A Multi-Standard Monolithic CMOS RF Transceiver

Thomas Cho, Jacques Rudell, Jeff Ou, Todd Weigandt, Sekhar Narayanaswami, Srenik Mehta, George Chien, Carrol Barrett, Francesco Brianti*, and Prof. Paul Gray.

University of California, Berkeley *SGS Thomson

Outline

- Background/Motivation
- A monolithic CMOS RF transceiver
- Design considerations
- Key building blocks
- Future plan

Low Power Terminal Design

Next Step: Multi-Standard, Adaptive Modes of Communication

Overall Objective

Single RF Modem with interface capability to:

- Public Cellular Network
- Cordless Phones/PBXs
- Wireless LANs
- Other emerging PCS Systems

Focus of this research:

 What are the important technical problems from the perspective of the RF modem design?

Adaptive, Multistandard RF Modems

Motivation

 Radio transceiver for personal communications.

Design Objectives:

- Low power consumption
- Low cost implementation
- Multi-Standard capability

Research Goals

• Single-chip implementation

Integrate both RF & Baseband circuits on the same chip

Eliminate off-chip high frequency signal paths to reduce off-chip components for low power, low cost & smaller form factors (ext. LC-tank, ext. IF BPF, ..)

Baseband digital signal processing for programmable multistandard capability

CMOS technology

High integration and low cost

Conventional Approach

Our Approach ZNA ע S PA Using DECT standard as a vehicle to study various problems/issues

A Quasi-Direct Conversion Approach

What's different?

A Quasi-Direct Conversion Receiver

- No external IF BPF
 => Little or No IF Filtering
 => Selective filtering at Baseband
- Two Local Osc. freq's.
 LO₁ : a fixed freq. osc
 LO₂ : a tuned osc to the desired channel
 - => Elimination of carrier feedthrough compared to direct conversion arch.
 => Relaxed phase noise requirement on LO₂ (tuned osc).

Design Challenges

- System:
 - Data recovery in the presence of strong interferers and noise w/o ext. IF filters!
 - Image-Reject Mixer required
 - Low phase noise osc w/o ext. high-Q LC tank
- Circuit:
 - CMOS design
 - Power efficient circuit topologies
 - Low voltage design: 3.3V

Design Considerations (II):Block Low noise/pwr/disto. **Blocking performance** Linearity, Group-delay Close I/Q path matching Low noise/pwr/disto. **Carrier leakage DC-offset On-chip inductor** ADC DSP Low phase noise/ spurious tones Frequency Low power I/Q generation Synthesizer Dynamic range LPF DAC Data

Thomas B. Cho, UC Berkeley

Power efficiency

Power control

Key Building Blocks

- LNA -
- Image-Reject Mixer : Jacques Rudell
- Freq. Synthesizer : Todd Weigandt,
- **Baseband Filter** /Gain
- **A/D Convertert**

- Jeff Ou
- - Srenik Mehta, Carol Barrett
- : Thomas Cho, Francesco Brianti
 - : Thomas Cho, **George Chien**
 - Sekhar Narayanaswami 2

PA

RF Low Noise Amplifier

- A single-stage differential-mode amplifier
- On-chip spiral inductors for input impedance matching and output load tuning
- Critical Issues: Modelling of spiral inductors, Package modelling..

Noise Figure: 2.1 dB

Gain: 20dB @1.9GHz

IP3: -2 dBm (input)

Power: 20mW @3V

Tech: 0.6 μ m CMOS

Image-Reject Mixer

Image Reject Mixer Cell Gilbert Cell Based Topology. Variable Gain via Vro. Cascode stage to isolate input stage from the Local Osc. Common Mode IP₃ : 10dBm. Feedback Vout Variable Gain : 10dB ~ 35dB Vro 🔶

Image-Rejection: ~35dB

Total Power : 40mW

+° LO

Vbias

+0 Vrf

Freq. Synthesizer(I): Phase Noise Req.

Freq. Synthesizer(II): for DECT

Freq. Synthesizer(III): for Multistandard **Channel Spacing :** DECT 1.728 MHz Other Standards (FDMA) 10 KHz, 30 KHz, 200 KHz VCO f_o= f_{ref} (N +<u>m</u>)! f_{ref} P.D **64-TAP PHASE-INTERPOLATOR** Freq. Control Tap Select • N PHASE INTERPOLATED FREQ. SYNTHESIZER for finer channel spacings while maintaining high ref. freq. and high PLL bandwidth.

Baseband Filter/Gain Stage

A/D Converter

A 10-bit 20MS/s 35mW Pipeline ADC*

The Next Generation of 10 bit 20MS/s CMOS ADC			
Tech	1.2 μ m	Ĺ	Ο.6 or 0.8 μm
Vdd	3.3V	C	> 3.3V
Active Area	3.2x3.3 mm ²	Ĺ	> ~1.5x1.5 mm ²
Power	35mW @ 20MS/s	C	∽10mW @ 20MS/s
T Cha & D Gray			

*:T. Cho & P. Gray @CICC 94, San Diego

RF Power Amplifier

- A two-stage differential-mode amplifier
- On-chip spiral inductors for tuning out gate capacitance and output impedance matching
- Require power control

