

AUTONOMOUS FLIGHT SAFETY SYSTEM

A Prototype Development Project of Goddard Space Flight Center's Wallops Flight Facility and Kennedy Space Center

Presented by
Barton Bull (GSFC/WFF)
barton.bull@nasa.gov

AFSS – What is it?

- Independent self-contained subsystem mounted onboard a launch vehicle or UAV
- Uses redundant GPS/IMUs to compute impact points
- Autonomously makes Flight Termination / Destruct decisions using software based rules implemented on redundant flight processors
- Fully compliant with Range Safety Requirements
- Goal: Develop proof of concept systems that advance toward a flight prototype

Why AFSS?

- Reduces the Cost of Access to Space
 - Eliminates Costly Infrastructure
 - Very High Return on Investment
 - Reduces Cost of Test and Evaluation for Exploration
- Increases Launch Safety
 - Decreases Reaction Time for Special Situations
- Provides Launch Flexibility and Responsiveness
 - Geographical Independence
 - Permits launches from locations without extensive ground-based assets
 - Provide coverage for portions of flight beyond normal range of ground stations
 - Rapid Response
 - Concurrent Operations

Project Status

- 2+ years work by competent, experienced team
- No technical barriers identified
- Requirements documented
- Extensive contact with FAA, Range Safety Community and Users
 - clarifying requirements, sharing their concerns, resolving issues, reviewing and critiquing our progress
- Developed a flexible, programmable, rule-based software system, tailored to the Range Safety application
- Algorithms coded and tested in simulations
- PDR successfully completed 8/25/2004
- Test lab under development
- Manifested on a Sounding Rocket flight for March 2005

Future of AFSS

Present Commitment

- CDR June 05
- Extensive automated Monte Carlo HWIL Simulations
- Independent Validation and Verification
- Flight tests of fully redundant system Mar 06

Proposed Follow-on

- Development of Tools for Planning, Programming, Validation
- Transition to Commercial Enterprise
- Qualification
- Phase-in

LOW COST TDRSS TRANSCEIVER (LCT2)

A Prototype Development Project of Goddard Space Flight Center's Wallops Flight Facility

LCT2 TEAM

Project Sponsor:

- > DARPA/FALCON
- NASA WFF Range and Mission Management Office

Project Management:

> NASA WFF Electrical Engineering Branch

Team Members:

- > NASA
- > LJT and Associates
- Instrumentation Development Group Johns Hopkins University

Project Goals

- Develop a transceiver design compatible with the TDRSS S-Band forward link and DG1 mode 2, DG2 return link formats
- Develop prototype units for demonstration on sub-orbital platforms, including sounding rockets, long duration balloons, and UAV's
- Develop low cost solution for technology transfer to industry for future commercial production
 - Lower cost from present day \$250K per transceiver to \$75K

Low Cost TDRSS Transceiver (LCT2)

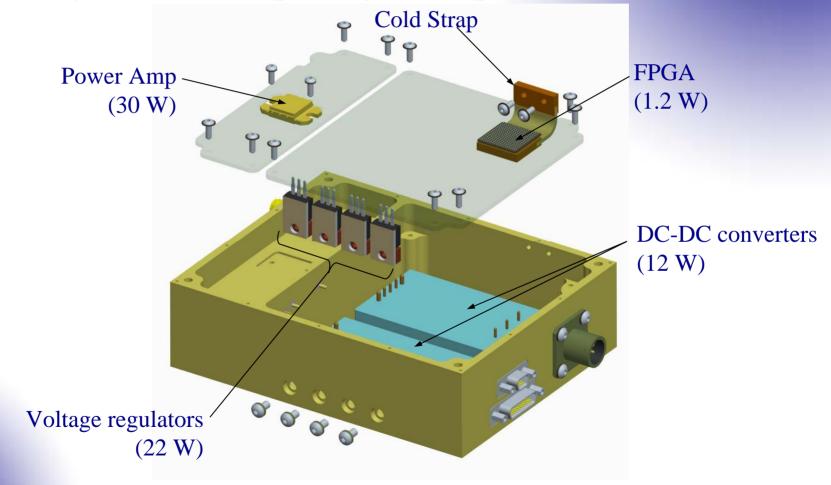
- Development has been broken down into 5 phases:
- Phase I Design & Build 10 W BPSK/QPSK Transmitter
 - Currently undergoing environmental testing
- Phase II Implement DG1 Mode 2 Functionality
- Phase III Implement 30W+ Amplifier Module
 - Prototype ready for testing fall 2005
- Phase IV Develop Receiver Module Prototype
 - Late summer 2005 startup
- Phase V Build Fully Integrated Flight Transceiver Prototype
 - Prototype available for testing late 2006
- Fly prototype modules on sounding rockets as flight opportunities arise.

Low Cost TDRSS Transceiver (LCT2) NASA

• 10 W phase I,II BPSK/QPSK transmitter prototype built and under test

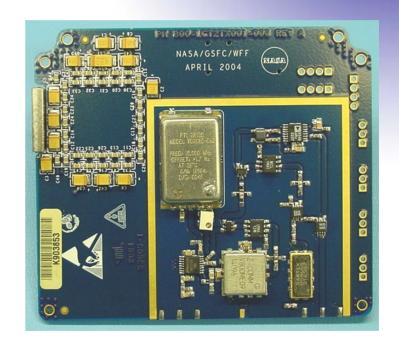
- Power: 2.25 A @ 28 V

- Wgt: 1 lb. 12 oz


- Size: 4" x 5" x 1.5"

Low Cost TDRSS Transceiver (LCT2)

Primary Heat dissipating Components


Low Cost TDRSS Transceiver (LCT2)

Modulator PCB

Digital Circuitry (Bottom Side)

Synthesizer/Upconverter (Top Side)