

Silicon Strip Detector

TEN BITS DIFFERENTIAL TRANSCEIVER (0.25µm)

Document # ESE-SVX-020502

July 26, 2002

Guilherme Cardoso, Jim Hoff, Alpana Shenai, Sergio Zimmermann

1. GENERAL INFORMATION

The ten bits transceiver chip is being fabricated at Mosis using the TSMC 0.25 micros Cmos process. The die size is 2.52mm x 2.88mm. Figure 1 shows the configuration of the chip. It shows ten bits transceiver on the left hand side and shows just one bit transceiver gate on the right hand side. It contains both transmitter and receiver units. Each differential transceiver gate is formed by two units:

- a) One is transmitter, with differential inputs B and B* and differential outputs A and A* or one can choose single ended output A. The outputs can be tri-state using the control line ESA for single ended output or EDA for differential outputs.
- b) Other is a differential receiver, with inputs A and A* and differential outputs B and B*. The output of the receiver can be tri-state using the control line EDB.

In this document, the word "transmitter" is referring to transmitter unit of the transceiver and "receiver" is referring to the receiver unit of the transceiver. The transceiver chip has capability to take Low Current Differential Signals (LCDS) which defines the characteristics of the differential signals in the A 0 - A9 and A 0^* - A9* line of the transmitter and receiver. The receiver responds to differential input voltage from 200 mV to supply voltage. The output is able to drive a 50 pF load and a 500 ohm load to ground.

The transceiver is composed of ten transceiver gates controllable by enable control lines EDA, ESA, and EDB which enable differential transmitter A, single ended transmitter A, and differential transmitter B, respectively. Table 1 shows the truth table of the enable control lines.

The VBB signal is a reference voltage used to transform the differential inputs into single ended inputs. The signal VBB is an internal voltage divider, which is set to about 1.4 volt.

Table 2 shows the truth table of the current control line. The output current can be controlled by signals OCA and OCB. One can program the current to be 4 mA, 8 mA, 12 mA, or 16 mA by selecting OCA and OCB signals.

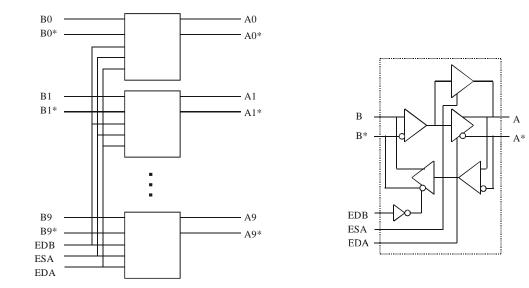
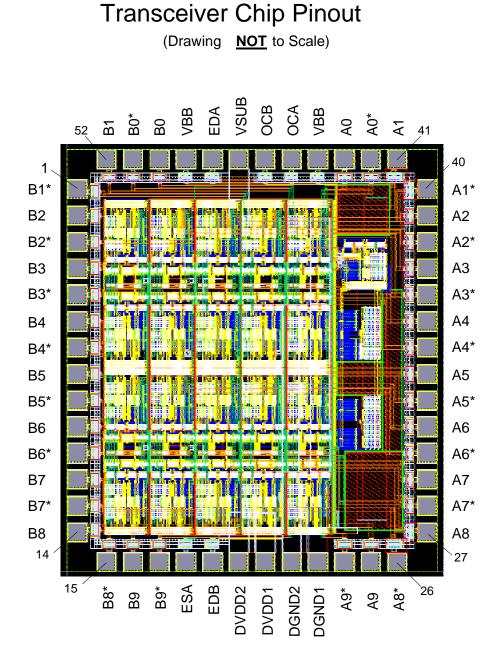

		Operation	
EDA	High	Enables differential driver A	
	Low	High Z differential driver A	
ESA	High	Enables s.e. driver A	
	Low	High Z s.e. driver A	
EDB	High	High Z differential driver B	
	Low	Enables differential driver B	

Table 1 – Truth Table for Enable Control Lines

OCA	OCB	Output Current
0	0	4 mA
0	1	8 mA
1	0	12 mA
1	1	16 mA


 Table 2. Truth Table for the Current Control Line

10x

Figure 1 – Transceiver Chip

07/26/02

Transceiver die size: 2.52mm x 2.88mm Die bond pad size: 135 micrometers x 135 micrometers Die bond pad pitch: 180 micrometers Supply Voltages: 2.25V - 2.75V Max. Supply Voltage: 2.75V

4

Pad	Pad	Description	
Number	Name	1	
1	B1*	Complement bit 1 differential input to transmitter/output from receiver	
2	B2	Bit 2 differential input to transmitter/output from receiver	
3	B2*	Complement bit 2 differential input to transmitter/output from receiver	
4	B3	Bit 3 differential input to transmitter/output from receiver	
5	B3*	Complement bit 3 differential input to transmitter/output from receiver	
6	B4	Bit 4 differential input to transmitter/output from receiver	
7	B4*	Complement bit 4 differential input to transmitter/output from receiver	
8	B5	Bit 5 differential input to transmitter/output from receiver	
9	B5*	Complement bit 5 differential input to transmitter/output from receiver	
10	B6	Bit 6 differential input to transmitter/output from receiver	
11	B6*	Complement bit 6 differential input to transmitter/output from receiver	
12	B7	Bit 7 differential input to transmitter/output from receiver	
13	B7*	Complement bit 7 differential input to transmitter/output from receiver	
14	B8	Bit 8 differential input to transmitter/output from receiver	
15	B8*	Complement bit 8 differential input to transmitter/output from receiver	
16	B9	Bit 9 differential input to transmitter/output from receiver	
17	B9*	Complement bit 9 differential input to transmitter/output from receiver	
18	ESA	Enable single ended drivers A	
19	EDB	Enable differential drivers B	
20	DVDD2	Drivers 2.5V power supply	
21	DVDD1	Drivers 2.5V power supply	
22	DGND2	Drivers ground	
23	DGND1	Drivers ground	
24	A9*	Complement bit 9 differential transmitter and receiver function and	
		output from s.e. transmitter	
25	A9	Bit 9 differential output from transmitter/input to receiver	
26	A8*	Complement bit 8 differential transmitter and receiver function and	
		output from s.e. transmitter	
27	A8	Bit 8 differential output from transmitter/input to receiver	
28	A7*	Complement bit 7 differential transmitter and receiver function and	
		output from s.e. transmitter	
29	A7	Bit 7 differential output from transmitter/input to receiver	
30	A6*	Complement bit 6 differential transmitter and receiver function and	
		output from s.e. transmitter	
31	A6	Bit 6 differential output from transmitter/input to receiver	
32	A5*	Complement bit 5 differential transmitter and receiver function and	
		output from s.e. transmitter	
33	A5	Bit 5 differential output from transmitter/input to receiver	
34	A4*	Complement bit 4 differential transmitter and receiver function and	
		output from s.e. transmitter	
35	A4	Bit 4 differential output from transmitter/input to receiver	
36	A3*	Complement bit 3 differential transmitter and receiver function and	
		output from s.e. transmitter	

37	A3	Bit 3 differential output from transmitter/input to receiver
38	A2*	Complement bit 2 differential transmitter and receiver function and
		output from s.e. transmitter
39	A2	Bit 2 differential output from transmitter/input to receiver
40	A1*	Complement bit 1 differential transmitter and receiver function and
		output from s.e. transmitter
41	A1	Bit 1 differential output from transmitter/input to receiver
42	A0*	Complement bit 0 differential transmitter and receiver function and
		output from s.e. transmitter
43	A0	Bit 0 differential output from transmitter/input to receiver
44	VBB	Reference voltage 1.25V
45	OCA	Programmable resistors to adjust the differential output current of the
46	OCB	Differential transmitter. They are internally pulled up.
47	VSUB	Substrate voltage (ground)
48	EDA	Enable differential drivers A
49	VBB	Reference voltage 1.25V
50	B0	Bit 0 differential input to transmitter/output from receiver
51	B0*	Complement bit 0 differential input to transmitter/output from receiver
52	B1	Bit 1 differential input to transmitter/output from receiver

 Table 3 – Transceiver Pad Description

2. CHIP SPECIFICATIONS

General:				
Bonding pad pitch:	180 μm			
Pad size:	$130 \times 130 \ \mu m^2$			
Overall length (pad to pad):	~2.52mm			
Overall width (pad to pad):	~2.88mm			
Supply voltages:	2.25-2.75			
Maximum supply voltage:	2.75V			
Output Differential Driver:				
Current source range:	4mA to 17.5mA (2 bit adjust)			
Rise and fall times:	>2ns and <4ns with nominal load			
Common mode:	VDD/2 nominal with T termination			
Load capability:	to be simulated with the model of the circuit			
Output data skew:	>1ns between any two bus lines			
Output data symmetry:	The differential signals should be as symmetric as			
possible, such that the cross happens at 50% of the voltage swing. See fig. Error!				
Reference source not found.				
Single Ended Output Driver:				
Output current (sink and sour	rce): 25mA			

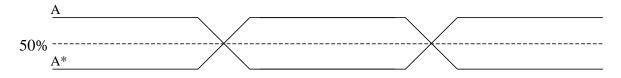
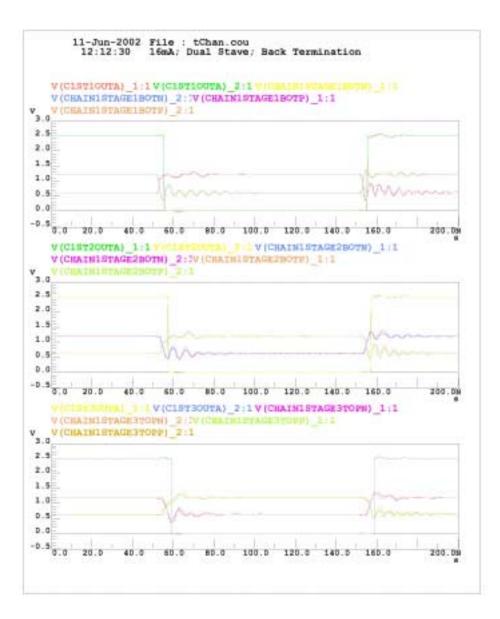
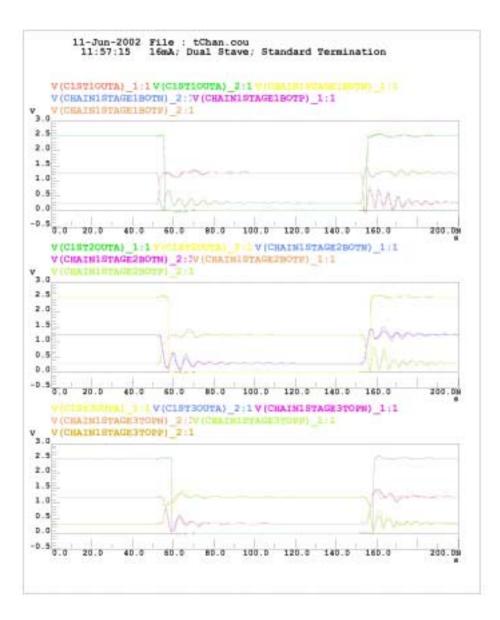




Figure 2

3. SIMULATIONS

