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Abstract—This note briefly demonstrates our compliance with the ASVIE pressure vessel code
for the design of beam tubes that would be inserted in the Large Hadron Callider Interaction
Region (LHC IR) Quadrupole magnets and would form the inner wall for the magnet’s cryogenic
systemwhich is designed for operation up to 20 bars. The note also describes other salient design
features for the beam tubes.

1. Introduction

Fermilab is responsible for the procurement and installation of beam tubes for all the
LHC IR Quadrupole magnets, including the ones to be built at KEK, Japan. Due to the
intense beam-induced energy deposition at the interaction region, absorbers (liners) need
to be used to keep the local power density to an acceptable level and to prevent
guenching of the superconducting magnets [1]. The LHC design requires that the
physical aperture (including dispersion, alignment tolerances) in the IRs should be
everywhere at least 1& whereo is the rms beam size. Absorbers (liners) are placed at
the outer radii of this 1@ limit. Table 1 lists the inside diameter of the liners for both the
high luminosity (IP1/IP5) and low luminosity (IP2/IP8) interaction points. These liners
are copper/steel sleeves, with inside surface coated with pam5thick copper layer,

which would be inserted inside the beam tubes by CERN. The inside diameter of the
beam tubes was fixed as 63 mm from the requirement of inside diameter for the low
luminosity interaction point (IP2/IP8) magnets. Once the inside diameter is fixed, the
outside diameter of the beam tube is determined by the wall thickness required to prevent
the tube collapse (buckling) during quench. Table 1 presents the outside diameter, wall
thickness, and other relevant physical dimensions for the LHC IR Quadrupole magnet
beam tubes. A comparison is also provided with the CERN and BNL dipole magnets.
This note presents the ASME design calculations for the wall thickness requirement. It
should be noted that the presented dimensions provide sufficient thickness of the internal
absorbers (liners) to reduce the energy deposigd)(to an acceptable level. Also, the



current outer diameter of 66.7 mm provides the necessary cooling channel around the

beam tube for cryogenic purposes.

Table 1: Physical dimensions for the LHC IR Quadrupole magnet beam tubes for both the high luminosity
(IPL/1P5) and low luminosity (IP2/1P8) interaction points. Similar information is provided for the CERN

main dipoles and Brookhaven separation dipoles for comparative purposes.

Liner Theoretical
Magnets Aperture Beam Beam Wall Inside Liner Radial
(mm) Tube O.D. | Tubel.D. | Thickness | Diameter | Thickness | Clearance
(mm) (mm) (mm) (mm) (mm) (mm)
HGQ Q2-Q3 70 66.7 63 1.85 60 15 1.65
(IPY
IP5)| Q1 70 66.7 63 1.85 47 8 1.65
HGQ
(IP2/| Q1-Q3 70 66.7 63 1.85 N/A N/A 1.65
IP8)
LHC Main 56 53 50 15 15
Dipoles
BNL LHCD1
Separation 80 78 74 2 1
Dipoles
BNL LHC
D2-D4 80 73 69.08 1.96 35
Separation
Dipoles

2. Design Calculations

In this section, we present our design calculations for determining the necessary wall
thickness. Wefirst present the calculations that guided the initial design phase. We would
later show our compliance with the ASME Pressure Vessel Code. The operational
conditions for the beam tubes are summarized in Table 2. The beam tubes need to be
designed for a pressure of 20 bar.

Table 2: Operational conditions for the LHC IR Quadrupole magnet beam tubes.

Condition Temperature (K) Internal Pressure (mbar) | External Pressure (bar)
Normal Operation 1.9 <10™ 1.1 abs
Cool down-Warm up, 300-1.9 <10™ 20 abs
Quench




2.1 Stress Calculations

Figure 1: Stress distribution of a cylinder subjected to external pressure.

Fig. 1 shows the stress distribution for a cylinder subjected to external pressure. The
normal stressesin the radial and theta directions are given as:

Oy =— pb2 % aZH

b? —a? _r_ZF

g =P G 2
¢ b? -a? rZF

The variation of these stresses across the thickness are shown in Fig. 1. The most critical
point lies on inner surface of the cylinder where the maximum shear stressis given by:

b2
b2 - a?

Tmax = P

For our case p=20 bars=20 x 10° N/m? b=66.7/2 mm and a=63/2 mm and therefore
Tmax=18.6 MPa. Assuming a safety factor of 4, the beam tubes should be designed for a
maximum shear stress (Tmax) Of 74.3 MPa. This implies that the yield strength of the
material should be at least 148.6 MPa.

Since the beam tube material is stainless steel and most of the stainless steel have a yield
strength greater than 200 MPa, we are safe from the strength point of view. Note that the
strength increases further at low temperatures. It should also be noted that we have not
accounted for stresses due to the Lorentz forces produced by the eddy currents in the thin



copper layer since the tubes would be fitted with sleeves by CERN, which would have a
copper coating to take the eddy currents.

2.2 Buckling Calculations

The main requirement for wall thickness comes from buckling considerations. For a
cylinder shown in Fig. 1, the critical buckling pressureis given by:

. Et3
cr—
4 Rm3@— v2 E

where E isthe Y oung’'s modulus of the beam tube material, v is the Poisson’'s ratio, t is the
wall thickness and Ry, is the mean radius. Assuming E=200 GPa and v=0.28 for stainless
steel, for our beam tube dimensions we obtain a critical buckling pressure of 10.08 MPa,
which gives a safety factor of 5.04 for a design pressure of 20 bars. Table 3 provides a
comparison of the safety factors used for the different magnets for a design pressure of 20
bars. The table also lists the minimum and maximum safety factors accounting for the

manufacturing tolerances. The higher safety factor used for the CERN dipoles when
compared to IR Quadrupolesis partly due to the fact that in quenching quadrupol es, eddy

current pressure is smaller than quenching dipoles by a factor of ~ [B%b[BZ where K in

T/m is the quad strength. Also note that the CERN design provides a minimum safety
factor of 4.3 after accounting for the manufacturing tolerances.

Table 3: Safety factors against buckling for the different magnets for a design pressure of 20 bars.

Magnet Do wal Di Nominal Minimum/
(mm) thickness (mm) Safety Maximum
(mm) Factor Safety Factor
LHCIRQuad | 66.7+0.15 | 1.85+0.1 63 5.04 4.2/6.0
BNL D1 78+ 04 2+0.2 74 3.95 2.8/5.4
BNL D2-D4 73+£0.38 | 1.96+0.18 | 69.08 4.6 3.3/6.1
CERN Dipoles | 53+0.15 15+£0.1 50 5.4 4.3/6.6

The effect of variation in wall thickness (say due to manufacturing tolerances) or outer
diameter on safety factor can be investigated using the Excel worksheet located at
http://tdpc02.fnal .gov/yadav/L HC/BeamTube/buckling_pressure calculations.xls.




2.3 ASME Calculations

We now present evidence of our compliance with the ASME Pressure Vessel Code.
Article AF-105 on Permissible Mill Underthickness Tolerances from 1998 ASME Boiler

and Pressure Vessel Code Section VIII—Divisiqgua®ides guideline to account for the
manufacturing tolerances. In particular, according to Article AF 105.2—For Pipes and
Tubes—If pipe or tube is ordered from its nominal wall thickness, the manufacturing
undertolerance on wall thickness shall be taken into account. The manufacturing
undertolerances are given in Part AM. After the minimum wall thickness is determined, it

shall be increased by an amount sufficient to provide the manufacturing undertolerance
allowed in the pipe or tube specification.”

For our case the nominal wall thickness is 1.85 mm and the manufacturing
undertolerance on the wall thickness is 0.1 mm. Therefore, we would demonstrate that a
wall thickness of 1.75 mm is the minimum wall thickness that satisfies the requirements
of the ASME Pressure Vessel Code. We follow Article UG-28luokness of Shells and

Tubes under External Pressure of ASME Boiler and Pressure Vessel Code Section VIII—
Division 1. The relevant sections of the code are attached as Appendix along with this

note. The ASME calculations can be performed by using the Excel worksheet located at
http://tdpc02.fnal.gov/yadav/L HC/BeamTube/asme_calculations.xls.

We now follow the code step by step:

(c) Cylindrical Shells and Tube3he required minimum thickness of a cylindrica shell
or tube under external pressure, either seamless or with longitudinal butt joints, shall be
determined by the following procedure.

(1) Cylinders having 't values> 710:

Step 1Assume avalue for t and determine the ratio L/Dg and Dolt.

For our case t=1.75 mm, Dy=66.7 mm and L=11 m.
Then, L/Do> 50 and Dy/t=38.1

Step 2Enter Fig. 5-UGO-28.0 in Appendix 5 at the value of L/Dg determined in Step 1.
For values of L/Dg greater than 50, enter the chart at a value of L/Dg =50.

Step 3 Move horizontally to the line for the value of Do/t determined in Step 1.
Interpolation may be made for intermediate values of Do/t. From this point of intersection
move vertically downward to determine the value of factor A.

From the chart A=0.000788
Step 4 Using the value of A calculated in Step 3, enter the applicable materia chart in

Appendix 5 for the material under consideration. Move vertically to an intersection with
the material/temperature line for the design temperature.



Sep 5. From the intersection obtained in Step 4, move horizontally to the right and read
the value of factor B.

From Fig. 5-UHA-28.4 for 316 L stainless steel, for A=0.0007888 and for operation up to
100 F, we obtain B=8610.

Sep 6. Using the value of B, calculate the value of the maximum alowable externd
working pressure P, using the following formula:

-_4B
& 3(Dg/t)

This gives P;=301.3 psi or 2.07 MPa (20.7 bar). This demonstrates that the chosen wall
thicknessis sufficient for the design operating pressure.

3. Summary

In this note we have presented the design calculations for determining the relevant
physical dimensions for the LHC IR Quadrupole magnet beam tubes. It is observed that a
wall thickness of 1.75 mm satisfies the requirements of the ASME Pressure Vessel code.
However, a wall thickness of 1.85 mm is necessary to account for the manufacturing
undertol erances.
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Figs. S-LIHA-20.8, S-UHAJAS

1960 SECTION VI — DIVISION |

1 T 1 T 1 T 1
— ! TT1 ,,.._Jml'.‘l"
Bl =Eam i
LT | —.'-:ur
= = [
=d L+ _.ll!]
1
= g =1 'l"
oo - =5 == =y
B |4 e | Lt
5 -
B
e | | K ¥
B
] e n
| 1
Ew @Oin T
I-I-IJI-'\:‘-\-'
[ o= BME s i I
B2l a -
LI | - L
3 8 6 ETER 1 1 & §ErEn i 4 = I GTHER F 4 4 8 ATEN
o W i Ll
[} _a

VESSELS UNDER EXTERMSL PR

118Ce-EMi-Mn-003 NAlEUM

B O:0noRRE
FIG. 5-UFlh-25.4 CHART Fo= DETERMINING SHELL THIEKHESS OF CYLINDRIAL AMD SPHERICAL
ESSURE W

o

b OF AUSTEMITIC STEEL

AND L) EROTE 32

Fit S-SNA-215 CHART FOR DETERMINING 5HELL THICKMESS OF CYLINDAIGAL AMD SPHESICAL WESSELS
UKDER EXTESMAL PRESSURE WHEN CONSTRUGCTED OF Cr-Hi-Me ALLOY (ERIS000 SA-56%

10

§1 ] ] T
111 1 1 s Ferm
- | , T
= |
| = ik
[ _——
l.-l'; ,..ﬂ::--' i |
] Fail J.'-f 1
I |
T 1
[ 11
‘ |
[EF TR . |
" r‘llﬂ:
LY
L= 0
- } i
1
1 ) |
] | {1
| 1] 1 L1l i 11
8§ 3 4 BE70F k- 1 & EETNE 2 1 4 8 EFEE 3 i 4 BETRN
e Lol L] m [}
FRCTON &

it ]
i
Hxn

[=3-" -]

i BEEE

'iJ'T-.j 3

ik

ié

Rt

iEERS

:

TRITION



