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Calcium and Membrane Potential Oscillations
in Pancreatic �-Cells

Arthur Sherman

1 Introduction

1.1 �-cells and Diabetes

We study pancreatic �-cells because of their role in diabetes, a deadly
derangement of carbohydrate and lipid metabolism. Their function is to
secrete insulin in response to elevations of glucose in the blood plasma, as
after a meal. Insulin signals the target tissues (muscle, liver, and adipose
cells) that glucose is available for use as a fuel or for storage as glycogen
or fat. Later, as plasma glucose declines, insulin secretion returns to basal
levels, and cells switch back to using stored carbohydrate, fat, or protein
as a fuel. Thus, insulin and glucose form a classical negative feedback loop
like a thermostat.

If no insulin is produced, glucose rises to very high levels, and the unre-
lieved reliance on fat and protein for fuel leads to acidi�cation of the blood
and death. This is the case in juvenile (Type I) diabetes, in which the
�-cells are destroyed by an autoimmune response. In the more common
maturity onset (Type II) diabetes, relative insu�ciency of insulin results in
chronically elevated glucose that causes kidney failure, heart disease, blind-
ness and premature death. Type II diabetics also exhibit insulin resistance
in the target tissues. The relative importance of the defects in insulin se-
cretion and insulin action in the etiology of Type II diabetes is debated,
but most authorities agree that both play a role [12].

Type I diabetes is treated by insulin injection, which prevents immediate
demise but is a poor substitute for the �ne minute to minute regulation
of a normal pancreas. If Type II diabetes cannot be reversed by diet and
exercise, it is treated by sulfonylurea drugs (see below) that enhance insulin
secretion and may also ameliorate insulin resistance, and sometimes by
insulin injection. The results for both forms of the disease still leave much
to be desired. It is hoped that better understanding of the basic mechanisms
of insulin secretion and its regulation will lead to better treatment, earlier
diagnosis, and prevention.

1.2 A Simpli�ed �-cell Model

Models for �-cells, like numerous models for cardiac smooth muscle and
other excitable cells, are based on the Hodgkin-Huxley equations for neu-
ronal electrical activity [11]. See [19, 20] for a modern perspective. We will
employ a simpli�ed version in the spirit of Morris and Lecar [19] with elab-
orations to account for other aspects of cell biology, including intracellular
Ca2+ handling, glucose metabolism, and hormonal signalling. These e�ects
will be treated minimally, as parameters that modify ionic uxes. We will
also incorporate gap junctional coupling of �-cells, which are localized in
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Figure 1: I-V curves

O(106) micro-organs of the pancreas, the islets of Langerhans, each up to
0.5 mm in diameter and containing O(103) cells. We will see that coupling
not only coordinates electrical activity, as in myocardium and other smooth
muscle, but modi�es its properties.

The following model, which is representative of the great variety of �-
cell models, will elucidate �-cell issues and illustrate general mechanisms
of cellular electrical activity that are relevant for a wide variety of systems.

cm
dv

dt
= �Iion(v; n; s) (1)

= �ICa(v) � IK(V)(v; n)� Islow(v; s)

dn

dt
=

n1(v) � n

�n
(2)

ds

dt
=

s1(v) � s

�s
(3)

This system contains the minimal features needed to generate bursting
oscillations, a slow alternation between active (spiking) and silent states
(Fig. 6), namely ICa, a voltage-dependent (L-type) Ca2+ current, IK(V), a
voltage-dependent (delayed-recti�er) K+ current gated by n, and Islow, a
current slowly modulated by its gating variable, s.

The fast variables, v and n, generate the spikes during the active phase
of a burst, while s is responsible for switching between active and silent
phases. Glucose metabolism and other features will be added as we go
along. Note that ICa is fast relative to IK(V), and is modeled as instan-
taneously dependent on v. Here, Islow is an inhibitory, K+ current, but it
could just as well conduct Ca2+ or a mixture of ions. See the Appendix for
details of formulas and parameters. The physiological terms \depolariza-
tion" and \hyperpolarization" mean algebraic increase and decrease in v,
respectively.
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Figure 2: Nullclines

2 Phase Planes: Fast Oscillations

We begin with a phase-plane analysis of Eqs. 1, 2 for v and n with s �xed
and used as a bifurcation parameter. The �rst step is to �nd conditions
that generate instability and the oscillations that will provide the spikes of
the active phase of a burst.

The steady states of the system are determined by the zero-crossings of

ISS(v; s) = Iion(v; n1(v); s) = 0: (4)

Fig. 1 shows ISS vs. v for several values of s. The characteristic N-shape
of ISS comes from the interaction of IK, which is positive, and ICa, which
is negative, in the interval v 2 [vK; vCa]. When s is not too small, raising
v from vK �rst makes IK and ISS grow. Then, m1(v) turns on, ICa =
gCam1(v)(v�vCa) becomes more negative, and the total current decreases.
Eventually, however, IK must dominate because v � vCa! 0.

Fig. 2 shows the phase planes corresponding to Fig. 1. Note that changes
in s translate the v nullcline up and down, because Islow and IK(V) have the
same reversal potential. Planar systems can go unstable, when either the
determinant of the Jacobian changes sign (saddle-node bifurcation { SN) or
the trace changes sign (Hopf bifurcation { HB). Both happen here. Figs. 1
and 2 imply that there is an SN for s 2 [�0:2; 0:4] and one for s 2 [0:4; 0:8],
when the v and n nullclines become tangent.

For an HB, the n nullcline must intersect the middle branch of the v
nullcline with greater slope (see Ex. 1). This is not su�cient, however.
When s = �0:2, the (unique) steady-state is on the middle branch, but it
is a stable spiral. By s = 0:4, an HB has occurred, and this steady state
(now the uppermost of three) has become an unstable spiral. The lowest
steady state is a stable node, and the middle is a saddle.

By s = 0:8, only the low-voltage steady state remains. A closer look at
the phase portrait for s = 0:4 (Figure 3), including the trajectory and the
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Figure 3: Phase plane showing bi-stability between limit cycle (LC) and
steady state. All initial conditions in shaded region go to LC; the rest go
to the lower steady state.

invariant sets of the saddle, shows how the oscillations die. One unstable
manifold (u1) of the saddle wraps around the limit cycle (LC). Outside the
LC is stable manifold s1. As s is increased, the LC shifts down and to the
left and simultaneously merges u1, s1, and the saddle for a unique value of
s, sSL � 0:47, creating an in�nite period homoclinic orbit or saddle-loop
(SL). As s increases past sSL, the stable and unstable manifolds cross, with
the u1 now lying outside s1. The system remains excitable but is no longer
oscillatory. A topological sketch of these transitions is shown in Fig. 4.

Figure 5 is a bifurcation diagram summarizing the range of behaviors
obtained above by varying s. The limit-cycle branch (LC) is born at an HB
and dies at an SL (or vice-versa). For s 2 [sSN; sSL], the system is bistable,
with phase planes like that of Fig. 3.

3 Singular Perturbation: Bursting

3.1 �-Cell

Bursting can now be realized by exploiting the bistability between spik-
ing and steady-state behavior and adding slow s dynamics (Eq. 3). Fig. 5

Figure 4: Passage through homoclinic bifurcation.
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shows an overlay of the s nullcline and the burst trajectory on the bifur-
cation diagram. The Z-shaped curve is now viewed as the slow manifold
of the combined, singularly perturbed system or as the v nullcline in the
v-s pseudo-phase plane. Since s is inhibitory here, all we need do is have s
increase for large v and decrease for small v. The active phase ends when s
goes through SL; the silent phase ends when s goes through SN. Biophysi-
cally, the active phase ends essentially when the spike minimum goes below
the rising threshold (the middle, saddle branch of the Z-curve). The burst-
ing, 3-variable system, like the v-n system, oscillates by negative feedback.
The v-n subsystem is very fast relative to s, however, so that it always in
quasi-steady state (spiking or silent), except during the brief transitions.

We are now ready to incorporate the e�ects of glucose. At low glucose
(up to 7 mM), �-cells are quiescent. At high glucose (above 20 mM) they
spike continuously. In between those extremes, they burst, and the fraction
of time spent in the active phase (plateau fraction) increases. Moreover,
within the burst regime the spike amplitude and silent phase potential do
not change signi�cantly. The Z-curve picture suggests that all these features
can be reproduced by shifting the full-system steady state (the intersection
of the s nullcline and the Z-curve (SS in Fig. 5). When SS is on the
lower branch of the Z-curve, the system is silent; when SS is on the middle
branch the system bursts; and when SS is on the LC branch, the system
spikes continuously. For SS on the middle branch, the plateau fraction
is low when SS is near SN because the trajectory slows down leaving the
silent phase and increases monotonically as SS approaches SL. Since these
changes do not a�ect the fast dynamics, the spike amplitude and silent
phase potential are invariant throughout the bursting regime.

We can move SS by adding a term, �IK(ATP) = �gK(ATP)(v � vK), to
Eq. 1. This current is blocked when the channel binds ATP, while ADP
binding prevents the block. Therefore, its conductance decreases when
glucose increases, which increases the ratio of ATP to ADP. Geometrically,
the Z-curve in Fig. 5 shifts to the right. The K-ATP channel thus provides
a natural way to modulate electrical activity by glucose metabolism. It is
also important as the site of action of the sulfonylurea drugs, which block
the channel independent of glucose. The right portion of Fig. 6 shows the
increase in plateau fraction with no change in spike amplitude when gK(ATP)
decreases.

We have made splendid progress without committing ourselves to a
biophysical meaning for s. Numerous �-cell models have been published
[9, 14, 31] exploring various possibilities for this and also for the glucose
sensing mechanism, but these issues remain unresolved. In the �rst �-cell
model [9] the role of s was played by c = [Ca2+]i, the concentration of free
cytosolic Ca2+, and the glucose sensor was kc, the rate of Ca

2+ removal by
pumps and exchangers. The Ca2+ balance equation had the form

dc

dt
= f [�ICa(v) � kcc] ; (5)

where � is a factor to convert current to concentration changes, and f is
the fraction of free cytosolic Ca2+. Since most of the Ca2+ that enters the
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cells is rapidly bound to proteins, f is small and c was a plausible candidate
slow variable.

The hypothesis of negative feedback through [Ca2+]i, �rst proposed by
Atwater, Rojas and colleagues [1], was appealing because of the known
existence of a Ca2+-activated K+ channel in �-cells. The model led to a
testable (falsi�able) prediction, that Ca2+ would show a sawtooth oscilla-
tion, like s in Fig. 6. This prediction was indeed falsi�ed when [Ca2+]i was
found by uoresence measurements to have a time course that was closer
to a square wave [36]. It turns out that [Ca2+]i is not quite slow enough
to pace bursts with a period of tens of seconds because f is closer to 0.01
than the 0.001 value needed. Appending Eq. 5 to our generic model and
using the larger value for f , we obtain a roughly square-wave c time course
(Fig. 6, bottom).

Although [Ca2+]i is ruled out as the slow variable for �-cell bursting, it
still provides a plausible burst mechanism for neurons that can have burst
frequencies of 10 Hz or more, faster than �-cell spike frequency. The di�-
culty in �nding negative feedback mechanisms that operate on the long time
scale of �-cell bursts has been a major barrier to resolving the mechanism.
The least problematic candidate currently is the slow, voltage-dependent
inactivation of the Ca2+ channels observed in patch-clamp experiments on
isolated �-cells by Satin and Cook [25]. For recent reviews, see [8, 26, 28].

The importance of Ca2+ is the link it provides between electrical ac-
tivity and insulin secretion. Glucose concentration is transduced through
metabolism and the relative levels of ATP and ADP into gK(ATP) conduc-
tance which determines plateau fraction. Since the silent and active phase
levels of c, like those of v, are nearly invariant within the bursting regime,
gK(ATP) also determines the mean Ca2+ concentration, averaged over many
bursts. This suggests that the secretory machinery is slow and responds to
average, rather than instantaneous, c. This story may be incomplete, as
there is evidence that both electrical activity and secretion are regulated
by factors other than gK(ATP).

In addition to its biophysical successes, this family of models has gener-
ated a great deal of mathematical activity that we can only point to. Miura
and colleagues have used Melnikov's method to calculate semi-analytically
the location of homoclinic orbits [16]. Combined with the method of aver-
aging, this gives an e�cient way to calculate plateau-fraction and its depen-
dence on putative glucose-sensing parameters. Terman [34] has proved that
bursting solutions exist using geometric singular perturbation methods bor-
rowed from nonlinear wave propagation theory. The proof also con�rmed
that in the limiting case (here, �s ! 1), continuous spiking ensues pre-
cisely when the full system steady state (SS) coincides with SL, con�rming
a conjecture of Rinzel. When �s is �nite, chaotic bursting and spiking occur
[8, 35]. Chaos can also occur during the transition from N to N + 1 spikes
[34].
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3.2 Other Types of Bursters

So far, we have varied only one parameter of the fast subsystem, s. By
varying a second parameter we unveil a large family of topologically dis-
tinct bursters. Some of these have large amplitude spikes and look more
like neuronal bursters. A convenient choice for the second parameter is �,
as this does not change the shape of the Z-curve, but does change the sta-
bility of the steady states and the characteristics of the periodic branch(es).
Increasing � causes the LC amplitude to decrease until no oscillations ex-
ist for the fast subsystem; the full system is then reduced to a relaxation
oscillator. Biophysically, the oscillations result from the slow response of
IK, and if IK is activated as rapidly as ICa, the opposite ion uxes can-
cel. Decreasing �, on the other hand, facilitates the emergence of Hopf
bifurcation and increases the amplitude of the oscillations. The bifurcation
diagram smoothly changes, with both HB and SL moving to the left (Fig.
7). The range of s values traversed during a burst, and hence the burst
period, decreases (see horizontal cut labeled Type Ia in the two-parameter
bifurcation diagram, Fig. 8). The range of gK(ATP) values that supports
bursting also shrinks.

The SL eventually merges with the SN at a saddle-node loop (SNL)
(Fig. 8, and (approximately) curve C, Fig. 7). This is a codimension-two
bifurcation because two constraints must be satis�ed, but the homoclinic
orbit will generally persist at the knee for a �nite interval of � values as the
minimum v continues to drop (curve D, Fig. 7). This is called a saddle node
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on an invariant circle or SNIC. The fast subsystem is no longer bistable
and bursting can no longer occur by the mechanism of Section 3.1. If the
slow nullcline is like curve f, Fig. 7, the full system has a stable steady state
on the lower branch of the Z-curve, while with nullcline e, a continuous
spiking solution is the global attractor. One could get bursting in this case
by adding a second slow variable that would have the e�ect of sweeping the
s nullcline back and forth across the SNIC (cut labeled Type II in Fig. 8) or,
equivalently, shifting the Z-curve . A necessary condition to avoid getting
stuck in either the silent or oscillatory region is that the second variable be
excitatory, rather than inhibitory. One can predict that �ring frequency will
be low at both the beginning and end of the active phase as the trajectory
passes near the SNIC. This is called parabolic bursting because of the shape
of the spike frequency pro�le, �rst realized in a model of Plant [18] for the
R-15 neuron. There the inhibitory slow variable was Ca2+ acting on IK�Ca
and the excitatory slow variable was a slowly-activated ICa. Rinzel and
colleagues [4, 22] have analyzed this situation by constructing the averaged
phase-plane dynamics for the slow variables.
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Also, note that as � decreases, the HB in Fig. 7 becomes sub-critical.
This is another form of bi-stability in which the limit cycle surrounds a
stable steady-state, with an unstable limit cycle as seperatrix. Bursting
(Type III) can also happen in this situation, with a single slow variable [37].
Type III, unlike I and II, does not require N-shaped ISS. An alternative
way to get Type III bursting is to destabilize the bottom branch of the
Z-curve by further reducing �. See the bottom portion of Fig. 8 and Ex. 7.
This scenario is found in a lobster cardiac ganglion model [3].

Our minimalmodel has gone far indeed, and, although Fig. 8 may not be
quite the end of the line (G. de Vries, manuscript in preparation), future
developments will probably come from more complex models. The �rst
generation models are all essentially modi�cations of the primeval cubic,
the van der Pol equation, to include an oscillatory excited state. However,
as modelers try to keep up with the electrophysiologists, models with more
currents and variables (10 or more) are emerging. In some cases, cells seem
to redundantly parametrize simple behaviors due to genetic constraints,
but new behaviors and coexistence of di�erent old behaviors also result.
Here are some examples worth investigating. The thalamic neuron model
of Rush and Rinzel [23] can exhibit both sub-threshold oscillations and
bursting with spikes, owing to a quintic slow manifold. A recent R-15
model [7] exhibits multi-stability of burst and spike patterns. The analysis
by Smolen et al. [32] of a �-cell-derived model with two inhibitory slow
variables is interesting both for the results and the techniques used. Finally,
there are some models of bursting that arises from interaction of multiple
neurons in a network [21] or spatially segregated compartments in a single
neuron [17].

4 Role of Internal Ca2+ Stores

Although glucose is the primary stimulus for �-cells, secretion can be po-
tentiated by acetylcholine (ACh), provide adequate glucose is present. The
in vivo signal originates in cognitive stimulation via the hypothalamus (eg.
seeing food or knowing that it is lunchtime) and is transmitted to the islet
by the vagus nerve. This pre-empts excessive rises in plasma glucose by
increasing insulin in advance. In vitro application of ACh leads to de-
polarization [24] and increased [Ca2+]i[6]. Unlike increased glucose, ACh
increases the absolute levels of both v and [Ca2+]i, rather than the plateau
fraction (Fig. 6). In the absence of glucose, ACh is ine�ective.

ACh works by binding to muscarinic receptors on the �-cell plasma
membrane, leading to the production of inositol 1,4,5-trisphosphate (IP3)
and diacylglycerol (DAG). The latter activates protein kinase C (PKC),
which appears to sensitize the secretory machinery to Ca2+ but does not
a�ect electrical activity and will not be considered here. IP3 di�uses to the
endoplasmic reticulum (ER) where it activates ligand-gated Ca2+ channels,
releasing Ca2+ into the cytosol.

We augment our simple model with ER equations from a model for
pituitary gonadotrophs [15] where IP3 mediates [Ca2+]i oscillations. We
add uxes into (Jin) and out of (Jout) the ER to the equation for [Ca2+]i
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Figure 9: Simulation of addition of ACh at arrow by raising IP3 from 0 to
0.6 �M

and add an equation for ER calcium concentration, cER:

dc

dt
= f [�ICa(v) � kcc] +

1

�
(Jout � Jin) (6)

dcER
dt

=
1

��
(�Jout + Jin) (7)

dh

dt
=

h1(c) � h

�h(c)
: (8)

The factor � accounts for the di�erence in ER and cytosolic volumes and
Ca2+ bu�ering capacity, and � sets the ER time scale. See the Appendix
for details.

With the gonadotroph parameters, oscillations are generated by the
combination of rapid activation and slow inhibition of the IP3 receptors
by Ca2+. See also Othmer, this volume. Here, ER-driven oscillations are
unimportant, so we choose parameters where they do not occur and elimi-
nate one equation by setting h to equilibrium.

Two new ionic currents are needed to link the events at the ER to
the membrane potential: A Ca2+-activated K+ channel, IK�Ca, which is
known to exist in �-cells, and a calcium-release-activated-current, ICRAC,
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whose conductance increases as the ER empties and whose existence is less
clearly established by direct measurement. The power of ICRAC to explain
a variety of phenomena, however, provides circumstantial evidence for its
existence.

In Fig. 9, ACh is added during normal glucose-induced bursting. The
complex biochemistry above is reduced to an increase in IP3. First the
bursting is interrupted by release of Ca2+, which activates IK�Ca. This is
followed by gradual depolarization, ending in high frequency, \muscarinic"
bursting with depolarized silent phases. The depolarization results from
both the removal of Ca2+ from the cell, reducing IK�Ca, and the depletion
of Ca2+ in the ER, increasing the magnitude of ICRAC. The agreement
between the simulations and experiment [6, 24], including the complicated
transients, supports the hypothesis that ACh works through ICRAC.

The model also makes strong predictions about so-called \bi-phasic"
transients when glucose is raised above the threshold for bursting, in which
a minute or more of intense spiking is seen before steady-state bursting
begins. The model (Fig. 10) suggests that the ER is depleted and ICRAC
is turned on in low glucose. Activity is blocked, however, because the
larger IK(ATP) is also on. (This also explains why ACh has little e�ect on
electrical activity in the absence of glucose). Glucose relieves this block by
turning o� IK(ATP), but bursting cannot begin until the ER �lls su�ciently
to suppress ICRAC. The model is consistent with experiments showing that
when Ca2+-uptake into the ER is blocked with thapsigargin, preventing ER
re�lling, the initial transient does not progress to bursting [38].

Now, even in the absence of an ER, abrupt changes in gK(ATP) can
jerk the slow manifold in the v-s pseudo-phase plane, in a manner similar
to post-inhibitory rebound [20], and result in a longer �rst burst. This
is seen when raising glucose in Fig. 6. However, to get a transient that
is signi�cantly longer than the burst period, one needs a process that is
signi�cantly slower than the slow variable. Any inhibitory process that is
activated by high glucose or electrical activity will do; the model shows
that ICRAC can do the job. In contrast, ACh needs an excitatory process
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that is correlated with ER dumping (eg. a channel gated directly by ACh,
a G-protein, the rise in [Ca2+]i, or, as here, the ER Ca2+ concentration).
Elegantly, ICRAC can play both roles in di�erent circumstances.

Of mathematical interest, the muscarinic bursts in the right portion
of Fig. 9 are no longer driven by s, which is nearly constant, but rather
by oscillations of c acting through gK�Ca. Although c is too fast to drive
glucose-induced bursting, it is just slow enough to drive the more rapid
muscarinic bursting. The poor separation of time scales between c and the
v-n subsystem actually helps the performance of the model. The silent
phase depolarization is enhanced because the trajectory does not go all the
way down to the bottom branch of the Z-curve (Ex. 13). From Terman's
analysis of chaotic bursting one would also expect to �nd chaos more readily
when the slow variable is not very slow. This is indeed the case in the model
(Ex. 13), and perhaps also in experiments with ACh [24].

5 Electrical Coupling

Electrical coupling by gap junctions within the islet of Langerhans is im-
portant for two reasons. First, it synchronizes the activity of the �-cells.
Thus, our simple model really describes the behavior of one representative
cell in a synchronized population. Second, in isolated cells one rarely ob-
serves bursting, but more commonly erratic spiking. This has led to several
hypotheses for how bursting might be an emergent phenomenon dependent
on coupling. The noise hypothesis [2] proposes that single-channel uctu-
tations are signi�cant because of low channel densities and disrupt bursting
in single cells, but are damped in islets by the conductance load of the net-
work. The heterogeneity hypothesis holds that individual cells are unlikely
to have parameters that fall in the narrow bursting regime, whereas islets
e�ectively average the parameters.

Computational studies involving hundreds of cells have established that
the known degree of gap junctional coupling is probably adequate to ac-
count for synchrony, taking into account noise and heterogeneity. The pos-
sible contribution of di�usion of K+ in the restricted intercellular space has
also been investigated. Suppression by coupling of both noise and hetero-
geneity have been shown to be plausible and complementary mechanisms
for rhythmogenesis. See [28] for a review. These models o�er mathematical
opportunities, such as studying the laws of large numbers in a nonlinear
context, but here we will examine a reduced model of two identical, deter-
ministic cells and illustrate another paradigm for emergent bursting.

Gap junctions are modeled, as in other electrically coupled tissues such
as myocardium, as v-independent conductances between pairs of cells. The
membrane potentials vi for a two-cell model satisfy

cm
dvi
dt

= �Iion(vi; ni; si)� gc(vi � vj) (9)

where Iion includes all the currents in Eq. 1.
Weakly coupled oscillators generically have the possibility to oscillate

out of phase. When the coupling is di�usive, as here, the out-of-phase solu-
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Figure 11: Coupling of two identical cells (one shown). Coupling conduc-
tance gc increased from 0 to 10 pS at arrows.

tions tend to have smaller amplitude, because each cell is pulled away from
its extreme values by the other. This simple e�ect has two consequences
for Type I bursters. The top panel of Fig. 11 shows that coupling can
substantially increase burst period. The bottom panel shows that coupling
can convert continuously spiking (beating) cells into bursters.

To explain this, we make Fig. 7 do double duty. For the period increase,
suppose that the LC branch labeled B applies to an isolated cell and that
curve e is its s nullcline. This cell can, of course, burst. The same diagram
can be used for the coupled pair because the cells are identical and their s
values are approximately the same. Branch B now represents the solution
where the two cells are in phase (IP) and have the same time course as when
uncoupled; the IP solution is always a solution of the coupled equations,
but it may not be stable. For weak coupling the bifurcation diagram of
our model includes a branch like A of anti-phase (AP) oscillations (180�

out of phase). This results from a second HB on the upper branch. That
is, a second pair of eigenvalues will cross the imaginary axis, retarded by
an amount that increases with gc. Note that its amplitude is smaller,
and hence, that its SL lies further to the right than that of B. Moreover,
in the region near the left knee, A is usually stable while B is unstable.
Therefore, the burst trajectory will follow the anti-phase branch and will
tend to have a larger period because the s amplitude is larger. As gc
increases, one expects the cells to synchronize in-phase, and in fact the AP
branch shrinks and loses stability while the IP branch regains stability. For
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details of this complex transition, which goes through quasi-periodic and
asymmetric periodic solutions, see [27] or Ex. 15.

For the beat-to-burst case, suppose that branch C in Fig. 7 corresponds
to the uncoupled and IP solutions, B to the AP, and e again to the s
nullcline. Without coupling, the trajectory is trapped on branch C, and the
cell spikes continuously. With weak coupling, it can happen that branch C
is unstable near the intersection with nullcline e, while branch B is stable.
Then the two cells will burst with anti-phase spikes. This arrangement is
delicate and breaks down as gc is increased even modestly, because the IP
branch becomes stable and trajectories coming o� the bottom branch of
the Z-curve are trapped. However, if there is still a stable out-of-phase
branch, adding noise paradoxically restores bursting at the high coupling
strength, because the trajectory is perturbed onto the out-of-phase branch.
Simulations (unpublished) suggest that this can be a robust mechanism for
emergent bursting in large networks with channel noise where none of the
individual cells can burst.

6 Final Remarks

The �-cell models have achieved some notable successes, for example in
explaining the regulation of bursting and Ca2+ levels by glucose and ACh.
A general mathematical framework has been developed in which to under-
stand these phenomena. Ironically, the very universality of the mechanisms,
which makes them applicable to other cell types as well, has left us with a
superuity of models that match at least some aspects of the experimental
data. How do we know which if any are correct? Ultimately, the models
have the same status as all biological hypotheses: their predictions must be
tested by experiment and the models revised over and over. In the mean-
time, they provide a more quantitative and disciplined way to conceptualize
the phenomena and �nd the right questions to ask.

There remain many areas that have barely been touched by model-
ing. Another receptor-mediated potentiator of insulin secretion, currently
of clinical interest, is glucagon-like peptide, which activates cAMP. Oscilla-
tions much slower than bursts (with periods of several minutes) are seen in
both isolated cells and islets [28]. The relation between these phenomena
and islet bursting is unclear. We have only discussed stimulus-secretion
coupling up to the point of Ca2+ entry. There exist more detailed models
of glucose metabolism [33] and also phenomenological models of secretion
[10] that need to be tied mechanistically to the channel-based models.

For pedagogical reasons, we have concentrated on the simplest models
that illuminate given phenomena. For example, we have stressed reduced,
two-variable models or subsystems isolated by range of activation or time
scale. In addition to giving insight, this often reduces dynamic problems
to algebraic ones of determining shape and position of nullclines. Thus, al-
though nullclines are sometimes deprecated mathematically because, unlike
bifurcations, they are not invariant features under coordinate transforma-
tions, they are very useful for modeling purposes.
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Many of the biophysical models, however, are considerably more com-
plicated because they have followed the data rather than a pre-conceived
template of how the dynamics should work. They have thus led to previ-
ously overlooked possibilities. We have also worked here mostly with limit-
ing cases, such as well-separated time scales, to facilitate analysis. What is
a virtue to the theorist, however, may not be a virtue to the cell. Indeed,
in the ICRAC model, imperfect separation of time scales helped realize the
modeling goal of raising silent phase potential in the presence of ACh. This
was discovered serendipitously by adding to the model an IK�Ca current
that was thought to be irrelevant. It was excluded for \simplicity" but
turned out to be the key. Thus, a combination of detailed and simpli�ed
models can be more e�ective than either alone.

7 Exercises

1. Let ( �V ; �n) be a steady state of the v-n system with �xed s. Assume
that n0

1
(V ) > 0. Show: (a) If the n nullcline intersects the left or

right branch of the v nullcline, ( �V ; �n) is stable. (b) If the n nullcline
intersects the v nullcline on the middle branch with smaller slope,
( �V ; �n) is a saddle. (c) If the n nullcline intersects the v nullcline
on the middle branch with greater slope, Hopf bifurcation occurs at
( �V ; �n) for � su�ciently small.

2. Show that if ISS is monotone, the system can only lose stability by HB,
not SN. Test this by modifying the parameters to make ISS monotone.

3. Make a burster with c as the slow variable instead of s. Explore the
e�ects of increasing f . Think about how to make c rise rapidly but
fall slowly, as seen in some experiments [36, Fig. 4].

4. Rede�ne Islow as a Ca2+ current and make a burster out of it. What
parameter(s) can be used (in the abstract) as glucose sensors (that is,
can cause plateau fraction while preserving approximate spike ampli-
tude invariance).

5. Devise a second slow variable to get Type II bursting in the generic
model with � = 0:7. See [22, 5] for inspiration.

6. Fix s in [sSN; sSL]. Which features of the bifurcation diagram Fig. 5
can be obtained by varying �? Do the same for vK.

7. Show that the bottom branch of the Z-curve must destabilize as �! 0
for the v-n model. See Ex. 1.

8. The TB points where curves of SN, SL, and HB merge in Fig. 8
occur when both the determinant and trace of the jacobian are 0.
Derive formulas for the zero-trace and zero-determinant curves for
the generic model, plot them in the �-s plane, and solve numerically
for the intersections. Modify parameters of the model so that the
bottom branch of the Z-curve destabilizes at O(1) values of �.
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9. An unusual new model has spiking that stems from excitable, not
oscillatory, fast dynamics [30]. Analyze its slow phase plane dynamics
using the method of averaged nullclines [4, 32].

10. Classify the burst mechanism in [29] (Equations can also be found
under \Non-Planar Fast Subsystem" on the Web page for this chap-
ter).

11. Explore the behavior of the extended model with ER when ICRAC is
included, but not IK�Ca and vice versa.

12. Find parameters to make the ER equations oscillate, and try to repli-
cate Keizer and DeYoung's [13] agonist-induced bursting.

13. Using the extended model, �x cER and s at appropriate values and
construct the Z-curve with c as a parameter. Look for chaotic mus-
carinic bursting.

14. IK�Ca � 0 without ACh because [Ca2+]i is low, so blocking it has lit-
tle e�ect, in agreement with experiment. Explore the e�ects of reduc-
ing Ca2+ pumping or increasing the sensitivity of gK�Ca to [Ca2+]i.

15. Construct the bifurcation diagrams corresponding to Fig. 11 and ex-
plore the e�ects of increasing gc.

16. Couple two cells of the basic model, with � = 1, one with gK(ATP) =
80 and the other with gK(ATP) = 120 pS. What is their behavior when
isolated and when coupled? Find a range of gc values for which you
get nice bursting. Do the same with � = 0:86. Compare the two cases
with each other and with Fig. 11. You may exploit the empirical fact
that s1 � s2 � constant to draw bifurcation diagrams.

8 Appendix: Model Parameters

For working source �les for Bard Ermentrout's xpp program, consult http:
//mrb.niddk.nih.gov/sherman and follow links for this chapter.

Basic Model (Eqs. 1, 2, 3, 5):
Ionic currents: ICa = gCam1(v)(v � vCa), IK = gKn(v � vK), Islow =

gss(v� vK), IK(ATP) = gK(ATP)(v� vK). Parameters: gCa = 1000 pS; gK =
2700 pS, and gs = 200 pS. vCa = 25 mV; vK = �75 mV.

Gating variables: x1(v) = 1=(1 + exp((vx � v)=sx)); x = m;n; s. vm =
�20 mV; sm = 12 mV; vn = �16 mV; sn = 5:6 mV; vs = �52 mV; ss =
5 mV.

Other: �n = 20 ms; �s = 20000 ms, f = 0:01, kc = 0:2 ms�1.
cm = 5300 fF and � = �4:5� 10�6 �M fA�1 ms�1 (cell radius � 6.5 �m).

Extended Model with ER (Eqs. 1, 2, 3, 6, 7):

Modi�ed parameters: kc = 0.12 ms�1, ss = 10 mV.
Additional currents: IK�Ca = gK�Ca

�
c5=(k5d + c5)

�
(v�vK), with gK�Ca =

1000 pS, kd = 0:6 �M. ICRAC = gCRACz1(cER)(v � vCRAC) with gCRAC =
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40 pS, vCRAC = �30 mV; z1(cER) = 1=(1 + exp(cER � �cER)), with �cER =
4 �M.

ER uxes (see also [6, 15]): � = 250 ms and � = 5. ER pump: Jin =
vpc

2=(k2p + c2); vp = 0:24 �M ms�1; kp = 0:1 �M. Jout is the sum of leak,
pl(cER � c), and ux through the IP3 receptor channel, pip3(cER � c). pl =
0:02 (non-dimensional); pip3 = a(c)3b(IP3)3h1(c)3, where a(c) = c=(c +
dact) represents activation of the receptor by cytosolic Ca2+; b(IP3) =
IP3=(IP3+ dip3) represents activation by IP3; and h1(c) = dinh=(c+ dinh)
represents inhibition by [Ca2+]i. dact = 0:1 �M, dip3 = 0:2 �M, dinh =
0:4 �M. �h(c) = �(c+ dinh)�1.
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