# W/Z+jets and Z p<sub>T</sub> measurements at the Tevatron



YeonSei Chung

University of Rochester



for the CDF and DØ collaborations



# Outline

- Introduction
- DØ/CDF detectors
- W+jets production
- Z+jets production
- $Z p_T$  measurement
- Summary



✓ p-pbar at  $\sqrt{s}$ =1.96 TeV ✓ peak *L* ~ 1.7x10<sup>32</sup> cm<sup>-2</sup>/s ✓ ~ 1.6 fb<sup>-1</sup> delivered

## W/Z+jets production

- W/Z+jets are signatures for
- Top pair & single top
- Higgs boson (WH, ZH)
- SUSY



- ✓ But large QCD production is main backgrounds
- Knowing of cross section and kinematic properties are essential for reliable background estimates

and test of

- > pQCD at high Q<sup>2</sup>
- LO and NLO Matrix Element + Parton Showering: modeling MC is very crucial for LHC

# $Z p_T$ distribution



#### Initial state QCD radiations:

- Number of jet distributions : impact on many other channels (ex. W/Z/ttbar +(n)jets)
- Understanding of boson (W,Z) p<sub>T</sub> is important

At Tevatron, we use clean Z events for boson  $\ensuremath{p_{T}}$ 

- ✓ High p<sub>T</sub> region : pQCD test
- ✓ Low p<sub>T</sub> region : non-pQCD (resummation) test
- ✓ Understanding of p<sub>T</sub> distribution reduces the W mass uncertainty (CDF Goal ~ 40 MeV, 13 MeV from W p<sub>T</sub>)
- ✓ Deviations at high  $p_T$  are sign of new physics

### DØ and CDF detectors



# W+ jets production (CDF 320 pb<sup>-1</sup>)



#### $W(\rightarrow e_V) + jet$

Restrict W cross section to the measurable phase space to minimize the model dependence

- E<sub>T</sub>(e)>20 GeV
- M<sub>T</sub>(W)> 20 GeV
- MET>30 GeV
- |η(e)|<1.1
- JETCLU 0.4,
- E<sub>T</sub>(jet) >15 GeV
- |η(jet)| < 2.0

 $\checkmark$  Jets are corrected to the hadron level

- ✓ Comparison with LO Alpgen ME (v2) + Pythia PS
- ✓ Normalized for each jet multiplicity
- ✓ Agreement is good in shape

### W+≥2jets (CDF 320 pb<sup>-1</sup>)



#### do/dM vs. M(jet, jet)

#### $d\sigma/d\Delta R$ vs. $\Delta R(jet, jet)$



Comparison with LO Alpgen (v2) + Pythia in shape only (MC have been normalized to the measured cross section) Reasonable agreement between data and predictions



### **Backgrounds & Uncertainties**



W( → ev) + ≥ 2 jet CDF Run II Preliminary (dơ/dE<sub>T</sub>)dE<sub>T</sub> lets **Background fraction** promotion **Background Fraction on** 10 10<sup>-2</sup> 10-3 D 10 20 30 40 50 60 70 80 90 100 Jet Transverse Energy (E<sup>min</sup><sub>τ</sub>) [GeV]

top contribution is sizeable in high jet multiplicity and high jet  $E_T$ 

Still large statistic uncertainty at high  $E_T$ Systematic uncertainty:

- ✓ Jet energy scale (~3%) is dominant at low E<sub>T</sub>
- Uncertainty due to background subtraction will scale with luminosity





- $\checkmark~$  MC samples are normalized to the total number of Z/ $\gamma^*$  in the data
- $\checkmark$  Pythia tends to produce too few multi-jet events
- $\checkmark$  SHERPA predictions are somewhat higher than in data
- ✓ Both predictions are in agreement with data within errors





- $\checkmark~$  MC samples are normalized to the total number of Z/ $\gamma^*$  in the data
- ✓ Positive slope in the ratio for Pythia prediction (larger for 2nd and 3rd jets)
- ✓ SHERPA prediction is consistent with data within errors
- ✓ Also good matches between SHERPA and data for 2nd and 3rd hardest jets



#### Angular correlations between pairs of hard final state jets



 $\checkmark\,$  Both predictions describe the  $\Delta\eta$  observed in data within errors



Z+jet production (DØ 950 pb<sup>-1</sup>)



 A previous DØ study shows a good agreement between SHERPA and data in QCD di-jet events

#### Z p<sub>T</sub> measurement (DØ 960 pb<sup>-1</sup>)



- ✓ Invariant mass, M(ee), distribution (signal+background)
- ✓ ResBos (resummation) + PHOTOS (QED radiation) MC
- ✓ Good agreement between data and predictions

### Z p<sub>T</sub> measurement (DØ 960 pb<sup>-1</sup>)



Measured Z  $p_T$  is smeared due to detector resolution effects: unfold the effects to compare with theory directly





 ✓ ResBos+PHOTOS (CTEQ6.1m) describes the data well (χ²/ndf=16.8/13)
✓ Z p<sub>T</sub> for y(Z)>2 will be available soon

### Summary

- CDF has a measurement of W+jets production
  - Data with 320 pb<sup>-1</sup>
  - Agreement with LO Alpgen(v2)+Pythia is good
- DØ has measured the Z+jets production
  - Data with 950 pb<sup>-1</sup>
  - SHERPA prediction is consistent with data within errors
- DØ has a new measurement of Z  $p_T$  distribution
  - Data with 960 pb<sup>-1</sup>
  - ResBos+PHOTOS MC describes the data well
  - $Z p_T$  for y(Z)>2 is expected to be available soon
- Stay tuned as the Tevatron continues to produce improved results on boson+jet(s) and boson p<sub>T</sub> distribution