

Pixel hybrid photon detectors for the LHCb-RICH system

Ken Wyllie

On behalf of the LHCb-RICH group

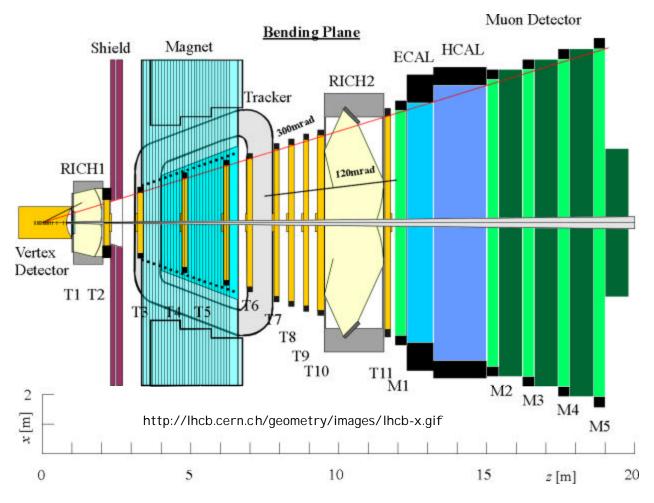
CERN, Geneva, Switzerland

Outline of the talk

Introduction

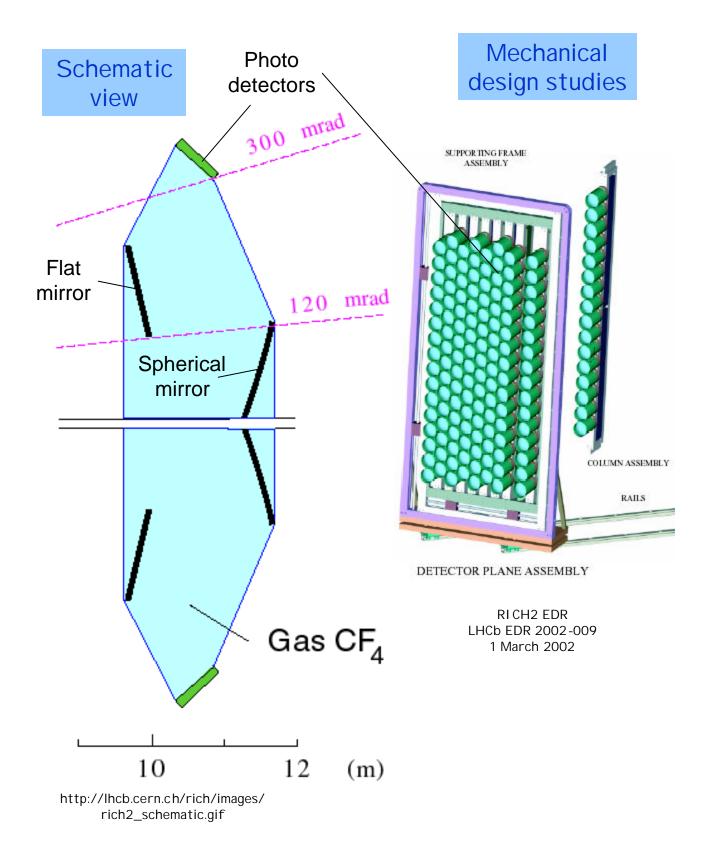
- The LHCb detector
- The RICH 2 counter
- Overall RICH system requirements

The pixel hybrid photon detector


- Description
- Binary front-end electronics
- Full-scale HPD prototypes
- Systematic tests
- Conclusions and perspectives

The LHCb detector (top view)

LHCb is a single-arm spectrometer with a forward angular coverage from 10 to 300 mrad, dedicated to precision studies of CP asymmetries and of rare decays in the B-meson system



Particle identification over the momentum range 1-150 GeV/c will be achieved by two Ring I maging Cherenkov counters

The RICH 2 counter

Overall RICH system requirements

Photon detection

- ~2.9 m² total surface
- Granularity: 2.5 × 2.5 mm²
- Active area coverage ≥ 70 % (~325′000 channels)
- Single-photon sensitivity (λ = 200-600 nm)

Environment

■ Magnetic stray field: ≤ 300 gauss (RICH1)

≤ 100 gauss (RI CH2)

■ Radiation dose:
≤ 3 kRad/year

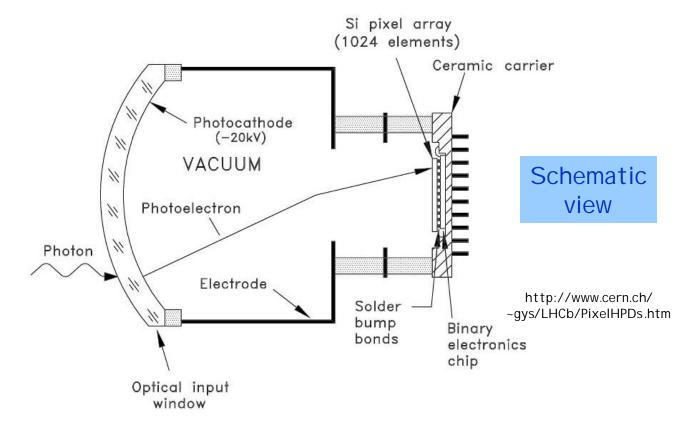
Read-out

- Maximum occupancy: ≤ 10 %
- BCO identification ($\tau_p \approx 25 \text{ ns}$)
- High LO-trigger rate (1 MHz)

Photo-detectors

■ Pixel-HPDs: baseline solution

cross-focussing geometry binary pixel readout (this talk)


binary pixel readout (this talk)

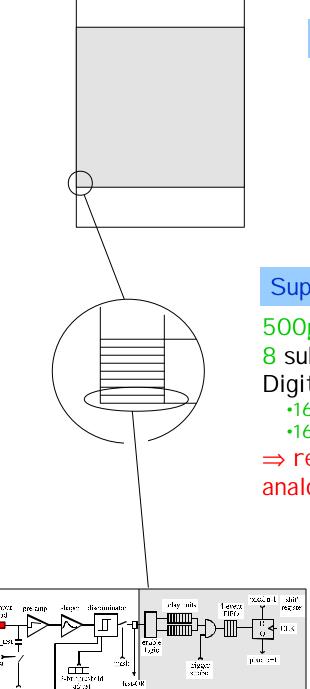
Multi-anode PMTs: backup solution metal channel dynodes analogue readout

Pixel-HPD description

Main features:

Close collaboration with industry

Quartz window with thin S20 pK (∫QE•dE≈0.77eV) Cross-focussing optics (tetrode structure):


- •De-magnification by ~5
- •50 μm PSF (~250 μm at window level)
- Active diameter 75 mm (81.7 % tube coverage)
 - ⇒ ~450 tubes for overall RICH system
- •20 kV operating voltage (~5000 e⁻ [eq. Si])

32×32 pixel sensor array (500 μm×500 μm each) Encapsulated binary electronics readout chip

Binary front end electronics (baseline specifications)

Full readout chip

32 × 32 super-pixel array 16mm × 16mm active area 40MHz readout clock ⇒ ~800ns readout time complying with LHCb L0 trigger rate (1MHz)

Super-pixel

500μm × 500μm area 8 sub-pixels ORed together Digital FE electronics:

- •16 delay lines (4µs)
- •16-deep FIFO de-randomizing buffer
- ⇒ reduced occupancy seen by analogue FE and lower noise

Sub-pixel

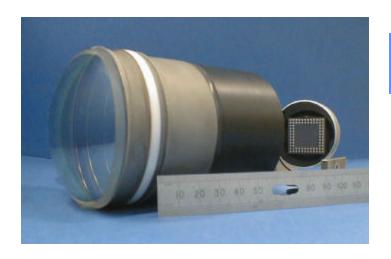
62.5μm × 500μm area Analogue FE electronics:

- •Differential amplifier (250 e- noise)
- Shaper (25 ns peaking time)
- •Discriminator (2000 e- aver.)

See also another contribution of K. Wyllie (this workshop)

Full-scale pixel-HPD prototypes (1)

Manufactured by *DEP B.V.* (The Netherlands)


- First prototype (completed in 1999)
 - Phosphor screen anode
 - CCD readout

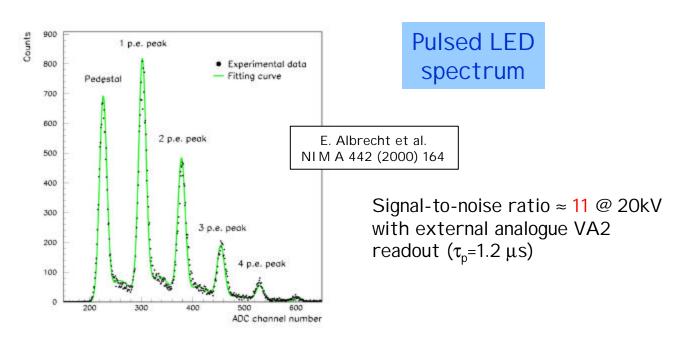
⇒ check of active area, electron-optics, photocathode uniformity, magnetic field sensitivity and shielding options.

M. Alemi et al., I EEE Trans. Nucl. Sc. 46,6 (1999) 1901.

- Second prototype (completed in 1999)
 - 61-pixels anode
 - External analogue VA2 readout

⇒ check of response to Cherenkov light, installation of a cluster in the RICH prototype.

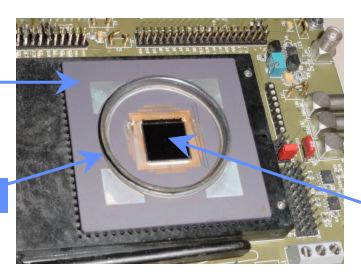
61-pixel HPD prototype


http://www.cern.ch/~gys/ LHCb/PixeIHPDs.htm


Full-scale pixel-HPD prototypes (2)

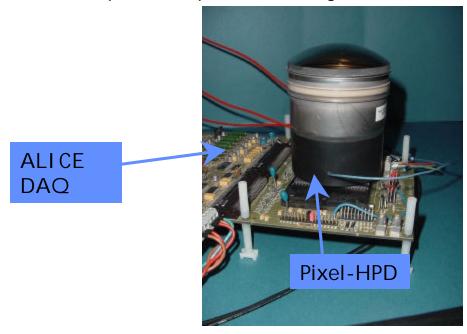
Laboratory measurements

Beam tests in LHCb RICH 1 prototype



Full-scale pixel-HPD prototype (3)

- Third prototype (to be completed in 2001)
 - ALI CE1LHCB single assembly anode on custom ceramic carrier

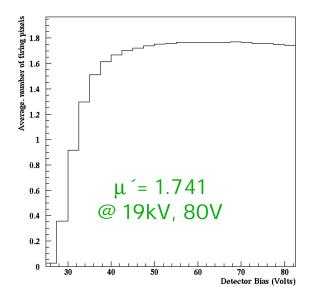

PGA ceramic carrier

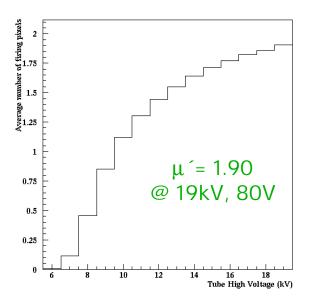
Kovar ring

Bump-bonded assembly with ALI CE1LHCB chip

- ALICE DAQ (software+hardware) readout
 - ⇒ check of response to pulsed LED light.

Systematic tests of pixel-HPD prototype (1)



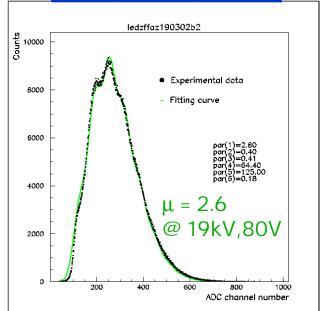

Operating conditions

- HPD high voltage = 0 ⇒ 19kV
- Silicon detector bias 0 ⇒ 80V
- Back-pulse spectrum recorded at end of data taking
- Temperature and HV remotely controlled and monitored
- Noisy pixels masked
- Missing bump-bonds in central part, due to HPD bake-out cycle
 - ⇒ LED shining window edge

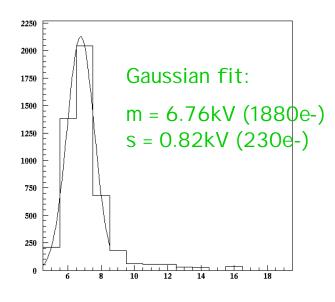
Detector bias scan

HV scan

μ´ = average number of firing pixels (*Poisson statistics*)


Systematic tests of pixel-HPD prototype (2)

Firing pixels per LED pulse


1200 Poisson fit 1200 Poisson fit

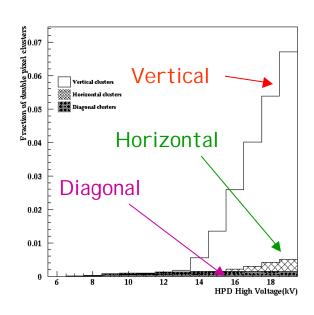
Back-pulse spectrum

 μ = average number of photoelectrons per LED pulse inferred from back-pulse fit

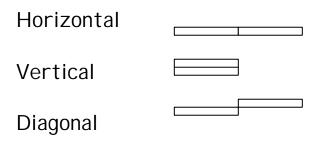
<u>Differential number of firing pixels as a function of HPD HV</u> (detector bias 80V)

This distribution reflects the comparator threshold distribution of the ALI CE1LHCb chip (without threshold adjust)


Systematic tests of pixel-HPD prototype (3)



Fraction of double pixel clusters as a function of:


Detector bias voltage

HPD high voltage

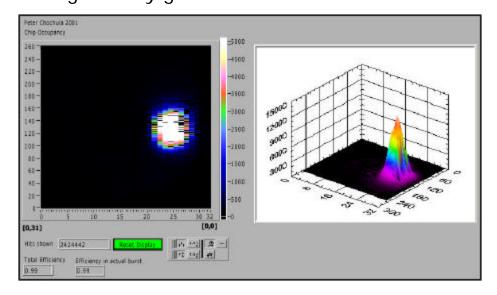
- 1 p.e can cause more than one pixel to fire
- 2-pixel cluster: two adjacent pixels respond to 1 p.e.:

 Vertical 2-pixel clusters are most common due to larger probability of charge sharing along long pixel side

Systematic tests of pixel-HPD prototype (4)

- Photoelectron detection efficiency estimate
 - Efficiency estimate from baseline specifications:

• Pedestal: 250 e- RMS noise

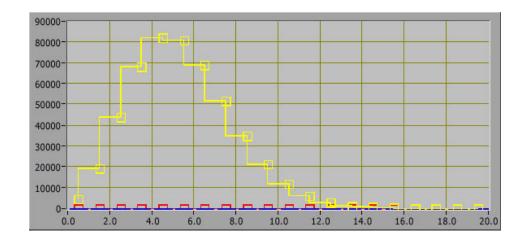

• Threshold: 2000 e- aver.

• Signal: 5000 e- @ 20kV

18% back-scattering probability, $\langle E \rangle = E_0/2$, reduced effect if low cut

Charge sharing, $7\mu m$ RMS lateral spread (300 μm -thickness, 90 V bias) not significant if $E_{cut} < E_0/2$

- ⇒ ~90 % expected detection efficiency
- Experimental procedure
 - LED shining smaller pixel area, where bump-bonds are generally good:



Systematic tests of pixel-HPD prototype (5)

- Experimental procedure (cont'd)
 - Analyze event size, correct for double pixel clusters, infer μ':

- Record back-pulse spectrum, infer μ from fit
- Compare values of µ' and µ; present estimates range from 81% to 83%; not corrected for LED drift with time, LED tail, missing bump-bonds, masked pixels, photoelectron pile-up
- Error estimates:

• LED drift: 5-10%

• Fit parameters: 5%

LED tail: a few %

Conclusions and perspectives

Conclusions

- Pixel-HPD with ALI CE1LHCB chip operational
- General behaviour nominal:
 - Good QE: >23% @ 270nm
 - HV operation OK
 - Chip electrical response: same as before encapsulation
 - Detector leakage current: same as before encapsulation
 - Heat dissipation: 15 °C temperature increase for ~0.85W power consumption
- Photoelectron response: nominal (missing bumpbonds excluded)
 - Preliminary photoelectron efficiency estimates range from 81% to 83%; not corrected for LED drift with time, LED tail, missing bump-bonds, masked pixels, photoelectron pile-up
- I mproved bump-bonding process survive bake-out cycle, new HPD prototypes under manufacturing
- New LHCBPI X1 chip fully operational at 40MHz

Perspectives

- New silicon pixel detector and ceramic carrier designed, expected for the end of 2002
- New bump-bonded assemblies to be manufactured early 2003