
 1

Comments Received on FIPS 186-3

Comments received to the original request for comments on March 13, 2006:

David Jablon ..2
David Jablon ..3
Robert Jueneman, Spyrus...5
Bruno Couillard, BC5 Technologies..7
Daniel Bleichenbacher ...11
Robert Zuccherato, Entrust ..12
Paul X. Garcia, State Dept. ..20
Joshua Hill Infogard...21
Wan-Teh Chang ...23
Wan-The Chang ...26
Stephen M. Savard, CSE..29

Comments received subsequent to request for comments in January, 2007

Jeroen van de Graaf ...30
Don Johnson, Entrust ...31

Comments received subsequent to request for comments in December 2007:

Bridget Walshe, CSE ...34
Pascal Paillier, Gemalto ...36
John Streufert, State Dept. ...37
Peter Catherwood, Thales ..38
Olena Kachko, Institut of Information Technologies ..40
Gerald V. Burton, Centers for Disease Prevention and Control41
Joshua Hill, Infogard..42
Ernst Giessmann, t-systems ...43

 2

Date: Tue, 14 Mar 2006 08:45:32 -0800 (PST)

From: D Jablon <jablon1363@yahoo.com>

So far, I've found just a few minor non-functional problems, with one exception, on p. 42.

On p. 42, 1.1.3, step 13.8, I think "go to step 15" should probably be "go to step 14".

Can you please let me know if this is not the case?

Curiously, this step relates to a functional question we had in P1363 about the efficiency
of verifying pseudo-random probable primes.

The other minor problems that I found so far are listed below.

Best regards,

David

===
p. 3, in 14. Cross Index, should probably add "IEEE Std 1363-2000, Standard
Specifications for Public-Key Cryptography" since it is referenced on pages 92, 94, 117,
and 118.

p. 38, 1.1.1, Input:, There's no item 2.

p. 92, Appendix E, 2nd sentence, should change "IEEE P1363" to "IEEE Std 1363-2000".
(The "P" was only needed for the "proposed" standard.)

p. 94, E.1.1.4, last sentence, should change "IEEE P1363" to "IEEE Std 1363-2000".

p. 94, E.1.2, footnote 2, should change "IEEE P1363" to "IEEE Std 1363-2000".

p. 117, E.9, last sentence, should change "IEEE P1363" to "IEEE Std 1363-2000".

p. 118, E.10, last sentence, should change "the IEEE P1363 standard" to "IEEE Std 1363-
2000".

p. 119, Appendix F, second sentence, should change "Let SHA(...)" to "Let Hash(...)".

 3

Date: Thu, 13 Apr 2006 05:47:09 -0700 (PDT)
From: D Jablon <jablon1363@yahoo.com>

Here are some more comments & corrections.

Item (1) came from a discussion in the IEEE P1363 working group, but we didn't
really attempt to gather an official working group consensus on this issue.

-- David

Comments:
=========

(1) It seems like differences between A.1.1.1 and A.1.1.3 unnecessarily make existing
implementations of previous standards incompatible with the new FIPS 186-3
recommendation for generating verifiably pseudo-random probabilistic primes.

Why is method A.1.1.3 not compatible with A.1.1.1? Was the former method insecure,
at least for the case where L=1024, N=160, and Hash=SHA-1? The changes in the way
the hash is used breaks interoperability with FIPS 186-2 generation in this case, and also
breaks interoperability with ANSI X9.42 and RFC 2631, which were extended forms of
the 186-2 method.

I suggest that the FIPS 186-3 methods could be modified to be interoperable with the
FIPS 186-2 method, at least for the 1024/160 case that is not (yet) deprecated.

(2) If these methods aren't consolidated then consider renaming the titles of A.1.1.1 and
A.1.1.3. The current titles ...

A.1.1.1 Validation of the Probable Primes p and q that were Generated Using
SHA-1

A.1.1.3 Validation of the Probable Primes p >and q that were Generated Using an
Approved Hash Function

... are doubly ambiguous, since both methods verify probable primes that (may) have
been generated using SHA-1, and both verify probable primes that were generated using
approved hash functions.

These ambiguities could be eliminated by highlighting functional differences, as in:

 A.1.1.1 Validation of the Probable Primes p and q that were Generated by FIPS
186-2

 A.1.1.3 Validation of the Probable Primes p and q that were Generated by FIPS

186-3

 4

(3) On p. 52, in A.2, regarding the sentence:

... The first method, discussed in Appendix A.2.1, may be used when complete validation
of the generator g is not required; it is recommended that this method be used only when
the party generating g is trusted to not deliberately generate a g that has a known
arithmetic relationship to another generator g'.

Strictly speaking, the recommendation in this sentence cannot be followed. In GF(p),
there are *always* readily-discernable arithmetic relationships between any g and g',
using either the addition or multiplication operator. For example, computing x := g' - g
mod p shows one easily determined relationship between g and g'.

More specifically, it must be hard to determine an *exponential* relationship, as in g ==
g'^x mod p for a known x.

The phrase "arithmetic relationship" could be changed to "exponential relationship",
to clarify this.

Similarly, ...

(4) On p. 53, in last paragraph of A.2.2, consider changing "a relationship" to "a known
exponential relationship".

Correction:
===========

p. 38, A.1.1.1, Process step 1, change "len(p) != 160" to "len(q) != 160".

 5

Subject: ECDSA hash functions
Date: Fri, 21 Apr 2006 15:56:46 -0700
From: "Robert Jueneman" rjueneman@spyrus.com

Several issues have come up regarding the interpretation of FIPS 186-3 and the hash
functions to be used with ECDSA. We would appreciate NISTs point of view of in this
matter.

The relevant paragraph in section 6.1.1 states:

An Approved hash function, as specified in FIPS 180-2, is required during the generation
of digital signatures. The security strength of the hash function used shall meet or exceed
the security strength associated with the bit length of n. The security strengths for the
ranges of n and the hash functions are provided in SP 800-57. It is recommended that the
security strength associated with the bit length of n and the hash function be the same
unless an agreement has been made between participating entities to use a stronger hash
function; a hash function that provides a lower security strength than is associated with
the bit length of n shall not be used. If the output of the hash function is greater than the
bit length of n, then the leftmost n bits of the hash function output block shall be used in
any calculation using the hash function output during the generation or verification of a
digital signature.

We wont argue with the use of truncation if unequal hash lengths and ECDSA keys must
be used, for some reason.

The real issue is whether that type of mismatch should be allowed at all, and if so,
why, and under what circumstances.

The first question concerns the use of SHA-1 in combination with ECDSA using P-256
or higher (Suite B). As we understand it at present, since FIPS 186-3 is not yet approved,
FIPS 140-2 requires the use of SHA-1 with ECDSA, and no other, at least if the device or
module is to receive FIPS certification for the ECDSA function. That obviously flies in
the face of sound security practice and the guidance of FIPS 186-3, so the question is
whether SHA-1 and ECDSA with P-256 or higher should be allowed at all. SPYRUS
presently supports that combination, but only because we understand that we dont have
any other choice if we want FIPS 140-2 certification.

The next question concerns lower strength SHA-2 functions with ECDSA of higher
strength, e.g., SHA-224 with P-256 keys, or SHA-256 with P-384, or SHA-384 with P-
521, etc. At present, SPYRUS supports those combinations. Since we allow SHA-1, we
found it hard to argue against a higher strength hash function. However, in retrospect we
believe that those choices should be disallowed, and that lower security strength hashes
should always result in an error condition being returned.

Finally, what about the reverse case, where a longer hash function is used with a shorter
ECDSA key. Should that case be allowed, or rather must that case be allowed?

 6

Since SHA-384 is essentially a truncation of SHA-512, there is NO good reason to use
SHA-512 with a P-384 key. On the other hand, there are lots of reasons why such a
combination should not be allowed, including code bloat, increased testing, and lots of
interoperability issues in negotiating what is to be done.

A more interesting case is SHA-256 vs. a 256-bit truncation of SHA-512. Now, as I
recall, SHA-512 uses 80 rounds, vs. 32 rounds for SHA-256, but it also uses a longer
block size. So which 256-bit hash would be stronger? I certainly cant answer that
question. But we would argue that if someone is that concerned about the security of the
hash function, then they probably ought to use a stronger ECDSA key as well, which
would make the issue moot.

For these reasons, our recommendation for this section of FIPS 186-3 would be the
following:

1. Explicitly permit the SHA-2 algorithms to be used with ECDSA signatures, for
the purpose of FIPS 140-2 certification.

2. Allow SHA-1 to be used with ECDSA signatures of higher strength, but set a
sunset date of between 2008 and 2010 when such usage will not be FIPS 140-2 or
FIPS 186-3 compliant. This should be issued as a Change Notice to FIPS 186-2,
rather than waiting for FIPS 186-3 to be approved.

3. Disallow the use of lower strength SHA-2 hashes with higher strength ECDSA
keys, e.g., SHA-224 with P-256 keys, or SHA-256 with P-384 keys.

4. Specify that higher strength SHA-2 hashes should not (as opposed to shall not)
be used with lower strength ECDSA keys, for reasons of performance and
interoperability. I.e., the paragraph should read as follows:

An Approved hash function, as specified in FIPS 180-2, is required during the generation
of digital signatures. The security strength of the hash function used shall meet or exceed
the security strength associated with the bit length of n. The security strengths for the
ranges of n and the hash functions are provided in SP 800-57. For performance and
interoperability reasons, the security strength associated with the bit length of n and the
hash function should be the same unless an explicit agreement has been made between
participating entities to use a stronger hash function; a hash function that provides a lower
security strength than is associated with the bit length of n shall not be used. If the output
of the hash function is greater than the bit length of n, then the leftmost n bits of the hash
function output block shall be used in any calculation using the hash function output
during the generation or verification of a digital signature.

Your opinion on these issues would be most appreciated.

Regards,

Bob

 7

Date: Mon, 01 May 2006 13:45:52 -0400
From: Bruno Couillard bruno@bc5tech.com

BC5 Technologies’ Comments on the following document:
“FIPS PUB 186-3”

DRAFT Version Issued March 2006

Introduction:
The comments provided on the subject document are divided into three (3) categories:
Critical, Substantive, and Administrative. Critical comments are comments that are
deemed to require resolution before completion of this document. Substantive comments
are comments that improve technical accuracy or clarify an item. Administrative
comments correct items such as punctuation, grammar and spelling.

Critical Comments
Number Reference Comment

1. Section 2.4,
1st paragraph,
Page 24

This standard establishes four possible choices for the pair L
and N (the bit lengths of p and q, respectively). This
standard also makes multiple references to NIST SP 800-57
for information pertaining to security strengths related to
such choices. The point of this comment is that NIST SP
800-57 does not define a “security strength” equivalency
when the L, N choice is: (L=2048, N=256), but this new
FIPS PUB 186-3 standard proposes to allow for this
possibility.

Therefore, it is recommended that either the (L=2048,
N=256) choice is removed from the list of candidates in this
FIPS 186-3 standard, or an amendment to NIST’s SP 800-
57 be made to account for this new possibility or finally, a
special note be placed in this FIPS PUB 186-3 standard to
define the equivalent “security level” provided by this
possible choice.

2. Section 6.6.1,
Table 1

In this table, the first possible bit lengths for n is listed as
“161-223”. The NIST Special Publication 800-57 always
uses the range “160-223” instead. It is recommended that
the entry in this table be aligned with the choices offered in
SP 800-57 that is “160-223”.

3. Section
A.1.1.1,
Process area

In the process area of this algorithm, under step 1, change
the text to:
“if (len(p) ≠ 1024) or (len(q) ≠ 160), then return INVALID.”
In other words, the second “p” should be replaced by a “q”.

4. Section
A.1.1.2, 1st
paragraph

In this paragraph, the second statement refers the reader to
SP 800-57 to determine the adequate hash strength for the
specific selected (L, N) pair. Two comments arise:

1- As per comment 1 above, a note needs to be added

 8

to ensure that the reader knows what security
strength the (L=2048, N=256) choices corresponds
to; and

2- The table presented in SP 800-57 breaks the choices
of hash function into five possible categories of
operations:

a. Digital signature and hash-only application;
b. HMAC;
c. Key Derivation Function;
d. Random Number Generation; and
e. Other (To be determined).

The question here is: “To which category should the
reader be referred to when choosing a proper hash
function for the algorithm presented in this section
of the FIPS PUB 186-3 standard?” Should it be
category “a” or “c” or “d” or even “e”? Based on
the answer to this question, a further note may be
required given the fact that categories “b”, “c” and
“e” presented in table 3 of SP 800-57 (August 2005
version) are listed as “To Be Determined”.

5. Section
A.1.1.2

Could the algorithm presented in this section be made to
accept the “domain_parameter_seed” as opposed to
generating it? This would further increase the assurance
that the domain parameters could not have been selected
with any weak parameters. This would require a few
modifications to the process, but would improve the level of
trust offered by this method.

6. Section
A.1.1.3

The algorithm presented in this section for the validation of
the probable p and q parameters seems to be overly costly
from a processing point of view. Step 13 seems to force the
entire repeat of the process used during the search for the
parameters. It would seem that a more expeditious
approach would use the know value of “counter” to quickly
generate the candidate to be checked and that the primality
check be performed on that specific candidate as opposed to
every candidates values as currently prescribed.

7. Section
A.1.1.4.1

Shouldn’t one of the inputs to the algorithm prescribed in
this section be the “iterations” required? This would allow
for adjusting the probability value required every times this
algorithm is called.

Furthermore, a note or some text should be added to explain
the relationship between “iterations” and the probability of
a tested candidate of being prime under this algorithm.

8. Section
A.1.1.4.2

Same comment as comment “7” above.

 9

9. Section
E.1.1.2, Table
E-1

The same comment as comment “2” above.

Substantive Comments
Number Reference Comment

1. Section
A.1.2.1.2,
Process, Step
3

The text associated to step 3 describing the process for this
algorithm should read: “Using L/2 + 1 as the length and
qseed as the input_seed, use the random …”

2. Section A.2.3 Suggest that the title for this section be: “Verifiable
Canonical Generation of Generator g” to align this title
with the title used for section A.2.4.

3. Section A.2.3,
process area.

In the process area under step “7”, it would make sense to
add a note to clarify the usage of the text string “ggen”.
This is the first time such as text string is being used in the
document and its usage is not clear at first.

4. Section C.1.1,
bullet #2.

In the description of “timestamp_signature”, shouldn’t there
be a note (or foot note) indicating that there is an underlying
assumption that the digital private key used for performing
such “timestamp_signature” shall not be used for any other
purposes?

5. Section C.2 It is suggested that the usage of “entropy” for describing the
strength of the “nonce” be changed to: “unpredictability
work factor” or something similar. The idea being that the
“nonce” may actually be generated by the sender using a
hash function over a secret counter and contain “0” entropy,
but still be “unpredictable” to the recipient.

6. Section D.5,
Process
description

In step “1” and step “6.4” of the process description, where
does the “nlen” superscript value comes from? Should this
be somehow related to the input “security_strenght” or in
fact replaced by that input?

7. Section
E.1.1.3

Would suggest changing the title to: “Choice of Basis for
Binary Fields”.

8. Section E.2.1 Would suggest using the same style of description as used
for E.2.2., E.2.3 and E.2.4, That is:

“The modulus …written as
 A = A5 … + A0,
where each Ai, is a 64-bit integer. As a concatenation of
64-bit words, this can be denoted by:

 A = (A5 || A4 || … || A0).

The expression for B is

 10

Number Reference Comment
 B = T + S1 … + S3 mod p;

Where the 192-bit terms are given by

 T = A2 || A1 || A0
 S1 = A3 || A3
 S2 = A4 || A4 || 0
 S3 = A5 || A5 || A5”

9. Section E.2.5 Same comment as comment 8 above with respect to trying
to remain constant in the way things are described.

Administrative Comments
Number Reference Comment

1. Section 6.1.1,
Table 1

The header for this table should be moved to the next
page with the rest of the table’s content.

2. Section C.2, 2nd
paragraph

The first line should read: “…verifier-supplied date (i.e.,
supplied by entity B) with …”

3. Section D.5,
Process
description

In step “1” of the process description, it would be
advised to increase the font used for the value “X” in the
formula to make it the same size as the “X” used in step
“3”.

4. Section D.6,
Process
description

Step 2 should be changed to: “…in the sequence {5,-
7,9,-11,13,-15,17} for …” to remove the comma after
“17” in the list.

5. Section D.7,
Input description

The input value for “a’ should be changed to: “…in the
sequence {5,-7,9,-11,13,-15,17} as …” to remove the
comma after “17” in the list.

 11

Date: Fri, 12 May 2006 05:08:04 -0700 (PDT)
From: Daniel Bleichenbacher <daniel_bleichenbacher@yahoo.com>

this is just a small comment on an apparent type in the DSS draft.

In Section B.3.2 "Generation of the prime factors p and q for RSA" on page 63: Step 7 of
the algorithm appears to check that the RSA modulus cannot be factored using Fermat's
factoring method. If that's the intention then one should reject p and q if |p-q| < 2^(nlen/2
+ security_strength + 20) and not |p-q| < 2^(nlen/2 - (security_strength + 20)).

Daniel Bleichenbacher

 12

From: Robert Zuccherato <robert.zuccherato@entrust.com>
Date: Tue, 16 May 2006 09:31:19 -0400

 13

 14

 15

 16

 17

 18

 19

 20

Date: Fri, 9 Jun 2006 15:14:18 -0400
From: "Garcia, Paul X" <GarciaPX@state.gov>

IRM/IA concurs on above mentioned subject without comment.

 21

From: "Joshua E. Hill" <jhill@infogard.com>
Date: Mon, 12 Jun 2006 17:13:45 -0700

 22

 23

Date: Mon, 12 Jun 2006 21:54:33 -0700
From: Wan-Teh Chang <wtchang@redhat.com>

Attached are my review comments on Draft FIPS 186-3, Appendices D-F. I also reviewed
Draft FIPS 186-3 proper and portions of Appendices A-B, but I left my review comments at
work. I will send you those comments tomorrow.

I tried to make sure the page numbers and section numbers are correct, but I may have made
a mistake. If you have any questions about my comments, please
let me know.

Wan-Teh Chang

Here are my review comments on Appendices D-F.

1. Page 84, Appendix D: this appendix uses three symbols to denote the multiplication
operator:
 - big dot: in D.1 steps 4,5,6
 - small dot: in D.7 step 8
 - asterisk (*): most places
This is a little confusing.

2. Page 84, Appendix D: this appendix is missing "..." in several places, specifically, in
D.2.1, D.4, and D.7.

3. Page 86, Appendix D.2.2: under "Process", step 1 says "where b1 = 0 or 1". "b1" should
be "bi".

4. Page 92, Appendix E: it would be nice to say that the recommended elliptic curves are the
same as FIPS 186-2.

5. Page 92, E.1.1.1: the last sentence says "the private and public keys for a curve are
approximately the same length." This statement is true only if the public keys are
ompressed. Otherwise, the public key should be approximately twice the length of the
private key because the public key has two coordinates.

6. Page 92, E.1.1.2: the first sentence says "For each cryptovariable length". Cryptovariable"
is not defined in this document.

7. Page 93, E.1.1.3: in the first bullet item, the bit string (am-1 a2 a1 a0) is missing "...".
The polynomial on the next line is also missing "...". The second bullet item has the same
problems.

8. Page 93, E.1.1.3: in the second bullet item, change "an element theta" to "a field element
theta".

 24

9. Page 93, E.1.1.3: I just wanted to make sure it is correct for the subscripts of the two bit
strings in the first two bullet items to be in reverse order.

10. Page 93, E.1.1.3: in the paragraph under the second bullet item, change "For a given field
degree m" to "For a given field of degree m".

11. Page 93, E.1.1.3: in the paragraph above the third bullet item, change "from which to
choose" to "to choose from".

12. Page 93, E.1.1.3: in the third bullet item, remove "m" from "t^a has the lowest degree
m". (The degree of t^a is a.)

13. Page 94, E.1.1.4: in the second bullet item, insert "are those" between "Special curves"
and "whose coefficients".

14. Page 94, E.1.1.5: question: how do I generate my own base points?

15. Page 94, E.1.2: in the first paragraph, in "the cofactor is always f = 1", change "f" to "h".

16. Page 95, E.1.2: the last sentence says "The integers p and n are given in decimal form".
As an implementor, I'd like to see p and n given in hexadecimal.

17. Page 98, E.1.3: the last sentence says "Integers (such as T, m, and n) are given in decimal
form". As an implementor, I'd like to see n given in hexadecimal.

18. Page 106, E.2: in the third paragraph, remove "and reduce" from "the integer sum or
difference and reduce".

19. Page 106, E.2: the last sentence repeats what the first paragraph says, so you can remove
the last sentence. If you keep it, change "moduli p" to "modulus p".

20. Page 108, E.2.5: after the formula A = A1 * 2^521 + A0, add "where each Ai is a 521-bit
integer."

21. Page 109, E.3: review the whole section to make sure you underline "u" and "v" where
they denote a bit sequence. Note that in step 2 "u" denotes an integer.

You should also point out that F denotes both a function of an integer and a function of two
bit sequences.

22. Page 109, E.3: in step 3, the semicolon after F(1) should be a comma. Add "..." after
F(2).

23. Page 109, E.3: in footnote 3, the "S" in "Standard" is red.

 25

24. Page 110, E.3: near the bottom, change the semicolon in F(u;v) to a comma.

25. Page 111, E.3: in the equation for c6, change the semicolon to a comma.

26. Page 111, E.4: the third and fourth bullet items use a slanted dot to denote the
multiplication operator.

27. Page 113, E.4: in step 4, the first "then" uses a different font from the rest.

28. Page 114, E.4: in step 11.3, "Endwhile" uses a different font from the rest.

29. Page 116, E.9: in the first sentence, insert "is" between "Suppose that alpha" and "an
element".

30. Page 117, E.10: same as above.

31. Page 119, Appendix F: in the first sentence, change "SHA(...)" to "Hash(...)" because
that's what's used in the proof. Explain why we don't take the leftmost N bits of Hash(M) in
this proof.

32. Page 119, Appendix F: the proof of the Lemma begins with "g^p mod p". Change "g^p"
to "g^q".

33. Page 119, Appendix F: "Theorem" should be in boldface and underlined, like "Lemma".

34. Page 119, Appendix F: in the proof of the Theorem, the first three lines use the single
quote character as the prime character in s', M', and r'. The statement of the Theorem uses
the correct prime character.

35. Page 119, Appendix F: in the proof of the Theorem, perhaps change "so that by the
lemma" to "so by the lemma".

 26

Date: Tue, 13 Jun 2006 10:20:58 -0700
From: Wan-Teh Chang <wtchang@redhat.com>

This note is my review comments on Draft FIPS 186-3 proper and portions
of Appendices A and B.

I welcome two changes in Draft FIPS 186-3
- explicitly allow using the same RBG to generate both the DSA private
 key 'x' and the per-message secret number 'k'. In contrast, 186-2
 specifies separate RBG algorithms for generating 'x' and 'k'.
- officially recognize PKCS #1 RSA, which is widely used in practice.

Most of the items below are fixes for typos, minor errors, or cosmetic issues. The most
important items are: 17, 18, 32, 33, 34.

1. Page 2, item 8: I suggest adding a hyperlink to the URL http://csrc.nist.gov/cryptval.

2. Page 2, item 10: I seem to recall that Bureau of Export Administration has been renamed
Bureau of Industry and Security (BIS).

3. Page 3, item 12: change "NISTs" to "NIST's". Add a period (.) to the last sentence of this
paragraph.

4. Page 6: the page number 38 for A.1.1.1 is not aligned to the right.

5. Page 11, Sec. 2.1: in the definition of "Approved", the second "either" probably should be
removed. (I believe that sentence was truncated because I have seen the complete sentence
in some other document. Unfortunately I don't recall where.)

6. Page 11, Sec. 2.1: in the definition of "Bit string", there are extra spaces in "0 s" and "1 s".

7. Page 13, Sec. 2.1: "May" (in boldface) should be defined along with "Shall" and
"Should". The document uses "may" on pages 22, 25, and 26.

8. Page 14, Sec. 2.1: add the definition of "Timeliness".

9. Page 15, Sec. 2.3: in the definition of "m", it would be nice to use GF(2^m) (consistently
throughout the document) instead of F sub 2^m to denote a binary field.

10. Page 16, Sec. 2.3: in the definition of "nlen", should say "The length of the RSA modulus
n in bits".

11. Page 16, Sec. 2.3: in the definitions of "r" and "s", should say "One component of a DSA
or ECDSA signature". See the definition of "(r,s)" on page 17.

12. Page 16, Sec. 2.3: in the definition of "seedlen", should say "The length of the seed for

 27

the domain_parameter_seed in bits".

13. Page 17, Sec. 2.3: in the definition of "{, a, b, }", add "..." after "b,"

14. Page 19, Sec. 3: in the third paragraph, there is an extra comma (,) after "(i.e., the signed
data)".

15. Page 19, Sec. 3: in the fifth paragraph, "the key pair owner actually possesses the
associated private key" should be either "the public key owner actually possesses the
associated private key", or "the key pair owner actually possesses the private key".

16. Page 22, Sec. 3.3: in Figure 4, change "Alleged Signatory" to "Claimed Signatory" (two
occurrences).

17. Page 23, Sec. 3.3: in the last paragraph, I don't understand why "should" rather than
"shall" is used in the sentence "However, if a verification or assurance process fails, the
digital signature should be considered invalid."

18. Page 24, Sec. 4.1: in the definition of "g", the constraint on g should be "1 < g < p".
 ^

19. Page 24, Sec. 4.2: the last sentence on this page should read "If the output of the hash
function is longer than N" or "If the length of the output of the hash function is greater than
N".

20. Page 26, Sec. 4.4.2: item 3 is a little ambiguous. Does it mean the key pairs shall only be
used with their associated domain parameters and shall not be used with other domain
parameters?

21. Page 27, Sec. 4.5: in the second paragraph, "multiplicative" and "with respect to
multiplication" are redundant. I suggest removing "with respect to multiplication".

22. Page 27, Sec. 4.5: also in the second paragraph, the exponent -1 in k^-1 (except the first
instance) is a little too low.

23. Page 33, Sec. 6.1: in the second paragraph, I don't know whether the comma (,) before
the optional information {domain_parameter_seed} should be outside or inside the curly
braces. The definition of "{,a,b }" on page 17 implies the comma should be inside. There
are several other instances of this problem. Since this is just a cosmetic problem, I won't list
the other instances of the problem.

24. Page 33, Sec. 6.1: in the second paragraph, may want to change "generating point" to
"base point".

25. Page 34, Sec. 6.1.1: in the first paragraph, use GF(p) instead of F sub p, and GF(2^m)
instead of F sub 2^m.

 28

26. Page 34, Sec. 6.1.1: in the second paragraph, "where xxx indicates the bit length of n" is
only an approximation. For example, n for K-233 is 232 bits long, and n for K-409 is 407 bits
long. The correct statement is probably "where xxx indicates the bit length of the field
elements" or "where xxx indicates the bit length of the field size".

27. Page 34, Sec. 6.1.1: in the third paragraph, the last sentence should read "If the output of
the hash function is longer than ..." or "If the length of the output of the hash function is
greater ...".

28. Page 35, Sec. 6.2: "that is associated" should be "that are associated".

29. Page 35, Sec. 6.3: in the second paragraph, the exponent -1 in k^-1 (except the first
instance) is a little too low. Remove "with respect multiplication", which is redundant with
"multiplicative".

30. Page 35, Sec. 6.3: in the third paragraph, change "computation" to "the computations".

31. Page 35, Sec. 6.4: in item 2, it's better to refer to Section 6.2.1 instead of Section 6.2.

32. Page 42, Sec. A.1.1.4: in the last paragraph, the current version of Knuth's book is
 The Art of Computer Programming, Vol. 2, 3rd Ed., Addison-Wesley, 1998, Algorithm P,
page 395.

33. Page 43. Sec. A.1.1.4: the first paragraph specifies that iterations >= 50 based on the 1/4
upper bound of the error probability. However, Handbook of Applied Cryptography by A.
Menezes, P. van Oorschot, and S. Vanstone, Chapter 4 cites tigher upper bounds on the error
probability that allow us to reduce the required number of iterations significantly. Can we
use the smaller number of iterations given in the Handbook of Applied Cryptography? See
Handbook of Applied Cryptography, Chapter 4, Sections 4.48 and 4.49, pages 148-149.
(The book's chapters can be downloaded from http://www.cacr.math.uwaterloo.ca/hac/)

34. Page 46, Sec. A.1.2.1.1: under "Process", step 4 says "Get an arbitrary sequence of
seedlen bits as first seed". Please clarify whether the most significant bit of the bit sequence
must be 1.

In CMVP's DSA Validation System, our experiments showed that if the most significant byte
of SEED is 0, that SEED value will fail the PQG Domain Parameter Generation Test, even
though FIPS 186-2 Appendix 2.2 says SEED is an arbitrary sequence of at least 160 bits. I
hope FIPS 16-3 can clarify this point.

 29

Date: Wed, 14 Jun 2006 11:11:45 -0400
From: "Savard, Stephen M." Stephen.Savard@cse-cst.gc.ca

Editorial Comments

1 Page 1, second last

paragraph
Change "FIPS approved digital signature …" to "FIPS
Approved digital signature …".

2 Page 11 In the bit string definition, change "0 s and 1 s" to "0's and
1's".

3 Page 18 The diagram can be made to look better by making the
diagram more symmetric. Under Signature Verification,
move the Message/Data text to the right by two letters so
it looks the same (with respect to the arrow underneath) as
the Message/Data text under Signature Generation.

4 Page 25 section 4.3,
page 26 section 4.4,
page 37 Appendix A,
page 57 section B.1

Change (p, q, g {, domain_parameter_seed, counter}) to
(p, q, g, {domain_parameter_seed, counter})

5 Pages 33-34 Fix Table 1 to appear on the same page
6 Page 86 section D.4 Change "Y0, Y0 + 1, , Y0 + J" to "Y0, Y0 + 1, … , Y0 +

J". This occurs again in the same section in the middle of
page 87.

Use consistent notation when describing sequences. This
notation is used for example in section D.2.1

7 Page 87 section D.5 Add a space after + to change "security_strength +21" to
"security_strength + 21".

8 Page 89 section D.6 There is a typo in section 2 which has a comma after 17 at
the end of a sequence. It should read {5, -7, 9, -11, 13, -
15, 17}.

9 Page 89 section D.6 In step 4, change "KrKr-1 K0" to "KrKr-1 … K0".
10 Page 90 section D.7 The value a has a comma after the last number in the

sequence and should read {5, -7, 9, -11, 13, -15, 17}. Also
try to put "-15" on the same line.

11 Page 91 last sentence Be consistent in either adding spaces or no spaces in
between the equations, especially terms like -1. This
should be consistent throughout the whole document.

 30

From: Jeroen van de Graaf [mailto:jvdg@lcc.ufmg.br]
Sent: Thursday, January 25, 2007 8:30 AM
Subject: [Fwd: [brasilcrypt] NIST Request for Comments on primality testing]

I have two comments:

1) It seems to me the cost of an additional test is so low compared to the possible impact
that I would even simplify matters and define much higher values for the numbers of test
to be performed.

2) There seems a sharp contrast between the recomendation in section 1.1: DSA-1024
bits: 40 M-R tests 1.3: RSA-1024 bits: 4 M-R tests

The justification is that people not involved in the generation of the prime may not the
trust the distribution from which the candidates are chosen, and that therefore the number
of tests must be higher. In view of my first remark I do find the value 4 for RSA-1024
bits rather low.

In particular when we think of the private RSA keys of a RootCA, in which category do
they fall? DSA or RSA? It would seem that many people have an interest in the security
of this key. It seems to me that is worth mentioning.

Kind regards,

Jeroen van de Graaf
PhD in cryptography.

 31

From: Don Johnson (Entrust)
Date: February 15, 2007

Entrust comments on NIST prime generation proposal titled “Two Methods to Calculate
the Required Number of Rounds of Miller-Rabin Testing” dated Jan 12, 2007 in the file
name.
Sent Feb. 15, 2007; Due to NIST by Feb. 23, 2007

We thank NIST for the interesting paper and for requesting comments.

Our overall comment is that Entrust believes NIST should align with ANSI X9 standards,
in particular, X9.80-2005 Prime Generation and the new draft X9.31 RSA signatures.
Our specific comments are as follows:

1) The error probability for all prime generation for ANSI X9 has been decided by
consensus to always be at most 2**-100 (it might be less by application choice, including
use of deterministic methods); it is important to note that this value of 2**-100 is not
directly related to the security level for the keys where the prime will be used.

This decision is based on the total number of primes that are expected to be generated in
the lifetime of the standard. 2**-100 is a very small number; one way to interpret it is by
pointing out that if a million billion users each use a thousand billion candidate primes,
the chance of one of candidate primes being composite is still less than 1/1000. It seems
simpler to use the ANSI X9 criterion, rather than define a new NIST one that is tied to
the security level, as having different criteria will at best mean that a system designed to
meet both criteria will need to use the more stringent one, which might be confusing. If
there is a reason to use the security level instead of 2**-100, then this information should
be discussed at ANSI X9F meetings and the consensus decision changed.

X9.80-2005 extract
NOTE—The 2**−100 failure probability is selected to be sufficiently small that errors
are extremely unlikely ever to occur in normal practice. Moreover, even if an error were
to occur when one party tests a prime, subsequent tests by the same or other parties
would detect the error with overwhelming probability. Furthermore, the 2**−100
probability is an upper bound on the worst-case probability that a test declares any non-
prime candidate to be prime; not all non-primes may reach this bound, and the probability
that a non-prime generated at random passes such a test is much lower. Accordingly, the
2**−100 bound is considered appropriate independent of the size of the prime being
generated and the intended security level of the cryptosystem in which the prime is to be
employed. For high-assurance applications, however, the deterministic methods may
nevertheless be preferable.

2) Entrust fails to understand the rationale for not having the Lucas test in some cases,
namely in the assurance when generating a strong prime. A number is either a prime or
not; and any tests run will provide assurance of primality up to some error probability. If
all the tests are not run, then the assurance will be less than otherwise. That is, given

 32

NIST believes that a number should be a prime for some reason, it is important that the
assurance that it actually is prime is consistently high. To do otherwise is to somehow
claim that some prime candidates need a lower assurance of primality than others, which
seems self-contradictory. Therefore, our recommendation is to have consistent assurance
via consistent tests for primality.

3) Probabilistic methods for prime candidate testing

ANSI X9.80 specifies the checking that make up a round of the following 3 probabilistic
algorithms:

1. Miller-Rabin (MR)
2. Lucas
3. Frobenius-Grantham (FG).

And then defines the following 3 methods as conforming to X9.80:
1. 50 MR rounds.
2. a lesser number of MR rounds based on size (between 2 and 27) followed by 1

Lucas round.
3. a specific number of FG rounds based on size (between 2 and 8).

These 3 conforming methods can be viewed as offering a tradeoff between time and
code size and/or code complexity. 50 MR rounds will have the smallest code size and
is the simplest, but (probably) takes the longest time. FG has the highest complexity
and code size, but may take the smallest amount of time. The MR + Lucas method
can be seen as a compromise between these 2 extremes. However, it is quite possible
that each of these 3 methods will have environments where it would be the preferred
solution; therefore Entrust recommends that all 3 methods be allowed by NIST.

If the number of rounds needs to be corrected, then ANSI X9F1 should update X9.80,
but it would be best for NIST to be consistent with X9.80 methods (whatever they
are).

Also, Entrust does not see the need for the amount of granularity proposed by NIST
in the number of rounds based on prime candidate size. We suggest that there be one
set of round criteria for primes below 512 bits and one set for primes 512 bits and
above. The reason is that most of the performance cost is not due to the number of
rounds used on a successful prime candidate, but in the discard of failing prime
candidates. It is simply too open to an error in implementation to have small
variations in the number of rounds needed. This is especially true when trying to
conform to multiple standards.

4) ANSI X9 is discussing aligning X9.31 RSA key pair generation with the HAC; this
affects the discussion in the NIST proposal also, as the large prime factor t (see below)
seems to have been missed in the NIST proposal.

Extracts from the HAC:

 33

HAC 4.52 Definition A prime number p is said to be a strong prime if integers r, s, and t
exist such that the following three conditions are satisfied:
(i) p − 1 has a large prime factor, denoted r;
(ii) p + 1 has a large prime factor, denoted s; and
(iii) r − 1 has a large prime factor, denoted t.
In Definition 4.52, a precise qualification of “large” depends on specific attacks that
should be guarded against; for further details, see Note 8.8(iii).

See HAC 8.2 and 8.8 for more info.

5) Method 2 is barely discussed, except to dismiss it. We suggest it be removed entirely.

 34

From: Walshe, Bridget A. [mailto:Bridget.Walshe@cse-cst.gc.ca]
Sent: Friday, January 11, 2008 10:23 AM
Subject: RE: [x9f1] NIST requests comments

B.3.1, first paragraph "... the private prime factor d." There is no reason to expect d to be
prime. Better wording is "the private exponent d."

B.3.2 (and elsewhere). There is an explicit check (Step 2) that e is in the correct range,
but no check that it is odd. Why not add this, so that all assumotions on inputs are
checked?

B.3.4 "Let bitlen1, bitlen2, [...] be the bitlengths [...] in accordance with Table B.1".
Maybe it is worth saying explicitly that it does not matter whether these are chosen
randomly or are fixed beforehand (just like the value of e, discussed in Section B.3.1).

B.3.4 and elsewhere. "FAILURE" is sometimes written as "Failure". For consistency, it
should always be in upper case.

B.3.4, Step 9,2 "q_seed" should be "qseed".

B.3.5 and elsewhere. The check on Xp - Xq in Step 7 is not motivated by any explicit
requirement (unlike other similar checks in the algorithms).

B.3.6, Step 7. Should Xp1, Xp2, Xq1, and Xq2 also be zeroized?

C.6, Step 7. The comment says "Set prime to ..." but the code sets c.

C.6, Step 12. Should return (FAILURE, 0, 0, {,0}).

C.9, Step 6.1 says "If COMPOSITE is returned ...", but if the algorithm in C.3.2 is used ,
various other values (and never COMPOSITE) are returned. Better would be "If
PROBABLY PRIME is not returned ...".

F.1. The first sentence is correct. The second sentence, "The probability k_t_p, is
understood as the ratio of the number of odd composite numbers of a binary length k that
pass t rounds of M-R testing (with randomly generated bases) to the total number of odd
integers of binary length k.", is not. If O is the set of odd k-bit integers, P is the set of
elements of O that pass the tests, and C is the set of element of O that are composite, then
P_k_t computes |P*C| / |P| where "*" is set intersection. The quoted sentence suggests
computing |P*C| / |O|.

F.1. p_target is strangely typeset, with "t" and "get" in italics and "arg" upright.

F.1 The last term of Formula (2) is a bit hard to parse: is it 2**((j + k -1) / j), or 2**(j +
(k-1)/j). The latter is correct, but the layout makes it a bit unclear.

 35

Reference [1]: "Provable" should be "Probable" in the title.

 36

From: PAILLIER Pascal [mailto:Pascal.PAILLIER@gemalto.com]
Sent: Monday, January 28, 2008 9:43 AM
Subject: Feedback on FIPS 186-3

In response to our last correspondence, please find here enclosed our feedback on FIPS
186-3 Appendices.

In a nutshell, we would like to attract your attention on the following items:

1) The public exponent e should preferably be a prime number (or at the very least, the
Carmichael function Lambda(e) should be given along with e if e is not prime);

2) The private exponent should be allowed to be computed as d = 1/e mod (p-1)(q-1)
instead of d = 1/e mod lcm(p-1,q-1) to avoid a useless and cumbersome GCD
computation;

3) The Joye-Paillier strong prime generation algorithm should be approved as an
alternative to the recommended method when generating RSA keys on embedded
devices.

These three questions are of prime interest for the global smart card industry since, as you
may know, smart card architectures have limited computing capabilities: in particular we
have to exclude GCD computations and trial divisions. We suggest a trial-division-free
algorithm for the generation of strong primes (this was the object of several publications
in crypto conferences over the past few years). By just restricting (e, d) as per 1) and 2), a
complete RSA key generation can be performed with no GCD computation at all. Please
consider the joined document for further reference.

Best regards,
Pascal Paillier
Head of Cryptography & Innovation
Security Labs, Gemalto

 37

From: Melakou, Sophia [mailto:melakous@state.gov] On Behalf Of IASolutionCenter
Sent: Tuesday, January 29, 2008 1:45 PM
Subject: "FIPS 186-3 Appendices DRAFT RSA Strong Primes - Digital Signature
Standard (DSS)."

The State Department concurs with the subject above draft without comment.

Thank you.

John Streufert

IA Director

 38

From: Catherwood, Peter [mailto:Peter.Catherwood@thales-esecurity.com]
Sent: Wednesday, January 30, 2008 6:58 AM
Subject: NIST requests comments on revised text for FIPS 186-3 related to the generation of
RSA key pairs.

1. General issue: Only the indicated appendices have been made available for comment.
These include new sections that suggest unidentified changes to the previously published
draft. It is also impossible to check how the contents of these sections now relate to the rest
of the draft standard.

2. General issue: It is essential to confirm the proposed status of the appendices. However,
the remaining comments are made on the understanding that the contents of the appendices
would all be identified as mandatory aspects of the standard – with the processes described in
sections B.3.2 to B 3.6 being equivalent options. 3. General issue: With the draft of FIPS
186-3 supporting only three values of nlen (1024, 2048 and 3072 bits), this is a poor
reflection of current commercial practices where a greater variety of sizes are in use –
typically in the range 768 to 4096 bits. In practice, consideration should be given to this
standard permitting a greater range of values, e.g. at 64 bit increments. This should also
avoid issues where such restrictions on key sizes reduce the future effectiveness of a standard
– as where FIPS 186-2 restricts DSA to 1024 bits. It would also support more flexible use of
the standard in commercial applications. NOTE: If the limitations on the size of nlen are
retained it would be useful if the standard gave some indication as to if and how nonapproved
values could also be handled by validated algorithms, otherwise best practice for these values
cannot be observed.

4. General issue: The suggestion that e can no longer be 3 will restrict the adoption of the
standard in commercial applications based on legacy smartcard technology – where it is a
common value. Again, a flexible standard would support this option and allow users to
mitigate the risks appropriately e.g. by enforcing padding requirements and other signature
structures. NOTE: will the redrafted FIPS 186-3 be supporting PKCS #1 ver 1.5 (or higher)
signatures, as suggested in SP 800-57 i.e. compatible with FIPS 201 (see SP 800-78-1) –
rather than only PKCS #1 ver 2.1 as in the March 2006 draft of FIPS 186-3?

5. Error probability of 2-100: E.g. Table C.3 and section F.3. The retention of references to
an error probability of 2-100 appears to be an inconsistent concession to the historical use of
RSA and its association with X9.31 and NIST’s interpretation of that standard. We suggest
that this reference should only be retained if equal consideration is to be given to flexibility
in the size of the modulus and/or the value of e (i.e. e= 3).

6. Incomplete explanation: What separate method is proposed for B.3.3 Process steps 4.3 and
5.4, to determine that (p-1) and (q-1) either are or are not relatively prime to e? Specifically
testing for this condition appears to be unnecessary.

7. Inconsistent approach: There is an inconsistency in the approach to prime generation from
random numbers, as in B.3.2 and B.3.3, where failure will normally result in the creation of
an entirely new random number – as opposed to B.3.6 where successive searching from a

 39

random number is permissible i.e. adding 2 each time – which can be a preferred approach as
it is perceived to achieve a shorter duration in its worst-case.

8. Inconsistent approach: Assuming that discovering that a candidate prime is probably
composite is the normal root cause of “failure” of any given invocation of the key generation
process. There is an inconsistent approach to the likely failure of different generation options
e.g. the process of B.3.2 is likely to return a failure if it discovers a composite number; but
the process of B.3.3 is likely to continue until keys are successfully generated – but only after
some indeterminate period.

 40

From: IIT [mailto:iit@iit.kharkov.ua]
Sent: Thursday, January 31, 2008 10:13 AM
Subject: Comments. FIPS-186 -3 Appendices DRAFT RSA Strong Primes - Digital
Signature Standard

FIPS-186 -3 Appendices DRAFT RSA Strong Primes - Digital Signature Standard

1. B3.2.2. Construction of the Provable Primes p and q. Process, Step 1.

Instead
 if nlen is neither 2048 nor 3072, then return (FAILURE, 0, 0),

use
if nlen is neither 1024 , 2048 nor 3072, then return (FAILURE, 0, 0).

2. So as B.3.3 Generation of Random Primes that are Probably Prime. Process, Step 1

3. C.9. Compute a Probable Prime Factor Based on Auxiliary Primes. Process.
 Before Step 1 insert

 if (p1 divides e) then return (FAILURE, 0, 0, 0, 0).

 PROOF:
 Let p1 divides e, but p1 divides p-1, so GCD(p-1, e) != 1.

4. C.10. Construct a Provable Prime (possibly with Conditions), Based on
 Contemporaneously Constructed Auxiliary Provable Primes. Process.

After step 3.1 (obtain p1) insert step:
if (p1 divides e) then return (FAILURE, 0, 0, 0, 0).

Best regards,
Olena Kachko.
Institut of Information Technologies

 41

From: Burton, Gerald V. (CDC/OCOO/OD) [mailto:fyq0@cdc.gov]
Sent: Wednesday, January 30, 2008 8:20 AM
Subject: Comments on Draft FIPS 186-3 Appencices

Greetings. CDC has no comments on FIPS 186-3 Appendices -- Draft RSA Strong
Primes

Gerald V. Burton
IT Specialist (Infosec)
Office of the Chief Information Security Officer
Centers for Disease Prevention and Control

 42

From: Joshua Hill [mailto:jhill@infogard.com]
Sent: Friday, February 01, 2008 7:18 PM
Subject: Re: NIST requests comments (FIPS 186-3)

My comments this round are much less involved. I didn't even get to attach a
Mathematica workbook!

In Table B.2, random primes are not allowed for a nlen value of 1024, but they are
allowed for the nlen values 2048 and 3072. The reason for this allowance is not
discussed in the document. It may be useful to cite the attacks that the "Primes with
Conditions" generation method foils (Pollard's p-1 factoring algorithm and Williams p+1
factoring algorithm) and explain why these aren't practical for the nlen values
2048 and 3072 (this discussion may be appropriate in section F.3).

In section B.3.5 (step 7) and section B.3.6 (step 6) both the separation between X_p and
X_q and between p and q are tested. I'm not familiar with any attack that becomes
possible when X_p and X_q are too close as long as the resulting p and q are sufficiently
far apart (which is separately tested). I suggest verifying that p and q are sufficiently
separated and dropping the explicit check for separation between X_p and X_q.

In section C.3 (C.3, C.3.1, C.3.2) there are several references to SP800-90, but in these
cases it isn't clear if random values must necessarily come from a SP800-90 RBG, or if
any approved RBG/RNG would be acceptable. In the instance where any approved
RBG/RNG is acceptable this should be explicitly stated, and if there is an explicit
requirement to use SP800-90 that should be made clear in a "shall" style
normative statement.

In section C.3, tables C.2 and C.3 both present possible lower bounds for the number of
Miller-Rabin rounds. You may instead want to consider replacing these two tables with a
single table that lists the _minimum_ number of rounds, as this minimal number of
Miller-Rabin rounds is really the requirement that results from the current tables C.2 and
C.3.

In section F.1, there are a number of instances where p_{target} is interpreted by your
word processor as a mathematical statement ("t arg et") rather than text. It would be
formatted more reasonably if you explicitly identified the style as "text" for the subscript.

 As always, thanks!
 Josh

 43

From: Giessmann, Ernstg [mailto:ErnstG.Giessmann@t-systems.com]
Sent: Thursday, April 24, 2008 9:16 AM
Subject: Comments on FIPS-186 -3 Appendices

The commenting period is already closed, and I'm sure that the following remark is not
new for you. Nevertheless I provide it and would like to ask you for the missing part:
In C.3.3 (General) Lucas Probabilistic Primality Test the following text appeared
Test whether C is a perfect square (see Appendix C.4). If so, return (COMPOSITE).

But this Appendix never appeared in FIPS 186-3 nor in the Comments document.

Regards,
Ernst.

