.70 1.43
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