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Abstract

The large sample of Ξ◦ hyperons available at KTeV 799 provides an opportunity to

search for the Weak Radiative Hyeron Decay Ξ◦ → Λ◦π◦γ. We present a branching

fraction measurement of Ξ◦ → Λ◦π◦γ based on the E799-II experiment data-taking

in 1999 at KTeV, Fermilab. We used the principal decay of Ξ◦ → Λ◦π◦ where

Λ decays to a proton and a π− as the flux normalization mode. This is the

first observation of this interesting decay mode. 4 candidate events are found in

the data. The branching ratio at 90% confidence level has been measured to be

(1.67 +1.45
−0.80(stat.) ± 0.50(syst.))× 10−5 or (1.67 +1.16

−0.69(stat.) ± 0.50(syst.))× 10−5

at 68.27% confidence level.
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Chapter 1

Introduction

The puzzle of Weak Radiative Hyperon Decays (WRHD) dates back to the 60’s,

when experiment [1] suggested large asymmetry in the Σ+ → pγ decay, contrary

to the expectation based on Hara’s theorem [2]. During the last 30 years a large

number of models have been constructed to treat these processes. But for a long

time only some limited decays, such as Σ+ → pγ, were well studied and measured.

One reason was that only limited experimental data were available.

Experimentlly, for 2-body final states, there are only two quantities relevant to

the measurement of these decays: their branching fraction and the asymmetry of

the photon emission with respect to the initial spin direction. Despite this, there is

only one accurate measurement of a WRHD asymmetry, the decay Σ+ → pγ, where

the asymmetry is unexpectedly large and negative. Theoretically, these decays are

diffcult because of the involvement of weak, electromagnetic, and strong forces.

One recent attempt has indicated that experimental measurements of the two Ξ◦

WRHD (Ξ◦ → Σ◦γ and Ξ◦ → Λ◦γ) may resolve some of the questions surrounding

this topic [3].

In KTeV the neutral beam contained a copious amount of neutral hyperons,

Λ◦ and Ξ◦ which made KTeV a unique facility to study the rare decay of these

1
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particles as well. For the decay Ξ◦ → Σ◦γ, the KTeV collaboration observed about

5,000 events on top of a background of 1,400 and gave a more precise branching

ratio and asymmetry measurement [4].

This thesis will focus on the hyperon physics at KTeV. We will report the

results of searching for the decay Ξ◦ → Λ◦π◦γ.

1.1 The Standard Model

The Standard Model of Particle Physics is an excellent description of nature at

the level of its building blocks. All matter falls into three classification schemes:

the quarks, the leptons, and the gauge bosons. The quarks contain charges of

+2/3 and -1/3. For example, the flavored quarks, the up (u), charm (c), and top

(t) quarks are of positive charge, whereas the down (d), strange (s), and bottom

(b) quarks are of the negative charge. The anti-quarks have opposite sign. Most

everyday matter is made up of protons and neutrons, which are in turn made up

of the up and down quarks. These fermions and their properties are summarized

in Table 1.1.

There are four forces found in nature governing the interactions, and they in-

clude the strong, the electromagnetic, the weak, and the gravitational. Sometimes,

they are referred as the three forces with the elctromagnetic and weak combined

into the electroweak force. Each of these forces has its own mediator, the gluon

belonging to the strong force, the photon to the electromagnetic force, the W± and

Z to the weak force, and the graviton to the gravitational force. These mediators

are the ones that transmit a force between a quark or lepton to another quark or
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letpon. The strong force has the most “strength”, decreasing in strength in order

to the weakest one of gravity.

The strong interaction is described by QuantumChromodynamics and is one

of the compoments of the SU(3) ⊗ SU(2) ⊗ U(1) of the Standard Model. It is

the force that holds atomic nuclei together. A single quark of a specific flavor

may come in three colors. The SU(3) symmetry group has 8 gluons (massless

mediators). This force allows for hadrons to be made of quark composites.

The Electromagnetic interaction is described by QuantumElectrodynamics

and its force is carried by the mediating massless photon, represented by the U(1)

symmetry group. The weak interaction is described by the SU(2) symmetry group.

Its force is mediated by the W± and Z0, massive intermediate vector bosons. A

gauge theory unifying the electromagnetic and weak interactions was proposed

in 1967 by Salam, Weinberg, and Glashow [5, 6, 7]. In this theory, named the

Electroweak theory, the forces obey the SU(2) ⊗ U(1) gauge symmetry.

1.2 Some Basic Facts about Hyperons

Hyperons are the class of baryons containing strange quarks. The lowest mass

hyperons decay through the weak interaction, with strangeness changing by ±1,

and all have the long lifetime, 10−10 sec., associated with weak decays. The only

exception is the decay Σ◦ → Λ◦γ, which is an electromagnetic decay and has a

lifetime (7.4 ± 0.7) × 10−20 sec [9]. Table 1.2 shows the lowest mass hyperons,

their quark content, the dominant decay modes with their branching fractions or

ratios, and the weak radiative decay modes.
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Table 1.1: Quarks and Leptons[8]

Particle Name Symbol Electric Charge Mass(Gev/c2)

Up u +2/3 0.0015 to 0.0045

Down d -1/3 0.005 to 0.0085

Charm c +2/3 1.0 to 1.4

Strange s -1/3 0.080 to 0.155

top t +2/3 174.3± 5.1

Strange s -1/3 4.0 to 4.5

Particle Name Symbol Electric Charge Mass(Mev/c2)

Electon e -1 0.510999

Electon Neutrino νe 0 <0.000003

muon µ -1 105.658

Muon Neutrino νµ 0 <0.19

tau τ -1 1776.99+0.29
−0.26

Tau Neutrino ντ 0 <18.2
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The dominant weak decay modes always involve a baryon and a meson in the

final state. For the radiative decays, a photon is emitted. 2-body radiative decays

look less complex. They involve only a single baryon in the initial and final states,

and a photon is emitted. Precisely how the decays occur, however, is not at all

obvious. The parent and daughter particles in the hyperon radiative decays differ

in makeup by only one quark: a strange quark appears to have converted into a

down quark plus a γ. The modern interpretation of this kind of hyperon radiative

decay has been dominated by the results of ref. [10]. In that paper, Gilman and

Wise present an elegant analysis using s → dγ.

3-body radiative decays are much more complicated, and little theoretical work

has been performed.

Table 1.2: Properties of Hyperons [8]

Hyperon(Gev/c2) T(sec) Quarks Dom. Modes(B.R.) Rad. Mode

Λ◦ (1.1157) 2.632 × 10−10 uds pπ−

nπ0 (63.9%
35.8%) nγ

pπ−γ

Σ+ (1.1894) 0.8 × 10−10 uus pπ0

nπ+ (51.57%
48.31%) pγ

nπ+γ

Σ0 (1.1193) 7.4 × 10−20 uds Λ0γ (100%) NA

Σ− (1.1974) 1.479 × 10−10 dds nπ− (99.848%) nπ−γ

Ξ◦ (1.3148) 2.9 × 10−10 uss Λ0π◦ (99.522%) Λ0γ;Σ0γ

Λ0π◦
γ

Ξ− (1.3213) 1.639 × 10−10 dss nπ− (99.887%) Σ−γ

Ω− (1.6725) 0.821 × 10−10 sss Λ0K−

Ξ0π− (67.8%
23.6%) Ξ−γ
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1.3 Phenomenology of Ξ◦ → Λ◦π◦

The dominant weak hyperon decay modes usually involve a baryon and a meson

in the final state. A strange quark (s) in the parent hyperon converts into an up

(u) or a down (d) quark. For all spin-1
2

hyperons 1 , except for Σ◦ which decays

electromagnetically, all have a π meson in the final state, and therefore the decays

are usually represented by B → B′π, where B and B′ are initial and final state

baryons. In our case (the mode Ξ◦ → Λ◦π◦ is our normalization mode), we will

discuss the phenomenology here.

When a spin-1
2

hyperon decays nonleptonically, the daughter baryon is also a

spin-1
2

particle while the daughter meson has spin zero. Conservation of angular

momentum implies this Hamiltonian is restricted to having only l = 0 (s-wave) and

l = 1 (p-wave) components. For Ξ◦ → Λ◦π◦ the most general decay amplitude that

satisfies Lorentz invariance must be a sum of scalar and pseudoscalar quantities

and can be written [11]

M = uΛ0(A + Bγ5)uΞ0 (1.1)

where A and B are the s-wave and p-wave amplitudes respectively. Since the

final state pion is a pseudoscalar and has negative parity, the uΛ0Bγ5uΞ0 term

which is also a pseudoscalar is called the parity conserving amplitude. The term

uΛ0AuΞ0 is a scalar and has a positive parity and is called the parity violating

amplitude.

We now define s = A and p = (EΛ0−MΛ0)/(EΛ0 +MΛ0)B for the s-wave and p-

1not exactly for Ω− in Table 1.2
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wave parts. s and p have the advantage that they appear in an analogous manner

in the decay rate and asymmetry formulae. EΛ0 and MΛ0 are the energy and and

mass of Λ◦ in the rest frame of Ξ◦. Using these definitions and equation 1.1 the

decay rate becomes [8, 12, 13]

Γ =
| q |
4π

(| s |2 + | p |2)(EΛ0 + MΛ0)

MΞ0

(1.2)

where MΞ0 is the Ξ◦ mass and | q | is the momentum transfer of the decay.

Other quantities of interest are the so called decay asymmetry parameters

which describe the angular distribution of Λ◦ and its polarization. The decay

parameters can be written in terms of s and p amplitudes

αΞ0 =
2Re(s∗p)

| s |2 + | p |2
(1.3)

βΞ0 =
2Im(s∗p)

| s |2 + | p |2
(1.4)

γΞ0 =
| s |2 − | p |2

| s |2 + | p |2
, (1.5)

with the normalization condition α2 + β2 + γ2 = 1. The angular distribution

of the Λ◦ in the rest frame of Ξ◦ can be written as:

1

Γ

dΓ

dΩ
=

1

4π
(1 + αΞ0P⃗Ξ0 · p̂Λ0) (1.6)

where P⃗Ξ0 is the polarization of Ξ◦ and p̂Λ0 is a unit vector along the momentum

direction of the Λ◦ in the rest frame of Ξ◦. It is known that some hyperons are

produced with a significant polarization [14, 15, 16].

The polarization of the daughter baryon in its own rest frame is

P⃗Λ0 =
(αΞ0 + P⃗Ξ0 · p̂Λ0)p̂Λ0 + βΞ0(P⃗Ξ0 × p̂Λ0) + γΞ0 [p̂Λ0 × (P⃗Ξ0 × p̂Λ0)]

1 + αΞ0P⃗Ξ0 · p̂Λ0

(1.7)
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which simplifies to

P⃗Λ0 = αΞ0 p̂Λ0 , (1.8)

if the parent hyperon Ξ◦ is unpolarized. Note that a polarization vector is

only simply well defined in the rest frame of the polarized particle, and so the

polarization terms in the left hand side of the above equations are measured in the

daughter particle Λ◦ rest frame, while those on the right hand side are measured

in the rest frame of the decaying particle Ξ◦.

Experimental measurements of β and γ are difficult, requiring measurement of

both parent and daughter polarization. However, the measurement of α can be

made simple, in the case when the daughter baryon itself decays.

The Λ decays in turn to a proton and π−, with the proton distribution given

by the form of equation 1.6

1

Γ

dΓ

dΩ
=

1

4π
(1 + αΛ0P⃗Λ0 · p̂p) (1.9)

This equation is independent of φ angle and can be integrated over this angle.

Therefore, using equation 1.8, equation 1.9 can be rewritten as

1

Γ

dΓ

d(cosθ)
=

1

2
(1 + αΛ0αΞ0 p̂p · P̂Λ0) (1.10)

where P̂Λ0 is the unit vector in the direction of Λ0 polarization in the Λ rest

frame. The decay parameter product αΛ0αΞ0 is extracted by measuring the slope

of the decay angle θ distribution in the Λ0 rest frame.
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1.4 2-Body Weak Radiative Hyperon Decays

The two-body weak radiative decays [12] of spin 1/2 hyperson, Bi → Bfγ, yield

information about matrix elements (form factors) similar to that gained from weak

hadronic decays. For a polarized spin 1/2 hyperon decaying radiatively via a

∆Q = 0, ∆S = 1 transition, the angular distribution of the direction p̂ of the final

spin 1/2 baryon in the hyperon rest frame is

dN

dΩ
=

N

4π
(1 + αγPi · p̂) (1.11)

Here Pi is the polarization of the decaying hyperon, and αγ is the asymmetry

parameter. In terms of the form factors F1(q
2), F2(q

2), and G(q2) of the effective

hadronic weak electromagnetic vertex,

F1(q
2)γλ + iF2(q

2)σλµqµ + G(q2)γλγ5 (1.12)

αγ is:

αγ =
2Re[G(0)F ∗

M(0)]

|G(0)|2 + |FM(0)|2
(1.13)

where FM = (mi − mf )[F2 − F1/(mi + mf )]. If the decaying hyperon is unpo-

larized, the decay baryon has a longitudinal polarization given by Pf = −αγ [17].

The angular distribution for the weak hadronic decay, Bi → Bfπ, has the same

form as Equation 1.11, but of course with a different asymmetry parameter, απ.

Now, however, if the decaying hyperon is unpolarized, the decay baryon has a

logitudinal polarization given by Pf = +απ. The difference of sign is because the

spins of the pion and photon are different.
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This kind of two-body weak radiative decay applies to modes like Ξ◦ → Σ◦γ

which was studied in KTeV for branching ratio and asymmetry measurement [4].

Also it applies to the mode Ξ◦ → Λ◦γ. A measurement of Ξ◦ → Λ◦γ decay rate was

reported in 1990, with 115 signal events [18]. The measurement of the branching

ratio and asymmetry differed from the expectation at the 1σ level. KTeV collected

about 1100 of these events at KTeV during the E799 winter run (Fig 1.1).

Figure 1.1: The radiative decay of Ξ◦ → Λ◦γ for the E799-II winter run.
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1.5 2-Body WRHD Experimental Results Prior to 2002

The hyperon readiative decays have been of theoretical interest for some time,

because of their simplicity compared to other hyperon decays. The experimental

data, however, have been sparse, so there are not many checks on the prediction

from any models.

The first measurements for Σ+ → pγ were done using bubble chambers by

Gershwin and others [1] in 1969. They got the Branching Ratio (1.91±0.4)×10−3

and the large asymmetry number αγ = −1.03+0.54
−0.42. This was the first evidence for

large negative asymmetry which was contrary to the expectation based on Hara’s

theorem [2].

In the past 40 years, only several weak radiative hyperon decays were well

studied. The Table 1.3 shows the experimental results up to 2004 [8] from Particle

Data Book .

The KTeV neutral beam contained a copious amount of neutral hyperons which

made KTeV an unique facility to study these rare decays. The importance of a

good theoretical understanding of the weak radiative decays has been empahsized

by some physicists [18]. The analysis of these decays invloves putting the strong

QCD, weak interaction, and electromagnetic interaction together. It is crucial to

understand how they fit together in a process that we can study in detail.
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Table 1.3: 2-body WRHD Experimental Results Prior to 2002 [8]

Mode No.of
Events

Branching
Ratio(10−3)

Asymmetry
parameter

Laboratory

Σ+ → pγ 24 1.91 ± 0.41 BNL(1965)

31(61) 1.42 ± 0.26 −1.03+0.54
−0.42 Berkeley (1969)

45 1.08 ± 0.15 CERN (1969)

30(46) 1.09 ± 0.20 −0.53+0.38
−0.36 CERN (1980)

155 1.27+0.15
−0.18 CERN (1985)

190 1.30 ± 0.15 −0.86 ± 0.13 ± 0.04 KEK (1987)

408 1.45 ± 0.20 BNL (1989)

35K −0.720 ± 0.086 ± 0.045 Fermilab (1992)

32K 1.26 ± 0.06 Fermilab (1995)

Ξ− → Σ−γ 9 0.23 ± 0.10 CERN(1987)

211 0.122 ± 0.023 1.0 ± 1.3 Fermilab(1994)

Ξ◦ → Σ◦γ 4045 3.35 ± 0.10 −0.63 ± 0.09 Fermilab(2001)

Ξ◦ → Λ◦γ 672 1.17 ± 0.07 −0.78 ± 0.18 NA48(2004)

Λ0 → nγ 24 1.02 ± 0.33 CERN(1986)

287 1.78 ± 0.24 BNL(1992)

1816 1.75 ± 0.15 BNL(1993)

Ω− → Ξ−γ < 2.2 at 90% C.L. CERN(1984)

< 0.46 at 90% C.L. Fermilab(1994)
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1.6 3-Body Weak Radiative Hyperon Decay Ξ◦ → Λ◦π◦γ

In this three body Weak Radiative Hyperon decay Ξ◦ → Λ◦π◦γ, both the initial

and final state particles are neutral, and thus a simple inner bremsstrahlung process

is presumably not applicable. This means that the branching rate is dominated

by some other processes. No previous observation or limit has been placed on this

decay 2 and there is no published theoretical work.

From an extensive search we did based on the Particle Data Book, the decay

mode Ξ◦ → Λ◦π◦γ seems to be the only examle of a weak (long lifetime) decay

that is all-neutral and which has a corresponding allowed non-radiative decay (e.g.

Ξ◦ → Λ◦π◦).

The major problem in any of these experiments is to separate the rare radiative

decay mode from a background of one or more of the dominant decay modes. The

task is made more difficult by the fact that the radiative and dominant decay

modes often differ by only a single daughter particle; in our case they differ by

a γ, 1 extra gamma from the radiative decay in addition to two γ’s from a π◦.

An experiment’s ability to separate the radiative decays from a background of the

dominant decays will depend on the design of the experiment.

For decay mode Ξ◦ → Λ◦π◦γ, the γ directly from Ξ◦ has pretty small momen-

tum space. In the CM system of Ξ◦, we have 4-vector momentum conservation

equation.

PΞ◦(MΞ◦ , 0⃗) = PΛ◦ + Pπ◦ + Pγ (1.14)

2This decay is not listed in PDG [8]
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For the extreme case, we have the Pγ ≤ 63MeV . Based on this maximum Pγ, we

can make some guess further. For a “stable” particle, the radius is:

r = 1.4fm. (1.15)

∆P∆x = h̄ (1.16)

∆Pc =
h̄c

∆x
≈ 140MeV (1.17)

This means that a γ with less than 140 MeV momentum cannot probe less

than about 1.4 fm. If we require the smaller size of the particle, the corresponding

momentum will be much larger than 60 MeV. This rough calculation gives us an

impression that the possibility that the γ sees the quarks inside the Ξ◦ is low.

Fig 1.2 shows us some possible Feyman Quark Diagrams for the decay mode

which I am trying to observe. Because our photon has such low energy, these may

not play a significant role in our decay.

If might consider this decay mode at the particle level. From Particle Data

Book, we know that the Ξ◦ has the magnetic moment µ = −1.250µN , and the Λ◦

has the magnetic moment µ = −0.613µN . The change of the magnetic moment

during the decay process can possibly radiate a γ. Fig 1.3 shows us a possible

decay diagram at the particle level. You can also see the reference [3] by Lach

and Zenczyskowski for a discussion about this.

The KTeV experiment was not designed initially to detect a rare hyperon

radiative decay. Experiment 799 at Fermilab was a measurement of CP violation

of kaons. However, a copious amount of neutrons, and some very high momentum

hyperons entered the detector along with KL’s. The Λ◦ and Ξ◦ were the only two
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Figure 1.2: Feyman Quark Diagram for Ξ◦ → Λ◦π◦γ
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Figure 1.3: A Possible Particle Level Digram for Ξ◦ → Λ◦π◦γ

neutral hyperons with lifetimes long enough to be observable at KTeV. Table 1.4

presents a list of some hyperon topics which have been studied at KTeV.
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Table 1.4: Neutral hyperon program at KTeV. Nevent is the number of events

observed in the previous experiments and NKTeV is the number of candidates at

KTeV.

Decay mode Nevent NKTeV Physics Interest

Ξ0 → Σ+e−ν̄e 0 1100 BR, Form Factors

Ξ̄0 → Σ̄+e+νe 0 66 BR, Form Factors

Ξ0 → Σ+µ−ν̄µ 0 5 BR

Ξ0 → Λπ0, Λ → pe−ν̄e Many 6000 Form Factors

Ξ0 → Λπ0, Λ → pµ−ν̄µ 28 NA BR, Form Factors

Ξ0 → Σ0γ 85 7000 BR, Asymmetries

Ξ0 → Λγ 116 1000 BR, Asymmetries

Ξ0 → Λπ0γ 0 NA BR

Λ0 → pπ−γ 72 7000 BR

Σ0 → Λe+e− 314 10 BR, Σ0 Parity

Σ0 → Λγγ 0 NA BR

Ξ0 → Λπ0 and Ξ̄0 → Λ̄π0 Many Many Precise mass, Polarization

Ξ0 → pπ−, Ξ̄0 → p̄π+ 0 0 ∆S = 2 (SM test)



Chapter 2

The beamline and KTeV detector

KTeV is the name given to a collaboration of two different experiments: E799

and E832. The E832 experiment was built to measure direct CP violation in

KL,S → π+π− and KL,S → π◦π◦ decays. The E799 experiment was designed to

look at rare KL,S decays. Since there are also a large number of Ξ◦ and Λ◦ pro-

duced (and their anti-particles), decays such as Ξ◦ → Λ◦π◦, and the radiative decay

modes Ξ◦ → Λ◦γ, Ξ◦ → Σ◦γ can also be studied in E799.

To accomplish these purposes, the KTeV detector facility was designed to pro-

duce a neutral beam of KL,S and hyperons, to reconstruct the momenta of the

decay products of the KL,S and hyperons, and to detect decay products escaping

or staying in the detector volume.

The KTeV experimental facility is located parallel to the neutrino-muon (NM)

beam-line at the Fermi National Accelerator Laboratory (Fermilab) in Bativia,

Illinois. The data used in this analysis were recorded between September 1999

and January 2000.

18
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2.1 The Beamline

2.1.1 Proton Beam

A diagram of the KTev secondary beam system[20] appears in Fig. 2.1. The

Fermi National Accelerator Laboratory (Fermilab, or FNAL) Tevatron provided a

beam[19] consisting of 800 GeV protons with a 23 second period “spill”, approxi-

mately once every minute. With each spill, there was a 53 MHz “bucket” structure

due to the accelerator radio frequency (RF) of the Tevatron. The buckets were

separated by 19 nsec, and the protons arrived in a 2 nsec period at the beginning

of each bucket. Over an entire spill 2.5 × 1012 protons arrive at KTeV’s target in

the Neutrino Muon beam line.

2.1.2 Target and KTeV Coordinate System

When protons reach KTeV, they hit the beryllium oxide target which was 30.5 cm

long (∼ 0.9 nuclear interaction lengths) with a cross section of 3.0mm × 3.0mm

[20]. BeO is used (instead of, say, copper or tungsten) because of its resistence

to the thermal stressses of the proton beam enviroment and its large production

ratio of K◦/n. The targeting angle was chosen to be 4.8 mrad in the vertical plane

so that we could eliminate most of neutrons from the beam and still maintain a

high neutral kaon flux to reach the decay volume of the experiment. The center

of the target forms the origin of the KTeV coordinate system. The positive Z axis

extends from the target towards the detector. +Z is referred to as “downstream”

while -Z is “upstream”. The positive Y direction points vertically up, and the

positive X direction is defined in the conventional (y⃗ × z⃗ = x⃗).
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2.1.3 Sweeping Magnet, Absorbers

In order to purify the beam, charged and some neutral particles, like the neutron,

must be removed from the beam. This is achieved by a series of sweepers and

absorbers. Absorbers are placed in the beam mainly to remove neutrons and

photons.

In Fig. 2.1, one can see there are several sweeping magnets, The “Sweeper”

magnetic fields were used to deflect charged particles out of the beam. The first

sweeper magnet with the +Y field direction is the Target Sweeper, which operated

between about 0.6 and 4.4 meters in Z, and gave primary protons a momentum

kick of 475MeV/c. Downsteam of the Target Sweeper was Primary Proton Dump,

which absorbed primary-beam protons. It was located between 7.2 and 11.8 meters

in Z, water cooled, and made of copper. The target Sweeper deflected protons into

the Dump. The other sweeping magnets are desinged basically to remove muons

from the kaon beam. The µ-sweeper-1 followed the traget Sweeper, between 12.3

and 17.8 meters in Z, its field is also in the +Y direction. The photons from the

target are absorbed by a layer of lead 3 inches (14 X0) thick at Z=19m, it was

called the “Pb” Absorber. The µ-sweeper-2, between 21.9 and 27.7 meters in Z

with its field also in +Y direction, removed the particles created by interactions in

the lead absorber and the primary collimator. The latter will be introduced in the

next subsection. Detailed discussions of the design specifications of the sweepers

are to be found in [21].



22

2.1.4 Collimating System

The Collimating system in Fig. 2.2 included Primary Collimator, Slab Collimator

and Defining Collimator. It defined the beams in the transverse direction with

increasing precision. The primary collimator at Z=20m was made of brass and

had two tapered rectangular cylinders cut through it to create and shape roughly

the two kaon beams. The centers of the two beams are separated by 1.6 mrad with

respect to the ratget. The next collimator is the slab collimator at Z=38 m. It

was a single wedge of stainless steel and sat between the two beams. It prevented

the particles from crossing one beam into the other. The last element defining the

beams was the defining collimator. It was at Z=85 m and had a similar geometry

to the Primary Collimator but was made of iron. It defined the beam shape and

set the beam divergence at 0.8 mrad.

(Winter Run only)
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Figure 2.2: Schematic plan view of the collimation system.
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2.1.5 Spin rotator magnet

For the hyperon study the spin of the particle is also very important. The 3 manget

sweepers served the dual purpose of precessing the spin of the Ξ◦ produced at the

target. The direction of the incoming proton beam is:

p⃗ ≅ z⃗ − 4.8 × 10−3y⃗ (2.1)

Ξ⃗◦ ≅ z⃗ (2.2)

Since Ξ◦ are produced by the strong interaction, which conserves parity, the

Ξ◦ can only be polarized along p⃗ × Ξ⃗◦, that is along x⃗ axis.

Once the Ξ◦’s reached the Spin Rotator, they were polarized in the z direction.

The magnetic field of Spin Rotator magnet was along the X axis (This is different

from the other 3 Sweepers). It precessed the Ξ◦ spin into the ±y direction, de-

pending on the polarity, which was switched regularly to obtain equal amounts of

data for the two polarization directions. Spin Rotator had no effect on the mesons,

like kaons.

2.1.6 The Secondary Beam

After passing all the beam parts, short lived particle in the neutral beam, like

KS(cτ ∼ 2.7cm) and to a lesser extent Λ◦(cτ ∼ 7.9cm) and Ξ◦(cτ ∼ 8.7cm), de-

cayed before reaching the decay volume of the experiment about 94 m downstream

of the target. It enhanced the percentage of KL(cτ ∼ 15.5m). Flux calculations

show the number of Λ and Ξ◦ reaching the decay volume were approximately 2%

and 0.2% of the number of KL’s respectively, the ratio of numtrons to the number

of KL’s was about 3 for E799 beam.
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Due to their short life time, only high momentum Λ◦ and Ξ◦ survived into

the decay volume. Figure 2.3 shows the momentum spectrum of Ξ◦ in the decay

volume of the experiment.

Detailed discussions of the design specifications of the KTeV secondary beam

are to be found in [22, 23]

Figure 2.3: The momentum spectrum of Ξ◦particle. Only high momentum hyper-

ons reach the KTeV detector. The kaon spectrum peaks at about 40 GeV/c.
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2.2 The Main E799 Detector Brief Introduction

An overview of the detector is shown in in Fig. 2.4 and Fig. 2.5. Beginning up-

stream, there was the decay region and ring vetoes. Next comes the charged-

particle spectrometer (including 4 Drift Chambers, and 1 Analyzing magnet) and

its accompanying vetoes. They are followed by the TRD system (e−/π− discrimi-

nation). In front of the Cesium-Iodide calorimeter there was a pair of scintillator

hodoscopes to trigger the events. Downstream of that are more vetoes, including

the muon system. Also listed in Table 2.1 are the z positions and the transverse

dimensions of the detector elements most relevant for hyperon analysis.

The first part of the main detector is a 65 m vacuum tank, which was from

Z=93.0 m to Z=158.9 m. It started as a 45.73 cm diameter vacuum pipe and grew

progressively larger downstream to a size of 243.84 cm in diamster. The pressure

inside the tank was maintained at 10−6 torr to reduce the interactions between the

neutral beam particles and any surounding matter and to reduce scattering of the

charged decay products. A strong but thin mylar-kevlar window is placed at the

downstream end of the decay region to prevent air from leaking in. The window

is 0.0015 radiation lengths thick.

2.3 The Spectrometer

The purpose of the spectrometer is to measure the momentum and postion of

charged particles, as part of event reconstructing. This is done with a set of four

drift chambers (DC’s), two on each side of the analyzing magnet as shown in

Figs. 2.4 and 2.5. Helium bags were placed between the drift chambers to reduce
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Figure 2.4: Schematic drawing of KTeV detector (E799), not in scale.



27

MAGNET

MUON FILTERS

BACK-ANTI (BA) 

LEAD WALL

EM CALORIMETER (ECAL)

HODOSCOPES (VV’)

HELIUM BAG

DRIFT CHAMBER 3 (DC3)

PHOTON VETOS

DRIFT CHAMBER 2 (DC2)
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HOLE COUNTER (HC)

DECAY REGION

Figure 2.5: Three dimensional view of KTeV/E799 detector.
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Table 2.1: Z-Positions and Transverse Dimensions of the main detector parts. The

positions are given at front face of the detector with respect to the traget.

Detector Element Position(m) Transverse Size(m)

Vacuum Window 158.89 -

DC1(x plane) 159.42 1.30 × 1.30

DC2(x plane) 165.56 1.64 × 1.44

Analyzing Magnet 170.01 inner: 2.9 × 2.0

DC3(x plane) 174.59 1.74 × 1.64

DC4(x plane) 180.49 1.90 × 1.90

TRD1 181.17 2.18 × 2.18

TRD8 183.36 2.18 × 2.18

V bank 183.90 1.90 × 1.90

V’ bank 183.95 1.90 × 1.90

CsI 186.01 1.90 × 1.90

HA 188.97 2.24 × 2.24

Mu2 194.83 3.93 × 2.99

Mu3X 196.59 3.93 × 2.99

Mu3Y 196.63 3.93 × 2.99
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the effects of multiple scattering on the measurement of particle trajectories and

momenta.

2.3.1 Analyzing Magnet

The manget [24] was centered around at Z=170 m, and the size of the magnet

was about 2.9 × 2.0m. It was an electromagnetic dipole that produced a vertical

field of ∼2000 gauss. The field strength can be mapped using a Hall effect probe

stepped around inside the magnet. That was done before KTeV starting running

to obtain the field strength with to about ±1% accuracy before other means could

be used. The field diretion was flipped between up and down daily. A relativistic,

charged particle crossing this field received a transverse momentum “kick” in the

±X direction. By measuring the change in the angle of the trajectory of the

particle in the X-Z plane, the momentum of the particle can be easily calculated.

2.3.2 Drift Chambers

Drift chambers are basically volumes of gas across which anode and cathode wires

apply an electric potential. Charged particles pass through the gas, ionizing gas

atoms and freeing electrons. While the ions drifted towards the field wires, the

free electrons were accelerated by the electric field towards the nearest anode wire.

Gaining energy, the electrons ionize yet more gas atoms, freeing more electrons

and forming an avalanche in the high field region near the sense wire. When the

electron avalanche reaches an anode wire, it creates a detectable signal voltage.

From the position of the anode wires and the time that the signal arrives, the

position where the particle passed through the drift chamber can be reconstructed.



30

Window Wire

Chamber window

Beam 

12.7mm

Field Wire

Sense Wire

X View 

Y View 

Figure 2.6: Schematic Drawing of Drift Chamber, viewed from the above, along

the vertical x-sensing wires.
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Each chamber contained four planes of sense wires, two each in the x and y

views referred to as X, X ′, Y , and Y ′ planes. The sense wires were 25 µm gold-

plated tungsten, while the field shaping wires were made of 100 µm gold-plated

aluminum. The field wires formed a hexagonal “cell“ around each sense wire as

shown in Fig. 2.6.

The wires in a sense plane were separated by 12.7 mm. The two sense planes

in each view, offset by 6.35 mm or a half cell size were staggered to resolve the

two-fold ambiguity that results from ionization drifting towards the nearest wire.

The four chambers were of different sizes (Table 2.2), with the largest down-

stream, to increase acceptance for high angle tracks.

The gas of the chambers was a mixture of 49.75% Argon, 49.75% Ethane, and

0.5% to 1.0% isopropyl alcohol by volume. The purpose of isopropyl alcohol was

additional quenching. The typical voltage applied to the chamber was: -2450 to

-2550V for the field wires relative to the sense wires. The electron drift velocity

was of the order of 50 µm/nsec and was roughly constant over much of the active

chamber volume.

The signals from the four drift chambers were then amplified and discriminated

by electronics located on cards mounted on the chamber frames [25]. The discrim-

inated signals with 40 nsec width were fanned out to the trigger system and a set

of LeCroy 3377 time to digital converters (TDC’s) with a resolution of 0.5 nsec.

By converting the drift time measured at the TDC’s to a drift distance, a

position measurement could be made from each chamber wire hit with an accuracy

of about 100 µm. Good tracks should construct to a Sum-Of-Distance (SOD) =
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6.35 mm for the first electron, where SOD = the sum of the x and x’ measured

distance to a sense wire.

Table 2.2: Drift chamber sizes, measured in wires per sense plane.

DC number View Number of sense wires per plane Cables

1 X 101 7

1 Y 101 7

2 X 128 8

2 Y 112 7

3 X 136 9

3 Y 128 8

4 X 140 9

4 Y 140 9

The momentum resolution of the drift chambers basically had two parts. In

the Equation 2.3, the first part was caused by finite resolution of the hit position

which is about 100µm, and the other was caused by multiple-scattering. In our

experiment, it was:

σp
p

= 0.016% × p ⊕ 0.38% (2.3)

where p is the momentum of a charged particle in GeV/c.
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2.4 The Transition Radiation Detectors

When a particle passes between two regions of very different dielectic constant ma-

terial (for example, a dielectic from the vacuum or from air), transit currents and

fields arise. This can lead to emission of radiation known as transition radiation,

i.e., An x-ray comes out. The energy loss is a very small part of the total energy

loss of charged particles.

The attractive feature of TRD is that the radiated energy by TR photons

increases with γ of the particles, not with their velocity. Since most processes

used to identify particles depend on the velocity, γ dependence is different and is

valuable for the highest high energy particles. Other properties of the Transition

Radiation photons is that they are emitted in x-ray range, and the photon is

strongly forward with θ ≅ 1/γparticle. Generally the useful threshold for TR is

about γ ≅ 1000, i.e. if γ < 1000, almost no TR photons are emitted. This feature

makes it possible to do the π−/e− discrimination, since the π− mass is more than

200 times larger than electron mass, at the same energy there will be very different

γ’s.

In the KTeV experiment the TRD components were used to enhance the π−/e−

discrimination by adding a 276:1 rejection factor for 90% electron acceptance typ-

ically.

The size of all the eight TRDs was 2.1m × 2.1m. They were placed between

drift chambers and the trigger hodoscopes. The TRDs account for roughly 11.5%

of radiation length (X0) in the acceptance region (8 TRDs). Figure 2.7 shows the

schematic layout of the TRD design. Further details about the TRDs are available
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in [26, 27]

Each TRD, Fig. 2.7, consisted of radiator, an active MWPC volume, and two

buffered gas volumes. The radiation material in KTeV was a mat of ploypropy-

lene fiber (density of 0.5 g/cm3). A low-Z material, polypropylene, was used to

minimize absorption of x rays in the radiator. There were two beam holes in the

radiator with a size of 15.5 cm × 15.5 cm each to reduce beam interactions.

The gas volumes and radiators were segmented by aluminized mylar, called

entrance window. MWPC consisted of vertically mounted cathodes and anodes.

The cathode was a wire plane consisting of 85 µm diameter Be-Cu wires with

2.5 mm spacing. The entrance window was kept at a slightly higher voltage than

the cathode forming a 1.5 mm mini-drift gap. The anode to cathode gap was

6.5 mm, and the anode was a wire plane consisting of 25 µm diameter gold plated

tungsten wires with a 5 mm spacing. The planes were lined up so that each anode

wire sat directly behind a cathode wire.

The anode wires were ganged into channels consisting of two wires each in the

central 60 cm covering the two beam holes with an effective pitch of 1 cm. In the

outer region, 4 wires were summed into a channel with an effective pitch of 2 cm.

This gave a total of 112 channels/plane, or 224 channels/chamber. Therefore,

there were 1792 channels for the 8 chambers.

Following the radiator was the MWPC. The MWPC must be very efficient for

absorbing the x-ray photons, so it is normally filled with a high-Z gas. In the

KTeV experiment the gaseous detector needed at least 24 mm of Xenon gas. The

ionization energy loss could fake a TR signal and reduce the π/e separation ability.
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Figure 2.7: The schematic layout of the TRD detector.
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To achieve a high yield of TR and to minimize the ionizing energy deposit, a gas

mixture of 80% Xe and 20% CO2 was chosen.

The gas purity was very important to the accuracy of the TRD, for example, a

0.1% change in concentration of main components could result in a 1% change in

gain. The composition of active volume gas was monitored by a gas chromatog-

raphy system at 100 ppm levels. With the operating high voltage of -2400V, the

gas mixture gave a drift velocity of 5 cm/µsec.

The voltage was automatically regulated by monitoring the gas pressure so

that each chamber maintained the same gain. This was necessary for two reasons.

First, since a TRD is a detector that measures the pulse height to look for X-

rays above a miminum ionization signal, any variation in gain would have caused

changes in the π/e rejection and the performance for particle identification would

vary with temperature and pressure variations. Secondly, the TRD system also

used the pulse height information on-line to generate a level 2 trigger. Variation

of the gain would cause changes in triggr condition which would be unacceptable

for physics analysis.

The buffer volume was filled with a safe gas of C2F6 that was X-ray transparent

and had the same order of density as Xenon so that it helped to support the

entrance window. This kept the inner aluminized window flat to within 100 µm.

The pulse from each channel was preamplified and sent out. The amplifier

produced an output voltage directly proportional to the input charge. The preamp

had a high gain of ∼ 40. The output of the preamp was differential to improve

noise rejection, and was passed into a postamp by a cable whose length was a part
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of the time delay requirement of the trigger system. The postamp first translated

the differential input into a single-ended signal. Next, the pulse was shaped so

that the length of the pulse tail was reduced. That would keep the ADC gate

width as narrow as possible to minimize accidentals. The shaped pulse was finally

sent to a low gain amplifier stage. This additional stage of amplification allowed

the signal channel to be tuned for optimizing its gain.

2.5 The Trigger Hodoscopes

In order to provide fast signals (in 15 nsec) for use with trigger logic that the drift

chambers could provide, two planes of scintillator hodoscopes were installed in

front of the CsI calorimeter. These could be used to count the number of charged

particles [20, 28] in trigger level 1.

V bank V’ bank

Figure 2.8: Schematic drawing of V and V ′ bank front view.
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Figure 2.8 shows the geometry of the hodoscopes. The upstream hodoscope

was called the V bank, and the other one was called the V’ bank. Both the V

and V’ bank consisted of 1 cm thick scintillators viewed by PMTs which were

mounted through light guides. There were no overlaps between the counters in

each bank in order to avoid a double counting by a single particle, but the V and

V’ planes were offset by one-half counter to prevent the particles slipping through

the possible cracks between them. The size of the two hodoscope planes was

1.9 m×1.9 m. Two beam holes were cut in the counters. There were five different

counter widths used: 9.92 cm, 11.82 cm, 13.74 cm, 15.63 cm and 17.76 cm.

2.6 The Photon Veto System

The Photon Veto system was used to veto the events where a decay product (such

as photon or charged particle) left the fiducial volume of the detector. Basically,

in E799, there were at least 4 types of photon veto components. They were Ring

Counters (RC6-RC10), Spectrometer Antis (SA2-SA4), CsI Anti (CIA), and Collar

Anti (CA). Each photon veto counter had a sandwich structure of Pb radiators

and scintillators [29]. The light yield in the scintillator was detected by PMT’s.

2.6.1 Ring Counters

The Five “Ring Counters” (RC6-RC10), Fig. 2.9. were located inside the vacuum

decay volume. The locations of the RC’s are listed in Table 2.3. These counters

are circular on the outside and were placed flush with the vacuum vessel walls.

The inner aperture is square. The RC’s were made of 24 alternating layers of



39

2.5 mm lead and scintillator. For the first 16 layers, the lead sheets were 0.5

radiation length each, for the other 8 layers, the lead was 1 X0 thick each. The

total radiator was equivalent to 16 radiation lengths.

Table 2.3: Positions and Dimensions of the RC’s. The positions were with respect

to the traget.

Veto Element Position(m) Transverse Size(m)

RC6 132.60 inner: 0.84 × 0.84, outer radius: 1.00

RC7 138.60 inner: 0.84 × 0.84, outer radius: 1.00

RC8 146.60 inner: 1.18 × 1.18, outer radius: 1.44

RC9 152.60 inner: 1.18 × 1.18, outer radius: 1.44

RC10 158.60 inner: 1.18 × 1.18, outer radius: 1.44

2.6.2 Spectrometer Anti’s

Three Spectrometer Anti’s (SA’s), Fig. 2.10,Table 2.4, define the apertures around

drift chambers 2, 3, 4, and were located just upstream of these chambers. Just

as Ringer Counters, the SA’s also had 16 radiation lengths of Pb. There were 32

layers of 0.5 radiation length Pb and scintillator. They are capable of detecting

stray photons down to energies of 100 MeV. Light was gathered and sent out by

glass fibers to PMT’s.
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Figure 2.9: A typical RC viewed

from upstream, located inside the

vacuum region. The RC’s dimen-

sions are shown in Table 2.3.

Figure 2.10: SA4 viewed from up-

stream. SA’s and CIA had different

dimensions as shown in Table 2.3.

Table 2.4: Positions and Dimensions of the Spectrometer Antis. The positions are

given at front face of the detector with respect to the traget.

Veto Element Position(m) Transverse Size(m)

SA2 165.12 inner: 1.540 × 1.366, outer: 2.500 × 2.500

SA3 173.99 inner: 1.692 × 1.600, outer: 3.000 × 2.400

SA4 180.02 inner: 1.754 × 1.754, outer: 2.372 × 2.372
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2.6.3 Cesium Iodide Anti and Collar Anti

The Cesium Iodide Anti (CIA) and Collar Anti (CA) are the two veto counters

around the outer and inner edges of the calorimeter respectively. The CIA used the

very similar configuration like SA’s, and had 16 radiation lengths with 32 layers

of 2.5mm Pb and scintillator sandwich structure. It also provided signals to Level

1 Trigger to veto events.

CsI Calorimater 5cm

Collar Anti

5cm

Figure 2.11: The Collar Anti located just upstream of the CsI calorimeter.

The “Collar Anti” (CA) was located in front of the calorimeter and just around

the beam holes like a picture frame (Fig. 2.11,Table 2.5) to catch the events that

wouldn’t deposit energy in the CsI completely. Events with such photons were

rejected. The CA included two identical square annular detectors and overlaps

the crystals immediately adjacent to the beam hole by 1.5 cm. It consisted of

3 layers of 1 cm thick scintillator each followed by a layer of 2.9X0 tungsten.
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Table 2.5: Positions and Dimensions of CA and CIA. The positions are given at

front face of the detector with respect to the traget.

Veto Element Position(m) Transverse Size(m)

CIA 185.19 inner: 1.842 × 1.842, outer: 2.200 × 2.200

CA 185.91 inner: 0.150 × 0.150, outer: 0.180 × 0.180

2.7 The Electromagnetic Calorimeter

2.7.1 The Purpose of CsI

The primary purpose of electromagnetic calorimeter was to measure the energy

and position of photons. The second purpose was particle identification, namely

e−/π− separation. In addition, measuring the charged particle position at the

calorimeter enabled us to resolve the x-y ambiguity in the track reconstruction.

2.7.2 The CsI Crystals

Instead of Lead-glass, CsI crystals were found to be a better substitute material

with excellent energy and position resolution, quick signals and good radiation

hardness (Cesium-Iodide is much more resistant to radiation damage as compared

to the lead glass used in previous experiments [30]).

The front face of the KTeV electromagnetic calorimeter was located two meters

downstream of the trigger hodoscopes, at z =186 m.

The calorimeter, Fig. 2.12, was composed of 3100 pure CsI crystals with a

length of 50 cm (≅ 27X0). There were two sizes of crystals. For the inner part of
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1.2m×1.2m area, 2232 of 2.5cm×2.5cm crystals were placed with two beam holes

whose sizes were 15cm× 15cm each. For the outside of the 1.2m× 1.2m area, 868

5cm× 5cm crystals were stacked. About 80% of all crystals were composed of two

halves (25 cm long each) glued with Epo-Tek 305 epoxy, which was chosen for its

high UV transmission. The remaining 20% were 50 cm long single crystal without

connection.

The CsI light yield depends on the temperature with -1.5% per degree Celsius.

In order to reduce the gain fluctuations due to the temperature variation, the

array was placed in a light-tight blockhouse where the temperature was controlled

to ±0.1C. Besides, the blockhouse environment was kept dry with a humidity of

4% or lower to protect the crystals which were slightly hygroscopic.

Each crystal was wrapped in 13µm thick mylar film, part of which is aluminized.

By choosing where we put the reflective mylar, the light collection was tunned to

be uniform to within ±5%.

The CsI crystal yielded typically 20 photoelectrons per MeV. The scintillation

spectrum can be approximately characterized by a ’fast’ and a ’slow’ component.

The fast spectrum peaked at 315 nm with a time constant of 20 ns. The slow

one peaked at 420 nm and had a time constant of 1 us. From 80 to 90% of the

scintillation light was emitted with in 100 ns. The energy deposited by particles

that interact electromagnetically, such as photons and electrons, is almost entirely

contained within the calorimeter because the CsI is ≅ 27X0 long. However, showers

due to hadronic backgrounds such as protons and pions are not fully contained

by the calorimeter because it is only 1.4 hadronic interaction lengths long. By
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0.5 m

1.9 m

1.9 m

Figure 2.12: Beam view of the KTeV CsI calorimeter array.
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looking at the ratio E/p, with E the energy measured in the calorimeter and p

the momentum as determined by the spectrometer, electrons may be effectively

distinguished from charged pions.

2.7.3 The PMT and DPMT

The scintillation light produced by electromagnetic showers in the CsI crystal was

detected by the PMT mounted on the back of each crystal. The large crystal was

viewed by 1.5 inch Hamamatsu R5330 PMT with six stage dynodes, and the small

crystal was viewed by 3/4 inch Hamamatsu R5364 with five stage dynodes. Both

type of the PMTs had a gain of 5000 with a typical high voltage of −1200V . The

signals from each crystal were then digitized by a Digital PMT base, or DPMT.

The DPMT Fig. 2.13 was an auto-ranging device. The input current, I, was

split into eight binary ranges, i.e. into I/2, I/4, I/8, I/16, I/32, I/64, I/128, and

I/256. Then each of the eight split currents was integrated. Next, it was deter-

mined which of the eight binary ranges were inrange, and the integrated current

from this range was digitized with an 8-bit FADC. Thus the DPMT produced an 8

bit mantissa and a 4 bit exponent, for 16 bits of dynamic range. The DPMT’s had

a very low noise level (less than 1MeV), and they had a wide dynamic range. The

DPMTs were calibrated using a laser flasher system. After calibration, additional

nonlinearity due to the DPMT was well under 1%. Detailed information about

DPMT can be found [31, 32].
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Figure 2.13: Block diagram of DPMT.
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2.7.4 The resolution of CsI

The CsI calorimeter was also used as a particle identification detector for e−/π−

separation. Figure 2.14 shows E/p for electrons in K◦
e3 events, where E is the

energy measured by the CsI calorimeter and p represents the electron momentum

measured by the spectrometer.

As discussed before, the CsI crystals were 27 radiation lengths long. Electrons

deposited almost all of their energy in the calorimeter and had a peak of unity in
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the E/p distribution.

The intrinsic resolution of the calorimeter is shown in Fig. 2.15 as a function

of electron momentum. The energy dependence had a form of

σE

E
= 0.6% ⊕ 0.6%√

E
. (2.4)

Here, the 1/
√

E dependence resulted from photon-statistics in scintillation

light. The constant term of 0.6% accommodated other effects such as non-uniformity

in light collection efficiency, internal calibration error, fluctuation of light yield due

to temperature variation, uncorrected light leakage, electronic noise [33].

From Fig. 2.15, one can see that the typical E resolution was better than 1%

for energy above 4 GeV. e/π rejection was about 500:1.

The position resolution was measured to be approximately 1 mm in the small

crystals, and about 1.8 mm in the large crystals.

2.8 The Hole Counters

For a hyperon decay, one of its properties was that there was a high momentum

proton or anti-proton in the beamline. In the KTeV experiment there was a small

fast scintillation counter, known as a “Hole Counter [34, 35]”, placed in each

beamline behind the CsI calorimeter in the hole of the Hadron Anti steel filter.

The HC’s size was 6.296 × 6.296 in2 (16 × 16 cm2), and 0.0625 inch thick.

The scintillator material was Bicron 404 plastic organic scintillator. Lucite light

pipes of 0.0625 in thickness were bent at a right angle and then twisted by heat

treatment to map on the 0.75 inch diameter photo cathode of a Hammamatsu

R3082 photo tube.
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The efficiency [38] of the hole counter paddles in the Monte Carlo was assumed

to be 0.96 across the entire surface of the paddle. Using two track events in the

accidental trigger, the hole counter efficiency was measured as 0.950± 0.005 for

the right hole counter, and 0.952 ± 0.005 for the left hole counter.

2.9 The Hadron Anti

A 15 cm thick Pb wall was located just downstream of the calorimeter. After the

Pb wall, there was a bank of scintillator hodoscopes, called “Hadron Anti” (HA)[36]

at z=188.5 m. The purpose of the Pb wall was to absorb all the leakage in the

the electromagnetic events from CsI, and also induce a hadronic shower when the

hadron, such as π± passed through it. The purpose of HA was to veto the events

producing charged pions or muons. In particular, for the hyperon trigger, HA

reduced the trigger rate by a factor of about 3.5 by vetoing on the higher energy

pions from the decay of lambda, Λ◦ → pπ−. Figure 2.16 shows HA’s configuration

and dimensions.

The HA was placed upstream of the BA as far as possible to minimize the rate

due to backsplash radiation from the BA and the neutral beam dump. Both the

lead wall and the HA had a single large (34 cm×64 cm) beam hole to let the beam

go through. Also, there was a 1 m thick steel wall with a proportionally large hole

placed downstream of the HA to shield it from the BA backsplash. The photons

going into beam holes were detected by the BA. This 10cm Pb wall was used to

produce hadron showers and to absorb leakage of electromagnetic showers from

the calorimeter. The thickness of that was chosen to be 15 cm (0.9 interaction
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lengths).

The light yield produced by the HA scintillation counter was detected by PMTs.

The first level trigger used an analog sum from all the HA counters as an input.

In this way, events with a π± could be vetoed by the Hadron Anti. In particular,

for the hyperon trigger, HA reduced the trigger rate by vetonig on the pions from

decay of lambda, Λ◦ → pπ−.

y
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Figure 2.16: The HA hodoscope composed of 28 scintillation counters.
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2.10 The Muon System

One purpose of Muon System, Figure 2.17, was to reduce the trigger rate by

rejecting events that decay to muons, which was not the desired decay mode in

some cases. Also, it served some other purposes, for example, M2 Filter (3 m steel)

also served as the neutral beam dump.
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Figure 2.17: The Schematic Drawing of Muon System.

The Muon system [37] contained the most downstream detector components

in KTeV. There are three Muon counters (MU2, MU3Y and MU3X). (MU1 was

discussed in Hadron Anti Section, which included a 15 cm Pb Wall and a 1 m

Steel.)

In front of MU2 hodoscope, there was a 3m deep, 3.4 m high and 4.3 m wide,
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44 cubic meters of steel. It served as the neutral deam dump, and it stopped most

of the hardronic shower activity. The MU2 hodoscope was a 3.93m × 2.99 m plane

of 56 overlapping counters located immediately behind the steel. Mostly Muons

were expected to survive such a large amount of material. MU2 was designed to

reduce the trigger rate by rejecting events decaying to muons. It had to have a

very large transverse dimension to be able to catch the muons which were further

scattered in the steel.

There was another 1m steel in front of MU3. The steel was designed to stop

as much non-muon activity as possible that leaked through. MU3Y and MU3X

consisted of horizontal and vertical counters respectively. They were used at trigger

level.



Chapter 3

The Trigger System and the Run

In this chapter, we discuss the KTeV E799 three-level trigger system [39, 40,

41, 42, 43] first, and then we will pay much attention to the important hyperon

triggers, i.e. trigger10, trigger11 and trigger12.

There were two types of three-level triggers. The “CALIBRATION Triggers”

designed to collect data for cosmic muons, pedestal measurements and the CsI

laser calibration.

The “BEAM Triggers” designed for the physics trigger. Each of the 16 beam

triggers was optimized to collect one or more specific rare decays.

Event selection included an online trigger and offline data reduction. The

trigger system includes two hardware stages, Level 1 and Level 2, and software

trigger Level 3. Offline data reduction consists of a data split to separate data

according to general physics topics and a data crunch to identify roughly and

remove uninteresting events.

Basically different runs in KTeV had their own specific decay modes to study.

Most decays proceeded to final states that were not useful for calibration or inter-

esting to study. The purpose of the trigger system was to decide which were the

most interesting events for the data acquisition system to read out of the detector

53
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and record onto the tape.

3.1 Level 1 Trigger

Level 1 trigger [44] uses the fastest Boolean sources in simple logical combinations

to make decisions. The sources of these signals can be from scintillator counters,

calorimeter total energy sum and the logical OR of the drift chamber signals. The

Level 1 trigger rate was from ∼ 80 kHz to ∼ 20 kHz. Hence, it was very fast and

available for each 19 nsec bucket (no dead time) in the spill structure.

The 16 beam triggers used different combinations of 80 Level 1 logic sources.

These trigger sources were sent to a series of LeCroy 4508 Programmable Lookup

Units (PLU) and LeCroy 4516 Programmable Logic (PL), which were programmed

and could be changed via CAMAC.At the same time, the RF signal provided by

the accelerator was passed into the PLU and PL to strobe the trigger sources.

We call the time strobed RF bucket as “in-time” bucket. A combination of PLU

and PL generated an output signal by looking at the firing pattern of the Level 1

trigger sources.

Finally, decays with high rate were prescaled before reaching the second level,

which means 1 out of the prescale factor would be selected.

3.2 Level 2 Trigger

When the event satisfied the Level 1 requirements, the output signal from Level 1

trigger started a digitization of ADCs and provided a stop signal for TDCs. The

trigger system went to the next stage, called Level 2 trigger [45]. The Level 2
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trigger consisted of information which took a longer time to obtain, either because

the detector element had a slow response like the drift chamber, or because the

pattern recognition took some time like HCC, or the TRD information.

These input signals from Level 2 sources were sent to another series of PLUs(LeCroy

2373) with a Level 1 signal. Again, PLUs did a pattern recognition of trigger

sources, and determined whether to go to the next stage of the triggering. When

the event satisfied the Level 2 requirements, each PLU generated the outputs,

which were used to form a 16 bit trigger mask; the bitwise-AND of all the lookup

units was the final 16 bit trigger mask. This means that we could have 16 Beam

triggers in maximum. If an event failed at this stage, that event would be aborted

before finishing ADC digitization, and would go to the next event.

If the event rate was too high after the Level 1 trigger, some types of triggers

were prescaled by an additional module with an integer prescaling factor before

the Level 2 trigger.

Since the Level 2 decision took 3.3 µsec on average and the Level 1 trigger rate

was ∼ 80KHz, Level 2 dead time was 3.3 µsec × 80 KHz ≅ 26%.

3.2.1 The Stiff Track Trigger

We have to mention the Stiff Track Trigger [46, 47] for hyperon decays. We know

that for hyperon decays, there was a high momentum proton (or anti-proton) in

the beamline all the time. The “Stiff Track Trigger” was used to exactly trigger

this kind of property. The STT was used to select events with a high momentum

track (≥ 50GeV/c) going down the left or the right beam hole and to determine
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the track’s change in slope before and after the analysis magnet from the pattern of

latched drift chamber hits in the center of the beam hole regions in the horizontal

view.

Figure 3.1: STT Trigger. The dot areas denote the beam hole. In the right beam

hole, the STT result (-4) for the right side is TRUE. On the left side, the STT

result (10) for the left side is FALSE. Thus the event is accepted.

If there was either 1 or 2 adjacent wires hit in the instrumented area for each

chamber, the STT computed the corresponding horizontal position, “xDCn”, in
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each drift chamber and then calculate the quantity “xDC4−xDC3−(xDC2−xDC1)”.

This quantity is proportional to the change in slope of the track. If its value was

between -7 and +7 inclusive, the event was selected by the STT, otherwise the

event was rejected. Any other combination of inputs caused the STT to reject the

event. Accidental in-time activity in the instrumented area would as well cause

the STT to reject the event. It was also possible for a track to travel down the

beam hole and miss the area instrumented by the STT.

3.3 Level 3 Trigger

The events that satisfied the Level 2 requirements were sent to the final stage of

triggering(Level 3 trigger), where they were reconstructed in the UNIX machine

with software. Therefore, all the readout including digitization was completed

before the Level 3.

Each input event to Level 3 contained the Level 2 mask. The Level 3 made a

final decision of writing it out to magnetic tapes (DLTs), based on the selection

criteria imposed on the tagged trigger. The software in Level 3 shared most codes

with offline use; however, it was tuned to minimize the processing time. A total

of 24 Challenge SGI CPUs(200MHz≅160mips each) was used to process and filter

the events.

The resulting time to process was 3 ms per event.
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3.4 Hyperon Trigger

Most of the 16 triggers used for E799 running were dedicated to kaon decays, only

three triggers were dedicated to collecting hyperon data.

They were Tirgger 10, 11 and 12. The “Hyperon Minimum Bias” trigger (bit

12) had a large prescale of 2000 and loose trigger conditions to study the efficiency

of the other two hyperon triggers. The “Λ-trigger” (bit 11) was built to trigger on

hyperon shape events and selected mainly Λ◦ → pπ− events and Ξ◦ → Λ◦π◦ events

where Λ◦ → pπ−. It had a prescale of 7 and was mostly used to study the principal

decay of Ξ◦’s as the normalization mode for most of the Ξ◦rare decays. The main

hyperon trigger (bit 10), called “Ξ◦-beta-trigger” was a subset of the “Λ-trigger”

to select hyperon beta decays.

The first and second trigger requirements for the hyperon triggers were:

- Ξ◦ → e−ν̄e were collected in Trigger 10

1V ∗ L1HOLETRK ∗ ET2 ∗ HA DC ∗ PHV 1 ∗ CA (Level 1)

∗2HCY LOOSE ∗ LAMBDA RA ∗ HCC GE2 (Level 2) ,

(Prescale 1/1)

- Ξ◦ → Λ◦π◦ with Λ◦ → pπ− were collected in Trigger 11

1V ∗ L1HOLETRK ∗ ET2 ∗ PHV 1 ∗ CA (Level 1)

∗2HCY LOOSE ∗ LAMBDA RA ∗ HCC GE2 (Level 2) ,

(Prescale 1/7)
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- Λ◦ → pπ− were collected in Trigger 12

1V ∗ DC12 HOLE ∗ DC34 HOLE ∗ ET1 ∗ PHV 1 (Level 1)

∗HCY DUM ∗ STTDUM ∗ HCC GE1 (Level 2) ,

(Prescale 1/2000)

Below is the explanation of these trigger elements:

1V : A hit in one of the two hodoscope planes.

L1HOLETRK: A track down the beam hole. A fast OR of the vertical wires in

the beam region in the first and second drift chambers is performed and combined

with the activity in the hole counters. A track is said to have gone down the

beam hole if there is at least one of these hits in each of the two first chambers

and enough activity in the hole counters. For the minimum bias trigger12, only

activity in the hole counters is required. This beam hole requirement in addition

to 1V means that at least two charge tracks are in the event.

PHV 1: The various photon vetoes – ring counters (RC), CsI calorimeter anti

(CIA), spectrometer anti (SA) – are quiet, according to the standard minimum

ionizing particle thresholds used. It means that no photon or charged particle has

escaped the fiducial volume of the detector.

LAMBDA RA: There is a high probability to have a high momentum track

down the beam hole. This is the Stiff Track Trigger explained in section 3.2.1. It

is not used in the minimum bias trigger.

ET2(ET1): There is at least a total of 18 GeV (11 GeV) of energy deposited in

the electromagnetic calorimeter. The lower threshold of ET1 was used for the beta
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trigger in the winter as well, but it was raised to ET2 since Cascade beta events

deposit a total energy of typically greater that 20 GeV in the CsI.

HA DC: There is no activity in the hadronic scintillator plane named the

hadronic anti (no energy deposited above the higher threshold). This means that

the event has no hadronic activity in the fiducial region excluding the beam region.

HCC GE1: There are at least 1 online hardware clusters in the calorimeter.

HCC GE2: There are at least two online hardware clusters in the calorimeter.

2HCY LOOSE: There are two or more hits in each drift chamber horizontal

wire planes, with a possible hit missing in one of the two upstream chambers.

STTDUM Stiff Track Trigger Dummy requirement, wait for STT to finish

processing.

HCY DUM : Wait for all the Drift Chamber’s 4 horizontal wire planes (Y-

view) to finish the hit counting processing.

DC12 HOLE: There is at least one hit in the DC OR chamber 1 and 2’s left

and right holes.

DC34 HOLE: There is at least one hit in the DC OR chamber 3 and 4’s left

and right holes.

3.5 The Runs

The E799 experiment took data in two stages: the 1997 Run spanned the Jan.

1997 to Sept. 1997 time period, and the 1999-2000 Run extended from Sept. 1999

to Jan. 2000. This analysis uses the data collected in the 1999-2000 Run. The

1999-2000 period of data-taking spans the runs 14625 to 15548.
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Each uninterrupted period of data collection in the larger E799-II Run is also

called a run. A single run typically lasts for about eight hours. This is about the

length of time it takes for output tapes to fill during normal running conditions

and beam intensity.

During the data taking phase, data that pass any level 3 trigger were written

to digital linear tape (DLT). Each event was written to one of 10 DLTs. Each DLT

can hold about 15 Gigabytes of data. Although the trigger system makes efficient

decisions about which events to write to tape, there was still an enormous amount

of raw data recorded. The purpose of the data split is to seperate the raw data

by trigger type and level 3 tags into small sets of output tapes. All the hyperon

triggers were split off to about 60 DLTs. The tape names in KTeV database were

called UPH01 to UPH60. This is the data I study.



Chapter 4

Event Reconstruction

The Event reconstruction is very crucial to the data analysis. Roughly speaking,

the event reconstruction proceeds as follows. First, track candidataes in the x-

and y-views are indentified. If the right number of track candidates were found (it

depends on different runs), then the energy clusters in the CsI are reconstructed.

Correction to the tracks were then calculated and kinimatic quantities evaluated.

In this chapter, a track-finding algorithm using drift chamber hits to recon-

struct the trajectories and momenta of chaged particles will be discussed. Then

we will discuss the CsI clustering algorithm which reconstructs the energies of

clusters in the calorimeter.

4.1 Tracking

An algorithm, called “T3” tracking algorithm, was developped for finding the

track candidates. We will discuss about how the charged particle tracks in the

spectrometer are reconstructed.
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4.1.1 Hit pairs and SODs

When a charged particle went through the spectrometers, it caused the ionization

and avalanche, and the signals were recorded. The first task to the tracking code

was to find the drift distance of the track to nearest wires.

At first, this information was extracted from the raw drift chamber TDC hits

by subtracting a wire-dependent time offset from the TDC value, and then using a

look-up table to map the time to a drift distance. If hits are outside a 170 ns wide

time window, they are considered to be out-of-time. No drift distance is calculated

for such hits. Only the first in-time hit on each wire is used.

When we discussed the detector part earlier, we noted that there are two com-

plementary planes in each view of the drift chamber. If a charged particle left a hit

in both planes of a pair, the two hits were considered a “hit pair”. The tracking

code would deal with them according to the quality of their “sum of distances”

(SODs). Since the two planes in each view were offset by half a cell spacing, or 6.35

mm, the SOD of any hit pair should be equal to this distance, within resolution.

Drift distance resolutions are typically ≅ 100µm, so the SOD resolution used is

∼ 140µm.

Different hit pairs were classified according to their SODs as shown in Fig. 4.1.

There were several kinds of SODs, e.g. “good SODs”, “Low SOD”, “High SOD”

and “Isolated SOD”. Detailed discussion of SOD can be found [48, 49, 50]

For the “Good SOD”, here it means that the hist pair is close to the nominal

6.35 mm within 1 mm, and “Low SOD” pairs where the SOD was less than 5.35

mm. This low value could be due to the traversal of two tracks through the same
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Figure 4.1: Beam view of the KTeV CsI calorimeter array.

cell. This causes the SOD to be low because each sense wire sees the charge from

the nearest track, resulting in a SOD lower than the nominal value. Another

possibility of the Low SOD was due to a single track which emits a δ-ray, from an

electron knocked off an atom.

The “high SOD” pairs where the SOD was greater than 7.35 mm. These pairs

can arise when a tracks pass close to a wire in one of the complementary planes.

They were also caused by infficiencies near the sense wire due to radiation damage

and insufficient signal gain.

The “Isolated SOD” hits carry information only on the distrance from the

track to one side wire, but not its opposite direction. Basically it was due to

intrinsic infficiencies in the drift chamber planes because of defects on the sense

wires. There was no measurable SOD for isolated hits.

Figure 4.2 shows a typical sum-of-distances plot.
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Figure 4.2: A typical Sum-of-Distances distribution in Chamber 1, X view. The

mean of the distribution should be the constructed cell size of 6.35 mm and the

width is proportional to the resolution.
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4.1.2 The X and Y Track Candidates

After the hit pairs were identified and a quality SOD was calculated for them,

the next step in the tracking algorithm was to look for track candidates. Track

candidates were searched separately in the x and y-views. No constraints were

placed on track candidates at this stage; up to now, they were not required to

originate from the beam or to point to the calorimeter, and the same hits or hit

pairs maybe be shared by more than one trcak candidate.

4.1.3 Finding Y tracks

We know that the analysing magnet’s field is in the y direction in our coordinate

system, so it didn’t bend the particles in the y plane. This property made the y

track algorithm more straightforward.

The algorithm looked for one pair of hits in DC1 and one pair in DC4 first,

and drew a line between them. Any pairs in DC2 and DC3 which were less than

5mm distance from this line were found and the quality values of the pairs from

the four chambers were added. To qualify as a Y track candidate, a track need

not have the quality sum of a perfect track (4 good SODs), which is 16 (4 good

SODs × quality value of 4 per good SOD). If the sum was 11 or larger, the four

pairs were considered as a Y track candidate. Here the sum of 11 corresponded to

two good SODs, one low or high SOD, and one isolated hit.

After passing the quality sum test, it still needed to pass the χ2 per degree

of freedom fit-criteria, and it was required that the χ2 was less than 4 mm2, this

would then be accepted as a y-track.
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After all the Y track candidates are processed, the tracking algorithm decided

whether to keep or reject the event.

4.1.4 Finding X tracks

The analyzing magnet bent the charged particle in the x-view, so findig the x track

candidates was more complicated. The hit pairs in the x-view of the upstream and

downstream chambers had to be examined independently.

The tracking algorithm first found track segments in the x-view between DC1

and DC2. The same was done for DC3 and DC4.

A line was drawn between each pair in DC1 and DC2. If the quality sum of the

hit pairs is at least 4 and the line made an angle of less than 100 µ rad with respect

to the Z axia, the pair qualified as a X track segment. We did same procedure for

DC3 and DC4, but with the sum of the quality balues must be 5 or greater and

angle with respect to the Z axis may not exceed 150 µ rad.

The x-track candidate was then defined as any combination of a downstream

segment with an upstream segment which matched at the plane of the magnet kick

with a separation distance smaller than 6 mm.

4.1.5 Track Vertex Candidates

At this point, there are at least two X and two Y track candidates that have been

identified. The z positions where each pair of Y track candidates intersect are

calculated, and the same is done for X track candidates. The algorithm then finds

all combinations of two track candidates in each view intersecting at the same z
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and located within the decay area. This is defined to be a vertex candidate. Re-

quirements are kept fairly loose, so that some events have many vertex candidates.

The two X tracks in a vertex candidate are required to bend in different directions

at the analysis magnet, consistent with the hypothesis of two oppositely charged

particles.

Up to now, it is impossible to decide which of the pairing combinations that

result is the right one, since each Y track candidate can be paired with either of the

two X track candidates. CsI calorimeter cluster position information is required

in order to resolve this ambiguity.

4.1.6 Track-Cluster matching

The ambiguity caused by only using the DC would be solved by checking the

calorimeter cluster information.

By searching for the closest cluster to the projected position at the CsI of each

x-track/y-track combination, we obtain the help in vertex finding. The distance

separation between the position of the track (x,y) at the calorimeter and the

position of the cluster (known as track-cluster separation) was required to be less

than 7 cm, in order to accept the matching.

For each vertex candidates, it was then determined whether the tracks matched

to clusters in either (or both) of the two X-Y matching cases. For hyperon decays,

one (and only one) track had to go down the beam holes in order to be triggered.

In this case an x-track and a y-track were matched within a beam hole and no CsI

cluster could be used.
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Any cluster with energy above some threshold (3 GeV for Cascade beta decay)

and not matched to a track was counted as an “extra cluster”. Extra clusters were

candidates for photons.

4.2 Cluster Finding, HCC algorithm

The HCC algorithm was designed to determine the number of isolated showers

depsosited in the CsI calorimeter.

The basic idea of this algorithm is that an isolated cluster could be enclosed by

a continuous perimeter. To make the perimeter, only the crystals which contained

the energy above 1 GeV, based on the information from the Et board, were used.

While traveling clockwise around the perimeter, if we assign +1 for every right

turn and −1 for every left turn, the sum of right turn minus left turn should be

four because our CsI calorimeter consists of rectangular crystals. If we apply this

procedure to the whole calorimeter, the resulting number of right turns subtracted

by the number of left turns should be four times the number of clusters.

The cluster finding algorithm took advantage of a pattern recognition and

parallel processing technique to reach a relatively fast decision making under 2µsec.

Right or left turns were determined by examining the pattern of the hits in 2×2

arrays. Figure 4.3 shows all the possible configuration of hits in such a group and

the assigned number for each pattern. Since each crystal belonged to four different

2 × 2 grids, each crystal was used to determine four different pattern values. The

sum of all 2 × 2 pattern value was four times the number of isolated clusters in

the arrays. The outer edge of the calorimeter as well as the boundary of the small
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-1 -one left turn 

Pattern ValuePatterns of Struck Blocks

0- No turns

0- No turns

-2 - Two right turns

+1 -one right  turn 

Figure 4.3: Possible patterns for a 2 × 2 array of blocks.

and large blocks of CsI in which the 2 × 2 arrays contained a mixture of the two

different sizes were treated in a special manner. Detailed discussion of the HCC

algorithm can be found in [34, 35].

4.2.1 Cluster Position

The cluster shower generally covered several crystal blocks, and we need to find

out where the center is. The distribution of energy deposited in the blocks of a

cluster can be used to deduce where the particle struck the calorimeter. Ratios of

the energy in the cluster seed block (The crystals with the greatest energy of all

the neighbors were made cluster seeds) to the energies in neighboring blocks were

first calculated. These ratios were compared to values in look-up tables, which

return the x and y coordinates of the cluster position. There were a total of 12

tables, 6 for the small crystals, and 6 for the large ones, covering 6 different energy
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regimes. To make these lookup tables, the KL → π+π− data and Monte Carlo are

used. The resulting position resolution is ∼ 1 mm in small blocks and ∼ 1.8 mm

in large blocks [51].

4.3 Energy Measurement in CsI

KTeV used a set of lookup tables to reconstruct the energy of the incident par-

ticles. Just like the lookup table for position measurement, it was created from

the KL → π+π− data and Monte Carlo. There were several kinds of correction

algorithm/methods applied to different situations.

Overlapping clusters were separated, i.e. the crystals which had contributions

from multiple particles had their energy split by also looking at the table.

The readout threshold for crystals was 7 MeV. The outer crystals in a cluster

often have energy below this threshold and were removed from the readout list.

Becuase these crystals were not counted toward the cluster energy, it would slew

the sum downwads. The threshold correction was applied to rectify this problem.

For each cluster, the amount of energy deposited in crystals below the readout

threashold is estimated. This correction is a function of the overall cluster energy

and the crystal position in the cluster.

There were also some other corrections which were applied to the CsI, such as

Intra-Block correction, Non-Linearity Fudge Correction, etc.

The total energy of the cluster was corrected for the energy leakage outisde of

crystal array, through the back of those crystals, and energy loss in the wrapping

materials based on a study by using GEANT simulation. The fraction of the miss-
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ing energy was independent of the energy of the incident particle, and depended

only on the size of crystals, 1.042 for the small and 1.059 for the large crystals

(also for boundary region of large and small crystals), respectively.

4.4 Electron and π− identification

4.4.1 Using CsI Calorimeter

For high energy decayes, there are 2 most important decay particles, one is electron,

and the other is π−. Both of them have the negative charge, but they have very

different properties on some aspects. There are lots of experimental ways to tell

them.

In KTeV, the CsI calorimeter was 27 radiation lengths X0 long, so the electrons

deposited most of their energy to the calorimeter in constrast to pions which

deposited a small fraction of their energy because the CsI only had 1.4 nuclear

interaction lengths long. This enabled us to identify electrons by looking at the

E/P in the calorimeter, here E was the measured energy, and p was the measured

momentum by spectrometer.

Here are some typical plots. The top plot in Figure 4.4 shows the E/p distribu-

tion in data. The low E/p tail was due to pions, and the high side tail was caused

by overlapping clusters. Also shown is the E/p distribution in KL → π◦µ+µ− MC.

We required the E/p to be unity within ±5% which was roughly 5σ of a Gaussian

fit to the signal simulation. The π/e separation factor obtained from the E/p

requirement was estimated from data sample identified as KL → π+π−π◦.

The bottom plot in Figure 4.4 shows the E/p distribution for two charged
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particles in KL → π+π−π◦ events. With our requirement, 99.6% of charged pi-

ons were rejected, whereas the efficiency for single electrons was calculated to be

93.7% from MC. Since we required two electrons to be identified in the signal, the

efficiency for this requirement was 87.8%.

After we used E/P, there were still π− remaining. We know that π− deposited

the energy mostly through hadronic interaction, instead of electromagnetic inter-

action by electron. The shower radius of these two interactions are pretty different.

For electromagnetic interaction by electron, the shower lateral spread is charac-

terized by the Moliere radius:

Rm = (21MeV ) × X0/Ec (4.1)

95% of the shower energy is within ±2Rm. For the hadronic activity, the

transverse dimension in the hadronic shower tends to be larger than that in the

electromagnetic shower. This difference in the transverse shower shape allowed us

to discriminate electrons from pions. We can define the χ2
shape as

χ2
shape =

1

N

N∑
i=1

(
Ei − Epre

i

RMSi

)2 , (4.2)

where N is the number of crystals in a cluster, Ei is the real energy in i-th

crystal, Epre
i is the expected energy from the electromagnetic shower, and RMSi

is the expected RMS for the i-th crystal. We can study the χ2
shape variable from

MC to make the appropriate cuts to distinguish these two particles.
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Figure 4.4: The top plot shows the E/p distribution for charged particles in data.

Our requirement is indicated by the arrow. The bottom plot shows the E/p in

data sample identified as KL → π+π−π◦, thus for charged pions.
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4.4.2 Using TRD

In KTeV, there was a 2nd device for the pion rejection, Transition Radiation

Detectors (TRDs). Please refer Section 2.4 about the detail information.



Chapter 5

Monte Carlo Simulation and Background Studies

MC simulation is very important in the data analysis. First, it will help us to get

the acceptance ratio of signal and normalization mode, based on this we can get the

flux of these modes. Second, MC will help us to simulate the background events.

Third, MC will also help us to study various analysis cuts for event selection.

In KTeV, the output of the MC had the same format as the real data. This

was important and helpful. It allowed us to use the same algorithm and software

to analyze MC as real data.

In this chapter, I will discuss some fundmental MC simulations, such as kaon

and some hyperon decay modes. Also I will discuss the simulation of the detector

response, including the accidental activity or noise in the detector.

5.1 3 Steps of Event Generation

In KTeV, the event generation in the simulation can be devided into 3 parts,

beam production at the target, decays of the particles, and propagation of the

decay products. So in the next sections, we will discuss these 3 steps one by one.
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5.2 MC of Beam Production at target

5.2.1 Hyperon Production

This thesis’s purpose is to study the Ξ◦ hyperon decay mode, so let’s see the

hyperon production first. The production of Ξ◦by the proton beam is given by

Pondrom [14, 15]:

E
d3σ

dp3
= exp(C1 +C2x

2 +C3x+C4xpt +C5p
2
t +C6p

4
t +C7p

6
t )×(1−x)C8+C9p2

t (5.1)

where x = p/EB, p is the produced particle momentum, EB is the beam energy,

pt is the transverse momentum of the produced particle relative to the incident

beam direction and E is the energy of produced particle.

This formula was determined experimentally by Lee Pondrom from Fermilab

Meson Center, so the coefficients are called the Pondrom parameters. Please refer

the table 5.1.

In KTeV MC, the Λ spectrum was tuned so that the spectrum measured in

Λ → pπ− events matched to that in MC. As a result, the MC spectrum was scaled

by 90% in E. For Ξ0, the Pondrom production spectrum paramters were used

without corrections. The decay position of hyperons was simply determined by

their proper lifetimes and their momenta.

5.2.2 Kaon Production

We know that after the 800 GeV proton beam hit the the BeO target, there were

more kaons than hyperons, so the kaon decay modes were likely the important

background.
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Table 5.1: Coefficients in empirical fits for hyperon spectrum.

Be → Λ Be → Ξ Be → Λ̄ Be → Ξ̄

C1 1.68 -1.21 1.45 0.61

C2 0.44 1.16 -0.79 18.1

C3 0.28 -0.72 1.28 -22.5

C4 -0.58 -0.48 -1.09 -1.46

C5 -2.62 -1.85 -2.21 -1.24

C6 0.40 0.17 0.45 0.00

C7 -0.03 -0.008 -0.07 -0.00

C8 0.86 2.87 0.74 -

C9 0.20 0.04 0.61 -
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Malensek [52] gave the parameterization for the K+ and K− spectrum for

400 GeV/c protons incident on a beryllium target. In this parameterization, the

number of kaons with momentum p into a solid angle dΩ was:

d2N

dpdΩ
=

EB

400
Bx

(1 − x)A(1 + 5e−Dx)

(1 + p2
t /M2)4

(5.2)

x = p/EB, and p is the kaon momentum, EB is the beam energy, and pt rep-

resents the transverse momentum of the produced particle relative to the incident

beam direction. p and pt are expressed in units of GeV/c. B, A, D, and M2 are

constants which were got experimentally (Table 5.2).

Table 5.2: Values of parameters describing the kaon production spectrum [52].

K+ K−

A 2.924 6.107

B 14.15 12.33

M2 1.164 1.098

D 19.89 17.78

Using quark-counting arguments (see reference [53] for example), K◦ and K̄◦

production can be related to K+ and K−:

NK0 =
NK+ + NK−

2
(5.3)

NK̄0 = NK− (5.4)
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People still need to tune the spectrum further, to match kaon momentum mea-

sured by KL → π+π− events in the real data. The details can be found elsewhere

([54], [53], [55]).

5.3 Simulation of Decay Process

Once the decay vertex was found for a specific decay mode, the next step was a

decay of the parent particle. The basic KTEVMC simulated Λ and Ξ0 hyperon

decays assuming unpolarized hyperons, and decays were generated according to a

a isotropic phase space. Also the user could enable the following features [56]:

• The polarization of Λ and Ξ0 hyperons produced at the target.

• Distribution of decay products according to physics form factors as in: Λ →

pπ−, Λ → pe−ν, Ξ0 → Λπ0, Ξ0 → Σ+e−ν, Σ+ → pπ0, Ξ0 → Λγ, Ξ0 → Σ0γ,

Σ− → nπ−, Λ → nπ0, Σ0 → Λγ.

• Polarization of decay products from hyperon decays as in: Σ0 → Λγ, Ξ0 →

Λγ, Ξ0 → Σ0γ, Ξ0 → Σ+e−ν, Ξ0 → Λπ0.

• Production of anti-hyperons: Λ and Ξ0

• The decay Ξ0 → Λπ0 with Λ → pe−ν and the decay Ξ0 → Λπ0 with Λ →

pµ−ν

• The decay Ξ0 → Σ+µ−ν

Here, the ’polarization’ means the ensemble average of the polarization vector

of the particle in its own rest frame. The magnitude of this polarization vector is
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equal to the amount of polarization, so a polarization of P⃗λ = 1.0ẑ refers to 100

% polarization in the z-direction in the particle’s rest frame.

5.3.1 Distribution of Hyperon Non-Leptonic Decays

A lot of hyperons went through the decay mode like this: B → B′π, where B and

B′ are initial and final state baryons, the final state baryon is distributed according

to

1

Γ
· dΓ

dΩB′
=

1

4π
· (1 + αP⃗B · ˆpB′) (5.5)

where α is the decay asymmetry , p̂B′ is the unit vector of the final state baryon

direction in the rest frame of initial state baryon, and P⃗B is the polarization vector

of the initial state baryon. The numerical values of α for these decays can be found

in [8]. The decays which implemented this were:

Ξ0 → Λπ0, Λ → pπ−, Λ → nπ0, Σ+ → pπ0, Σ− → nπ−,

For anti-hyperon non-leptonic decays, we need to replace α → −α [14] with

the same formula for decay distribution.

5.3.2 Polarization of Hyperon Non-Leptonic Decays

KTeV hyperon group [16] also did a study of the polarization direction in the

production of cascade particles. For the decay Ξ0 → Λπ0, where the Λ decays into

pπ−, the polarization of the Λ is determined by the expression

P⃗f =
(α + P⃗i · û)û + β(P⃗i × û) + γ(û × (P⃗i × û))

1 + αP⃗i · û
(5.6)
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Where α, β, γ are decay parameters, P⃗i and P⃗f are the polarizations of the

initial and final state baryons, and û is the direction vector of the final state

baryon in the rest frame of the initial state baryon.

For anti-hyperon non-leptonic decays, the same formulae are used with the

replacement α → −α, β → −β , γ → γ [14] .

This topic is beyond the scope of this thesis. Please refer the paper/writeup “Ξ◦

and Ξ̄◦ Polarization Analysis at KTeV E799II” [16] about the detailed discussion

of the polarization of Ξ◦.

5.4 Detector Response

After the decay event was randomly generated, the nect step is to trace the decay

products through the detector. The tracing process is terminated when the particle

is stopped in a detector component, it decayed, converted or the particle escaped

the detector volume. The detector response must be simulated for this purpose.

In addition, the response had to be correctly digitized so that analysis code would

work for both real data and MC data with the same cuts. Especially for DPMT,

the simulation of digitization was a crucial point to reproduce the calorimeter

response. This section describes the simulation of responses in main detector

elements.

5.4.1 Drift Chamber

When charged particles traveled through the drift chambers, the hit locations are

found by selecting the closest sense wires. Then the drift distance, i.e. the distance
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from the particle trajectory to the closest wire in each of the two complementary

planes, was converted to the drift time. The conversion factor was calibrated

in advance so that the sum of drift distances in the two complementary planes

(SOD) equaled 6.35 mm (Section 4.1.1). The drift time was smeared based on

the calibration result, and was recorded as TDC counts. The inefficiency for each

plane was implemented by not recording the hit information randomly. Only the

earliest hit in multiple hits was recorded if they were within the same time window

of 235 ns.

The δ-ray emission in the chamber gas was simulated in the following 3 steps.

First, when a highly relativistic particle is passing through the length L(m), the

emission probability in a material with Z(Atomic Number) and A(Atomic Mass)

is;

P = 154(KeV) ∗ Z

A
∗ d(g/cm3) ∗ L(cm) ∗ 1

E
, (5.7)

where d represents the density of material and E is the δ-ray energy. With this

probability, P , a δ-ray was emitted perpendicular to the parent particle trajectory.

Its range was determined based on the emitted energy. If the electron emitted as

the δ-ray stopped outside the original cell, the flight distance was considered as

the size of the cell. At last, the distance from the δ-ray to the closest wire was

computed. The hits due to the δ-ray were also recorded by the same method used

for normal charged particles. The resulting hit information was used in the Level 1

for DC1 and DC2 simulation, which counted the number of hits in the defined

in-time window (235 ns).
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5.4.2 TRD’s

Particles pass through the TRDs after DC4. The eight planes of the TRDs are

simulated as 0.115X0 amount of material. In the beam region, which contains no

radiator material, 0.04X0 is assumed. Photon conversion in the TRDs is simulated,

but scattering off the individual TRD wires is not. The pion rejection and electron

tagging performance of the TRDs are not simulated, but are instead measured

using data.

5.4.3 The Trigger Hodoscopes

After the TRDs, the particles are transported to the trigger hodoscopes. If a

charged particle hits a scintillator paddle in V or V’, the latch bit corresponding

to the firing counter was set based on the efficiency of the counter measured from

real data. The latch bit was used to simulate Level 1 triggering.

5.4.4 CsI Calorimeter

Different particles gave different effects when the particles impinged on the face of

the calorimeter. Electrons and photons produced electromagnetic showers. Muons

deposited minimum ionizing energy in the calorimeter and passed through the

calorimeter. Pions could leave minumum inonizing energy or initiate a hadron

shower. The simulation of the CsI calorimeter first determined the energy de-

posited to each crystal, based on the kinds, energy, and position of a particle

hitting the calorimeter. Once the deposited energy was determined in an event,

the scintillation light yield was simulated, and was digitized. The triggering de-
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vices, Etot and HCC were also simulated using the result of the simulation for the

calorimeter.

Shower in CsI

In our MC simulation, when electron(or photon) reached the CsI, the transverse

position was defined at shower mean depth approximated by;

ze (m) = 0.11 + 0.018 × ln E , (5.8)

zγ (m) = 0.12 + 0.018 × lnE , (5.9)

where E is the energy of electron (or photon) in units of GeV.

Electromagnetic showers were simulated using a shower library generated using

GEANT. Using the transverse position and energy of electron or photon as inputs,

the energy deposited in CsI crystals was derived from lookup tables referred to as

the shower library. The shower library was created in advance by collecting the

CsI response for electrons in K◦
e3 events in which the position and momentum of

electrons was measured by the spectrometer.

The shower library was segmented in depth(z) with 25 bins, and binned in

energy: 2, 4, 8, 16, 32 and 64 GeV, and binned in position. Each 2.5 cm× 2.5 cm

crystal had six sizes of the position bin, which varied from 0.2 mm × 0.2 mm

to 0.7 mm × 0.7 mm with a difference of 0.1 mm with respect to the length of

the side. The shower library was composed of 13 × 13 small (=2.5 cm × 2.5 cm)

CsI crystal array. The segmentation in z was intended to correct for the position

dependence along z of the light yield in each crystal. The correction factor was
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obtained before the installation of the CsI crystals by using cosmic ray muons.

Once a sample shower was picked from the shower library, the energy scale was

normalized to original energy of the particle incident on the CsI.

The same shower library was used for both 2.5 and 5.0 cm crystals. If any 5.0 cm

crystals were present in the shower, they were treated as four 2.5 cm crystals. This

simplified the treatment around the boundary between the two different crystal

sizes.

For charged pions, the position was defined at the surface of the calorimeter.

As for e/γ, the CsI response for pions was derived from a shower library created

by GEANT simulation.

For a muon, deposited energy was determined by Landau distribution based

on dE/dx in the 50 cm long CsI.

Digitization

After deciding the energy deposited in each crystal, the Monte Carlo simulated the

digitization process. It started with the simulation of the scintillation light yield,

and then the light was converted to charge. Finally, the charge was digitized to

ADC counts.

The CsI time spectra were modeled with three exponential decays, in which

two were fast components with roughly 10 and 40 nsec decay constants. The other

had a decay constant of order 1 µsec. Based on the pre-measured time constants,

the timing on the scintillation was smeared. Because the DPMT operation was

synchronized with accelerator RF, time jitter in the CsI signal with respect to the
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RF must be also simulated. The time jitter was modeled by Gaussian distribution

with a sigma of 0.6 nsec [53], which was applied to all the CsI crystals on event-

by-event basis.

After the determination of energy ratio for each slice, the energy in each slice

was smeared individually with photo-statistics. The number of photo-electrons

per GeV, N(p, e), had been measured for each crystal. The energy was smeared

by Gaussian whose width was defined as;

σ(E) =
E√

N(p.e)
. (5.10)

The least count of DPMT was equivalent to 0.6 MeV, and the CsI crystal had

typically 20 photo-electrons per 1 MeV, so that one count corresponded to roughly

12 photo-electrons. Therefore, the Gaussian approximation for the fluctuation was

considered as sufficient.

Next step was to convert the smeared energy into charge. It was simply trans-

lated using the constants for each crystal which was calibrated with real data.

The electrons with well measured momentum from K◦
e3 decays were used for this

calibration.

The final part of the calorimeter simulation was the digitization of charge in

each slice, QIE simulation. The constants obtained from laser calibration were

used to simulate the QIE, which were: slopes and intercepts for each capacitor,

range, and crystal; the errors in slopes and offsets; the pedestals for each capacitor

and range. Each central value was smeared with the error in the set of constants.



88

Etot and HCC

At this moment, the energy deposited in each crystal, which was the input to Etot

and HCC simulation, was reproduced. The energy only in the in-time slice1 was

used for the Etot simulation. Summing over the energy for the whole calorimeter

formed the Etot signal, to which a threshold was applied. HCC was simulated

by tabulating crystals whose in-time energy was above the HCC threshold. The

completed table was sent to the cluster counting algorithm already described in

Section 2.7.

5.5 Accidental Activity

Beam interaction, cosmic rays, and debris from the target and vacuum window,

etc. can all contribute to accidental activity in the detector. They are recorded

to tape using an accidental trigger uncorrelated with detector activity from the

desired decay mode. It must be added on an event-by-event basis and should be

independent of the decay of interest.

In order to simulate the accidental activity in the Monte Carlo, the data col-

lected by the Accidental Trigger was overlaid on the generated MC event with

the following procedure. After the event generation, all the detector’s response

was recorded as ADC counts, TDC counts and latch bit by digitization. Then,

the digitized quantities in an accidental data event were added to the MC data.

ADC counts were simply summed together, latch bits were ored, and only the first

1The read out slice was synchronized with accelerator RF. We refer to the slice with the same

phase of “in-time bucket”(Section 3.1) as “in-time” slice.
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hit in TDC readings was kept. Once the accidental data were appended, trigger

requirements for each counter were tested again.

The accidental effect was crucial in the small branching decay mode analysis

especially. First, it affected the acceptance calculation for some decay mode, e.g.

it can fake some events. Also the accidental activity contributed to the magnitude

of the background level. For example, in my signal mode, an accidental photon

might fake a signal. Here the simulation of the detector’s accidental activity was

crucial to evaluate correctly the background level.



Chapter 6

The Normalization Mode Ξ◦ → Λ◦π◦ Analysis

In order to calculate the branching rate or upper limit for a decay mode, one can

use a formula like this:

BRsignal = BRnorm
Nsignal

Nnorm

(6.1)

Here, Nsignal or Nnorm is the total number of signal or normalization mode

events which the KTeV detector can see, as corrected for acceptance. With the

notation N ′
mode for the event number after the analysis cuts and Amode for accep-

tance after cuts, Nmode is like this:

Nmode = N ′
mode/Amode (6.2)

In our analysis, we study the Ξ◦ hyperon weak radiative decay mode Ξ◦ → Λ◦π◦γ.

We have to choose a normalization mode for the calculation of the BR. There are

several criteria for choosing the normalization mode. It is best if that normlization

decay mode is well measured, easy to reconstruct, similar to the signal mode and

background free.

From PDG [8] book, Ξ◦ → Λ◦π◦ decay mode has a Branching Ratio of (99.54±

0.05)%. This mode is also very similar with our signal mode, except that the signal

90
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mode has one more γ in the final product. That is why we choose this mode as

the normalization mode.

6.1 Data Selection

The data in this analysis came from ”hyperon trigger” events. This includes the

Sept. 1999 to Jan. 2000 period of data-taking, i.e., the run 14625 to run 15548.

There are 60 DLT date tapes, having tape names from UPH001 to UPH060.

6.2 The Reconstruction Methods

Figure 6.1 shows the topology of our normalization mode Ξ◦ → Λ◦π◦ decay in the

KTeV apparatus. The detectable final state of the decay is a high momentum

proton which remains in the neutral beam and goes down a CsI beam hole, a π−

and two photons which deposit their energy in the CsI calorimeter. We search for

the sequence of events Ξ◦ → Λ◦π◦ where Λ◦ → pπ− and π◦ → γγ.

What we observe in the detector as a final product of an event which passed the

trigger requirements are a positive track going down one of the CSI beam holes

of the calorimeter, a negative track associated with one of the electromagnetic

clusters in the calorimeter, and two or more extra clusters not associated with any

tracks. Assuming thse two extra clusters are decay products of a π◦, one can use

the following approximation to fix the z position of the π◦ vertex

z = (
∆

mπ0

)
√

E1E2 . (6.3)
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Figure 6.1: The Schemetic drawing of the decay Ξ◦ → Λ◦π◦ where Λ◦ → pπ− and

π◦ → γγ

E1 and E2 are the energies of the photons measured by the calorimeter, and ∆

is the distance between the photons at CsI, and mπ◦ is the invariant mass of the

π◦. Here these 2 photons are the prompt decay products of the π◦.

From the 2 charged tracks (p+ and π−), one can find the Λ◦ → pπ− decay

vertex. By extrapolating the Λ direction to the z position of the π◦ found from

the two extra netural clusters, we can fix the Ξ◦ vertex. Since the π◦ decays

electromagnetically, it has a very short lifetime of 8.4 × 10−17 sec, and one can

assume that the Ξ◦ decay vertex is coincident with the π◦ decay vertex. Here, I

call this sequence of associations the ”π◦ method”.

Another optional way to find the Ξ◦ vertex is by the method called “Center

of Gratvity”, (CG) method. At first, one finds the center of momentum position
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on the front of the CsI for p+, π− and two(three) neutral clusters. Then one

connects this point with target coordinates (0, 0, 0) to form a candidate Ξ◦ track.

Extrapolating the Λ to the Ξ◦ track line which pointing back to (0, 0, 0), one can

get the Ξ◦ decay vertex. In our coordinate system, one can calculate the z vertex

in the x − z or y − z plane. In our case, we simply used the average of these two

calculations as z vertex.

Figure 6.2 shows the comparison of these two methods using the Ξ◦ → Λ◦π◦

Monte Carlo simulation events. The top plot is the π0 method, and the bottom one

is CG method. This plot is the z vertex which is constructed by the corresponding

method minus the real Ξ◦ vertex which one can get from Monte Carlo infomation

for Ξ◦ → Λ◦π◦ events. From their standard deviations we found out that the π◦

method is dramatically better than CG method for the Ξ◦ decay vertex identifi-

cation. As we know, correct vertex finding is crucial for the event reconstrution.

The π0 method should benefit us more than the CG method.

6.2.1 The cuts for Normalization Mode

To elaborate a list of criteria to select a particular decay mode, we need first to

choose a reconstructed variable and compare its distribution between signal and

background mode. This reconstructed variable is one that we think can distinguish

two or more particular decay modes due to different behaviour in their distribu-

tions. In general, we analyze a variable that reveals the differences in topology,

kinematics, or particle identification.

This procedure is repeated until the event selection becomes efficient and re-
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Figure 6.2: The Z vertex comparison of π0 method and CG method, the top plot

is the π0 method,and the bottom one is CG method.
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liable, meaning that the background events are completely eliminated or, if not

eliminated, at least understood and under control. The result of this procedure

will be a set of selection cuts for a particular decay.

Besides processing the reconstructing technique, one has to come up with a

set of quality cuts to reduce background events without losing too much of the

signal events. Even though the choice of cuts are suggested by the Monte Carlo

(MC) simulations as well as the possible background events, the exact choices of

cut boundaries are somewhat arbitrary. One can adjust the values to achieve the

best signal to noise ratio. Presented here is a “nominal” set of cuts we applied to

the data to select the Ξ◦ → Λ◦π◦ events. We can assign a systematic error to his

“arbitrariness” of the cut values.

Here we list the cuts we used for the analysis of the normalization mode. We

assume that the two γs decaying from π◦ have higher energies than a background

soft gamma.

General Cuts:

• Number of neutral clusters is greater than one.

• Events only have exactly two tracks. One is a positive charged track, the

other is a negative charged track.

• The position of the proton at the CsI face must be inside one of the beam

holes by at least 1 cm, and the position of the π− is outside of the beam

holes by at least 1 cm.

• All the γ positions are at least 15 cm away from the π− position on the CsI
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• All the γ positions are at least 15 cm away from each other on the CsI

Vertex Cuts:

• 95.0m < ZΞ◦ < 158.0m (inside vacuum decay volume)

• 95.0m < ZΛ◦ < 158.0m, and ZΛ◦ > ZΞ◦

• 0.001240 > |xΞ◦/zΞ◦ | > 0.000376

• 0.000430 > |yΞ◦/zΞ◦ |

• 0.001240 > |xΛ/zΛ| > 0.000376

• 0.000430 > |yΛ/zΛ|

Momentum and Energy Cuts:

• For two charged tracks, the monemtum ratio p(+)/p(−) > 3.0 (exclues kaon

decays)

• For the negative charged track, the energy deposited in CsI divided by mon-

mentum is < 0.9. (excludes electrons)

• 110Gev/c < |pp| < 500Gev/c and 5.0Gev/c < |p−π | < 100Gev/c

• For the neutral clusters, Eγ > 3.0 GeV, and
∑

Eγs > 18GeV

• PtΛ0π◦ < 25MeV/C

• PtΛ0 > 24.5MeV/C (excludes Λ0s directly from target)

• CAeneintime < 0.5 Gev (prevents energy loss in beamhole)
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• RCeneintime < 0.5 Gev

Invariant Mass Cuts:

• mKL→π+π−π0 > 0.55Gev

This cut eliminates the background from the Kaon decay into a π+π−π◦. The

event is considered a 3π Kaon decay located at the charged vertex where the

two charged tracks are pions. The invariant mass is calculated and the event

is kept if it is greater than 0.55GeV.

• |mpπ− − 1.115684| < 0.015GeV

Muon System Cut:

• Neither charged track is allowed to match a muon counter hit.

6.3 Data and MC comparison

Fig 6.3 through 6.9 show Data and Monte Carlo comparisons of various distribu-

tions. From those plots, we can see that the comparison between data and Monte

Carlo simulated events of Ξ◦ → Λ◦π◦ decay showed reasonably good agreement for

Trigger 11.

We know that KTeV Monte Carlo V5 05 doesn’t simulate the Hadron-Anti

veto correctly. Trigger 10 uses HA. For trigger 10, we can see there is some

discrepancy between data and Monte Carlo. We deal with the Hadron Anti effects

as a systematic error for our analysis. Please refer to Section 2.9.
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Figure 6.3: Monte Carlo vs. Data for the 2 γs’ Energy from π◦ → γγ
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Figure 6.4: Monte Carlo vs. Data for γs’ x,y positions on the CsI calorimeter.
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Figure 6.5: Monte Carlo vs. Data for p+ and π− momentum.
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Figure 6.6: Monte Carlo vs. Data for Pp/Pπ− and E/P for π−
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Figure 6.7: Monte Carlo vs. Data for vertex ZΛ0 and ZΞ◦
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Figure 6.8: Monte Carlo vs. Data for Pt2Ξ◦ and Ξ◦ mass
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Figure 6.9: Monte Carlo vs. Data for XΞ◦/ZΞ◦ and XΛ0/ZΛ0
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6.4 Acceptance and Flux

The normalization mode acceptance has been determined by generating Ξ◦ → Λ◦π◦

decay Monte Carlo events. Different Monte Carlo samples (4,000,000 each) have

been generated for trigger 10 and trigger 11.

Using the notation as we discussed in the beginning of this chapter, N ′
mode for

the event number after the analysis cuts and Amode for the cuts acceptance, We

can simply write a flux equation for our case.

FLUXmode =
N ′

mode

Accmode

× 1

BRmode

× Prescale (6.4)

BRmode is the branching ratio. For example, from PDG book, the Ξ◦ → Λ◦π◦

decay mode Branching Ratio is (99.54±0.05)%, the Λ◦ → pπ− decay mode Branch-

ing Ratio is (63.9± 0.05)%. Prescale is 7 for trigger 11 data, and 1 for trigger 10

data.

6.4.1 Flux calculation from Trigger 11 events

Trigger 11 study:

Trigger 11 Monte Carlo acceptance studies:

Generated L2 Accepted Accepted After Cuts acceptance(%)

Λ0π0 3,999,908 1,132,839 186,601 4.665

Trigger 11 Tape Data studies:
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Accepted Events after Cuts Acceptance Corrected Events

Λ0π0 1,279,299 27,423,344±5,237

We got 1, 279, 299 Ξ◦ → Λ◦π◦ trigger 11 tape events after we applied the same

cuts as for Monte Carlo events. Based on the acceptance we got from the Monte

Carlo simulation which is 4.665%, we got the number, 27, 423, 344, which shows

us how many the Ξ◦ → Λ◦π◦ events were seen by the KTeV detector subjected

to the prescale factor 7. If we multiply this number with prescale factor 7, and

divide it with the Branching Ratio of Ξ◦ → Λ◦π◦ (0.9954) and the followed decay

Λ◦ → pπ− (0.639), we get the total cascade flux about (301.8 ± 1.3) millions.

6.4.2 Flux calculation from Trigger 10 events

Trigger 10 study:

Trigger 10 Monte Carlo acceptance studies:

Generated L2 Accepted Accepted After Cuts acceptance(%)

Λ0π0 3,999,906 1,106,337 184,170 4.604

Trigger 10 Tape Data studies:

Accepted Events after Cuts Acceptance Corrected Events

Λ0π0 3,767,458 81,823,779±9,046

In the trigger 10 case, we got 81, 823, 779 Ξ◦ → Λ◦π◦ trigger 10 tape events

after we applied the same cuts for Monte Carlo events. Based on the acceptance
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we got from the Monte Carlo simulation which is 4.604%, we got the number,

81, 823, 779, which shows us how many the Ξ◦ → Λ◦π◦ events were seen by the

KTeV detector. If we divide it with the Branching Ratio of Ξ◦ → Λ◦π◦ (0.9954)

following by Λ◦ → pπ− (0.639), we get the total cascade flux about 128.6 millions.

We can see the there is a big discrepancy between these two Ξ◦ → Λ◦π◦ fluxs

(301.8 Million vs 128.6 Million). As we discussed before, the trigger 10 has a

Hadron Anti component which will veto a lot of cascade decay events if the pi in

the decay products could be seen by HA.

In our analysis, we have a lot of trigger 11 events. We will use the flux number

obtained from trigger 11.

For a discussion of the rough correction I used for the Hadron Anti Veto Effects

when doing the branching ratio calculation, please refer sec 8.5.



Chapter 7

The Signal Mode Ξ◦ → Λ◦π◦γ Analysis

When talking about the weak radiative hyperon decays, such as Σ+ → pγ, Ξ◦ → Λ◦γ,

phycisists paid attention to its large asymmertry which is contrary to the expec-

tations based on Hara’s theorem [2] from the 60’s.

Compared to our normalization mode Ξ◦ → Λ◦π◦, the radiative Ξ◦ decays are

more difficult to study. Theoretically, these decays are difficult because of the

involvement of weak, electromagnetic, and strong forces.

For the decay mode Ξ◦ → Λ◦π◦γ, the γ from the Ξ◦ has pretty small momentum

phase space. It is very easy to be faked by the accidental/background soft γ.

Also the estimated Branching Ratio of Ξ◦ → Λ◦π◦γ is very low. This gives more

experimental difficulties. Up to now no experiemts have reported a branching

fraction measurement for this decay mode.

In this chapter, I will report the search of the weak radiative hyperon decay

Ξ◦ → Λ◦π◦γ using the KTeV detector.

108
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7.1 The Reconstruction Methods

Figure 7.1 shows the topology of the signal decay in the KTeV appratus. It is

very similar to our normaliztion mode except here we have one more γ in our final

state.

p

-

Magnet Kick

CsI 

Ξ

π

π
γ

γ

γ

Λ 0

0

0

Figure 7.1: The Schemtic Drawing of decay mode Ξ◦ → Λ◦π◦γ

As we did for the normalization mode, we can use the π◦ method to find the Z

of the Ξ◦ decay vertex.

z = (
∆

mπ0

)
√

E1E2 (7.1)

The use of the equation is just as we discussed in the normalization mode

Ξ◦ → Λ◦π◦ study. At first you assume two γs are the decay products from the

π◦. Then use the formula to find the Z vertex of the Ξ◦ decay particle. From

the spectrometer system, we know the Λ vertex. Based on the information of the
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spectrometer, one can use the Λ momentum and extrapolate it to z coordinate of

the Ξ◦ vertex. The next job is to add another γ to the event and try to get the

invariant mass.

Because we have more than two decay γ s, things become more complicated.

We know that we have 3 neutral clusters, two of them are the instant decay

products of π◦, and the other is from the Ξ◦. We have to find some ways to guess

the correct π◦ combination.

In our data analysis, we also compared the two ways to reconstruct the events,

one is the π◦ method and the other is CG method. Figure 7.2 shows the compara-

sion of these two methods. After investigation of these 2 methods, we selected the

π◦ method. This plot is the result of reconstruction methods using Monte Carlo

simulated Ξ◦ → Λ◦π◦γ events. We found that the π◦ method is dramatically better

than CG method in the Ξ◦ vertex identification. Correct vertex finding is crucial

for the event reconstrution.

7.2 Same Cuts for Signal Mode Ξ◦ → Λ◦π◦γ and Normal-

izatoin mode

In addition to the L1, L2 and L3 trigger which was applied to the events, we

need more cuts to identify the decay mode correctly during data analysis. For

easier understanding, we will present my cuts sequentially. At first, we applied

the standard cuts to the data (the preselected data with much looser cuts). This

produces a much smaller data sample, on which we did the further analysis and

applied more cuts.
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Figure 7.2: The π◦ method is better than CG method. In these plots, the horizon-

tal-axes are the recontructed z coordinates of vertices, and the vertical-axes are the

corresponding monte carlo information of vertices. The three plots on the left side

(using π◦ method) have better shape than the right three plots (using CG method).

The cuts I applied here are the same as the final cuts I applied to 99 Data which

I will discuss in the following sections.
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The list below is the part of the cuts for our signal mode.

General Cuts:

• Events only have exactly two tracks, one is a positive charge track, the other

is a negative charge track.

• The position of the proton at the CsI face must be inside one of the beam

holes by at least 1 cm, and the position of the π− is outside of the beam

holes by at least 1 cm.

• All the γ positions are at least 15 cm away from the π− position on the CsI

• All the γ positions are at least 15 cm away from each other on the CsI

Vertex Cuts:

• 95.0m < ZΞ◦ < 158.0m (vacuum decay region)

• 95.0m < ZΛ◦ < 158.0m, and ZΛ◦ > ZΞ◦

• 0.001240 > |xΞ◦/zΞ◦ | > 0.000376

• 0.000430 > |yΞ◦/zΞ◦ |

• 0.001240 > |xΛ/zΛ| > 0.000376

• 0.000430 > |yΛ/zΛ|

Momentum and Energy Cuts:

• For two tracks, the momemtum ratio p(+)/p(−) > 3.0 to eliminate Kaon

decays to 2 π
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• For the negative charged track, the energy deposited in CsI and Monmentum

ratio is < 0.9 to eliminate electrons.

• 110Gev/c < |pp| < 500Gev/c and 5.0Gev/c < |p−π | < 100Gev/c

• For the neutral clusters, Eγ > 3.0 GeV, and
∑

Eγs > 18GeV

• PtΛ0 > 24.5MeV/C to eliminate primary Λ◦

This cut is discussed in the chapter of the background study. Please refer

the section 8.1 and Figure 8.1.

• CAintime−engy < 0.5GeV (The intime energy deposited in CAs less than 0.5

GeV).

Please refer the 1st plot in the Figure 7.3.

• RCintime−engy < 0.5GeV (The intime energy deposited in RCs less than 0.5

GeV).

Please refer the 2nd plot in the Figure 7.3.

Invariant Mass Cuts:

• mKL→π+π−π0 > 0.55Gev

This cut eliminates the background from the Kaon decay into a π+π−π◦.

The event is considered to be a Kaon decay into two charged-track pions.

The invariant mass is calculated, and the event is kept if it is greater than

0.55GeV.

• |mp+π− − 1.115684| < 0.015GeV
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Muon System Cut:

• Neither Track is allowed to match a muon counter hit.

7.3 More Cuts: Find π◦ γ combination

• Number of neutral clusters is exactly 3.

For the signal mode, we have 3 γs, two of them from the π◦, so we have to try the

3 possible combinations for the π◦’s two gammas. In this analysis we only keep

the events with 3 neutral clusters, otherwise more γs would cause many more pair

combination problems.

We call the clusters γ1, γ2, and γ3, where γ1 has the highest energy followed

by γ2 and γ3. We should try all 3 combinations for π◦ (π◦ → γ1 + γ2 etc.), and

identify one as the desired combination for the π◦.

Here is an example, for the π◦(γ1,γ2) combination. If the event satisfies these

requirements, I will say it is a canditate:

• (ZΛ − ZΞ◦(12)) > 0

Here ZΞ◦(12) is obtained from the assumption that the π◦ → γ1 + γ2.

• 95.0 m< ZΞ◦(12) < 158.0 m

• PtΛ0π◦γ < 25MeV/C.

Please Refer the 3rd plot in the Figure 7.3.

• mΛ0π◦ < 1.30.

Please Refer the 4th plot in the Figure 7.3.
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Figure 7.3: CA and RC Intime Energy Cuts; PT(Λ0π0γ) and M(Λ0π0) cut



116

In the Figure 7.3, the bottom 2 plots show us the PtΛ0π◦γ cut and mΛ0π◦ cut.

These plots are made on the Monte Carlo Ξ◦ → Λ◦π◦γ events which were subjected

to the cuts we discussed so far. We will keep about 89% of the events after we

apply the Pt cut, and will keep about 98% of the events after we apply the mass

cut. Here the mass cut is pretty loose. More restrict mass cut on the events are

applied later when the events can be seen much more clearly.

After we tried these three possibilities and subjected them to the above cuts,

there were several possible γ combination candidates for the pion. We got Fig-

ure 7.4 using our real tape data. From Figure 7.4 we can see that about 90% of can-

didates were coming from the combination of the choice π◦(γ1γ2) and π◦(γ1γ3).

For simplicity, we can keep and study only the candidate choice π◦(γ1γ2) and

π◦(γ1γ3), without losing many of the candidates. After this investigation, we

apply other cuts to the analysis:

• π◦ → (γ1γ2) or π◦ → (γ1γ3)

• If the event satisfies both combinations, we will drop this event.

From Fig. 7.4, this cut will sacrifice about 2% of the total events, but for

simplicity in doing analysis we used this one.

7.4 Drift Chambers Cuts

In order to keep our events clean we used additional Drift Chamber hit cuts.

We know that the Drift Chamber reconstruction used some criteria as listed

for the intime good hits:
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Figure 7.4: The Possible π◦’s gamma combinations, from tape data

• The sum of drift distances in the two complementary planes (SOD) equaled

6.35 mm.

• Only the earliest hit in multiple hits was recorded if they were within the

same time window of 235 ns.

This increases the probability that we got the correct hit.

In drift chamber selections we should try to avoid any unclean events. For

example if there were 3 or more charged particle passing through the up stream

DCs and some of them were kicked out after DC1 and DC2 by the magnet, then

only 2 charged particles might stay in the decay region and be recorded by DC3

and DC4. Obviously it is possible that this kind of event could fake our event

signal requirement of “only two charged tracks”.

So we should try to insure the Drift Chambers have no extra hit(s) except the

two we wanted, one for proton, and the other for π−. In our case, we compared
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the x and y coordinate of the hits in the DCs with the ones of the proton and π−.

If the differences are larger than 1.5 cm, the we thought it was an extra hit.

The Fig. 7.5 shows us the Up Stream and Down Stream Drift Chambers’ Extra

Hit for the Data with the cuts so far. We can see most ( 93%) of the events have

pretty clean DC hits, we can set the Extra Hit < 2 for up stream and down stream

chambers.

• The Extra Hit of Up Stream and Down Stream < 2

Figure 7.5: The Up Stream and Down Stream DCs’ Extra Hit frequency distru-

bution.

7.5 Rejection of Accidental Photons in the Calorimeter

The time profile of the clusters allowed us to reject some accidental particles. It is

a very useful cut to help us to prevent an accidental cluster from faking a radiative
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photon. This cut would reduce the background contribution from the decay mode

Ξ◦ → Λ◦π◦ with accidental γs and others.

Since the DPMTs measured charge from phototubes every 19 nsec, we could

compare the fraction of energy in each 19ns slice as shown in Fig 7.6. Here

19 nsec operation in the DPMT was synchronized with the accelerator RF. The

protons incident on the target occupied only the first 2 nsec period in each RF

bucket. Thus the secondary particle production was also synchronized with the

RF timing. The time profile of the pulse generated by particles for the in-time RF

bucket was always the same. After adjusting the DPMT readout phase, roughly

85% of energy deposited by an in-time particle was contained in the first in-time

slice from the CsI.

In the KTev analysis code, there are two arrays, ADCSI EARLY(nclus) and

ADCSI INTIM(nclus). The Units were DPMT counts above the pedestal, summed

over all crystals in a cluster. The ADCSI EARLY(nclus) recorded the ADC counts

of one early slice of each cluster, and ADCSI INTIM(nclus) recorded the ADC

counts of the first in-time slice. For good in-time clusters, we should expect

very small counts in the ADCSI EARLY(nclus) and large counts in the AD-

CSI INTIM(nclus). Based on this, we can safely discard the events for which

the early slice has large counts, or the first in-time slice has small counts.

For the non-accidental photon candidate, the CsI cluster energy deposited in

the first in-time RF bucket must be well above pedestal. We studied the AD-

CSI INTIM(nclus) in the Ξ◦ → Λ◦π◦ sample. The Fig 7.7 compares the energy-

vs-time profiles of the accidental photons and the non-accidental photons. We
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reconstructed the normalization mode Ξ◦ → Λ◦π◦ with the cuts I discussed in the

previous chapter. After that, we got the plots of ADCSI INTIM(γ1, γ2) and

ADCSI INTIM(accidental γ) if the event had an accidental γ.

We can see that there is a very big difference between the accidental γ histogram

and the other γs which were decayed from a π◦. Based on this study, We apply

the below cut to our signal mode, since the hardware response to the intime γ and

accidental γ should be same.

• ADCSI INTIM(intime γs) > 200

We also studied the ADCSI EARLY variable, but we found out that it was not

helpful to move the accidental γ in our case.

Slice
IntimeEarly 19ns

4 slices for one event

Slice

Figure 7.6: Schematic picture of time profile of a pulse at DPMT. The DPMT

read out the charge every 19 ns which was synchoronized with accelerator RF.
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Figure 7.7: The in-time cluster energy distribution in Ξ◦ → Λ◦π◦ data sample.

The accidental gamma uses the solid histogram, and the other two γs from π◦ use

the dot histogram.
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7.6 MΛ0π◦ Cut Discussion

Fig. 7.8 shows the distribution in MΛ0π◦ for tape data and Ξ◦ → Λ◦π◦ Monte

Carlo which are subjected to the cuts so far. The unshaded histogram was made

using tape data with previously described cuts so far. The shaded histogram was

made using MC events for Ξ◦ → Λ◦π◦ which contains 2 or more neutral clusters.

Most data events at this point are background from Ξ◦ → Λ◦π◦. Most of these

background events can be removed by applying a cut on MΛ0π◦ :

• MΛ0π◦ < 1.272

This plot was obtained after applying most of the cuts listed before. I used

arbitrary normalization of the MC events used in the plot.

7.7 TRD Cuts

We require there were exactly 2 tracks. One is for the proton with positive charge,

and the other is for the pion with negative charge. It is true that there are still

possible electron tracks left even though we applied the cut e/p < 0.9 before. These

electrons could bremslstrahlung to form a 3rd cluster. To enhance the purity of the

pions and to get rid of the mis-identified electrons, we use the TRD information

[57]. We know that the TRD was designed to discriminate between electrons and

pions. Please refer section to 2.4.

For simplicity, we randomly picked one tape (UPH032) for the purpose of the

investigation as a sample, and studied the TRDLIKE variable. The TRDLIKE

variable [57] means the pion likelihood, i.e., the likelihood of the particle being a
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Figure 7.8: This plot of 3-cluster data with all cuts applied except coplanarity, pt

cuts, and TRD cuts that are described later. More than 280 million Monte Carlo

Ξ◦ → Λ◦π◦ events were generated for the cross-hatched histogram. We applied the

pre-selection cut of MassΛ0π◦ < 1.30 before plotting, so you can see the sharp edge

of the right side.
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pion or not. As is the general way for KTeV analysis, we use 0.95 < eop < 1.05

as electron signature, and eop < 0.9 as π− signature. In our notation, eop stands

for ratio of energy over momentum for the particle. In the Fig. 7.9, the dash-line

is for electron, and the solid histogram is for π− as identified using eop (the ratio

of energy over mementum). We used the TRD cut in our analysis as follows:

• TRDLIKE < −5

This TRD cut with eop ratio cut can give a discrimination of over 500:1 for

the separation of pion signals and electron signals.

7.8 Coplanarity Cuts Discussion

Figure 7.1 shows the topology of the decay in the KTeV apparatus. We know

that the difference for Ξ◦ → Λ◦π◦γ and Ξ◦ → Λ◦π◦ is that our signal mode has an

extra γ compared to our normalization mode. For 2-body decay, Ξ◦ → Λ◦π◦, the

momentum vectors of the three particles in our lab system must be in the same

plane, but it is not necessarily true for our signal mode Ξ◦ → Λ◦π◦γ. We try to

use this property to distinguish those 2 modes here.

We define the coplanarity like this:

coplanarity = cos(θ) =
(p⃗π◦ × p⃗Ξ◦) · (p⃗Ξ◦ × p⃗Λ◦)

|p⃗π◦ × p⃗Ξ◦ | · |p⃗Ξ◦ × p⃗Λ◦ |
(7.2)

There are other choices for the definition of coplanarity. The reason we choose

this one is that this one is more sensitive in our analysis. In our signal mode, the

extra γ will not carry much momentum because of the limited phase space of this

decay mode.
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Figure 7.9: The TRD Likelihood study for tape data sample.
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Ideally, for Ξ◦ → Λ◦π◦ case, the coplanarity should be equal to 1 (measuring

error will produce a secondary peak at -1), but this is not always true for signal

mode Ξ◦ → Λ◦π◦γ. Figure 7.10 shows the coplanarity of our Monte Carlo events

which have been subjected to the cuts discussed so far. For the better visual

effects, the plot only shows you part of the cosθ plot. We can see the difference of

these two cases. The shape for our signal mode is much scattered. We put another

cut for our data:

• We require for our signal mode events |coplanarity| < 0.985.

We hope we can get rid of 51% of the background of Ξ◦ → Λ◦π◦ with a loss

of 21% of our signal events.

7.9 4 Candidate Events

The data used for this study were obtained using trigger 10 and 11 from the 1999-

2000 period of data, spanning the runs 14625 to 15548. The data were searched

with the standard KTeV analysis package version 5.05 with the seleciton criteria

described in the previous sections.

From all these data only 4 events were found that are considered candidates.

These events are shown in Table 7.1 which gives us the RunNum, EventNum,

the reconstructed invariant mass, the transverse momentum, and trigger informa-

tion. All 4 events were shown in Fig [7.12 - 7.15] using the standard KTeV event

display program with the name of kdisp. The Fig. 7.11 shows us a plot of the

reconstructed Ξ◦ mass versus pt of the reconstructed Ξ◦.
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Figure 7.10: The Coplanarity for reconstructed Ξ◦ → Λ◦π◦ and Ξ◦ → Λ◦π◦γ Monte

Carlo Events
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A Monte-Carlo study of this signal mode was performed with version 5.05 of

the KTeV Monte-Carlo simulation package and it is shown in the two bottom plots

in Fig. 7.11.

In the Fig. 7.11, the top plot shows us the 4 candidate events’ mass peak, and

the bottom plot shows us the Monte Carlo events which are subject to the same

cuts which were applied for the data.

Table 7.1: The detailed information of these 4 candidate events.

RunNo. EventNum InvMass Coplar Pt(Mev) Pπ−(GeV ) Trig10 Trig11

14745 56283695 1.315457 0.9287 15.64 25.1 -1 0

14853 12796658 1.313265 0.9297 4.67 48.4 -1 0

14986 5783654 1.315632 0.9715 19.35 24.6 -1 -1

15310 80192848 1.316296 0.6923 8.09 36.9 -1 0
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Figure 7.11: The bottom two plots are the Data reconstructed mass peak and it

mass vs. momentum kick (PT); the above two plots are the corresponding ones

for Monte Carlo.
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Figure 7.12: The KTeV event display for a typical Ξ◦ → Λ◦π◦γ event. This event

is very clean and is one of our 4 candidate events
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Figure 7.13: The KTeV event display for a typical Ξ◦ → Λ◦π◦γ event. This event

is very clean and is one of our 4 candidate events
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Figure 7.14: The KTeV event display for a typical Ξ◦ → Λ◦π◦γ event. This event

is very clean and is one of our 4 candidate events



133

Figure 7.15: The KTeV event display for a typical Ξ◦ → Λ◦π◦γ event. This event

is very clean and is one of our 4 candidate events



Chapter 8

Background and Hadron Anti Correction

Most background decays were studied by Monte Carlo Simulation which includes

accidental gammas. They were generated using KTeV Monte Carlo version 5.05

and at a level higher than 10 times the statistics needed for their actual background

level contribution.

8.1 Lambda Background

We studied the Primary Lambda decay Λ◦ → pπ−. We know that the KTeV target

also generated a lot of primary Λs when the proton beams hit the BeO target.

We consider this mode also as one of our main backgrounds here. We study the

reconstructed square of transverse momentum of the Λ, and if Pt[Λ0] < 0.0245,

then we will not keep these events. With high possibility, this is a primaryΛ decay

event. In the Figure 8.1’s right plot which is for Monte Carlo sample of the signal

mode, with this cut we can keep 93% of our signal mode events intact, and get

rid of 92% of primary lambda decay Λ◦ → pπ− events in the left plot. These two

plots are made in the same cut stage, i.e., after the Level 1 , Level 2 and Level 3

trigger and my pre-selection cuts. Combined with other cuts which are used in our
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analysis such as Pt[Ξ0], we didn’t find any of these background events. The plot

was made from the Monte Carlo simulation of Λ◦ → pπ− and our signal mode.

• The cut here: Pt[Λ◦] > 0.0245.

Figure 8.1: The cut for primary Λ decay.

8.2 Cascade Backgrounds

8.2.1 Ξ◦ → Λ◦π◦ followed by Radiative Lambda decay Λ◦ → pπ−γ

Because it has the same final decay products, the decay mode Ξ◦ → Λ◦π◦ with

Radiative Lambda decay Λ◦ → pπ−γ is considered as one of our main backgrounds.

Its BR of Ξ◦ → Λ◦π◦ with Λ◦ → pπ−γ is about (99.522%×8.4×10−4 ≈ 8.36×10−4).

Based on the paper by S. Barshay and R. E. Behrends [58], we wrote our

Monte Carlo generator for radiative lambda decay and incorporated it into the
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KTeV Monte Carlo.

We generated 4M events, which is about 16 times more than the number of

these events in these runs based on the 301.8M Ξ◦ flux we determined earlier.

This decay mode has the same final decay products as our signal mode, and we

deem it as a main background for our study. This background is easy to remove

by some reconstructed mass cuts. We compared the mass[pπ−] and mass[pπ−γ]

for the signal Monte Carlo sample and this background Monte Carlo sample.

From Figure 8.2, you can see the histogram’s difference. The top two plots are

for the mass[pπ−] and mass[pπ−γ] for our signal mode Monte Carlo sample. The

bottom two plots are for the mass[pπ−] and mass[pπ−γ] for this background mode.

As we stated in the section 7.2, we used the cut:

• |mp+π− − 1.115684| < 0.015GeV

Using this cut, we can cut about 47% of these background events out. Also here

we needed to use a new cut:

• mpπ−γ > 1.14.

Using the mass cut mpπ−γ > 1.14 will get rid of 100% of the background events,

and we lose no signal in this way.

8.2.2 Ξ◦ → Λ◦π◦ followed by Λ◦ → pπ− plus accidental one γ

This decay mode is our normalization mode. As we stated before, the difference of

the normalization mode and signal mode is only the γ, so the tail of the normal-

ization mode due to large measuring error makes us uncomfortable. Background

from the tail of Ξ◦ → Λ◦π◦ followed by Λ◦ → pπ− and a background γ might fake



137

Figure 8.2: The top two plots are for the mass[pπ−] and mass[pπ−γ] for our signal

mode MC; the bottom two plots are for the mass[pπ−] and mass[pπ−γ] for this

background mode MC. The arrows in the plots are the cuts to accept or cut the

events.
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our signal mode. In order to get rid of this background, we used these cuts:

• If |mΛ0π◦ − 1.3145| < 0.09 and PtΛ0π◦ < 0.001 in any one of the three

combinations of π◦, we will assume these events could be Ξ◦ → Λ◦π◦. If they

satisfy these cuts, we will drop the event. The reason why we choose 0.09GeV

is that this is within 3σ of the reconstructed invariant mass of normalization

mode using real data.

• Also we used the coplanarity cut before to get rid of this background. It was

discussed in this chapter, in section 7.8.

8.2.3 Ξ◦ → Λ◦π◦ followed by Λ◦ → pµ−νµ plus accidental one γ

The BR of Ξ◦ → Λ◦π◦ with Λ◦ → pµ−νµ is about 1.56 × 10−4. We generated

1 million events. This number is more than 20 times bigger than the expected

number. Since this decay mode has a µ− in the final state, we know that it is a

very penetrating particle. Usually it will hit the muon counters which were located

at the most down-stream part of the KTeV detector. We applied the cut to require

that “Neither Track is allowed to match the muon counter hit”. This cut is very

useful. For those MC events generated, after I apply all cuts discussed previously,

there is no background from these events left.
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8.2.4 Ξ◦ → Σ◦γ followed by Σ◦ → Λ◦γ and Λ◦ → pπ− plus an accidental γ

This configuration also gives the same final particles as our signal mode. The BR

of this mode is: 3.33 × 10−3 × 100% × 63.9% = 2.13 × 10−3. We study this decay

using the CG method to find the vertex, because here we cannot use the π◦ method

to find the vertex. In this background mode, we use the invariant mass of Σ to

cut the events out. Also we know that other cuts like coplanarity cuts, and vertex

cuts in our signal mode analysis (we require 2 γs to give the π◦ invariant mass and

get the vertex) also contribute to supress this background. We generated 500K

MC events of this kind. We applied our cuts to that MC data, and no background

remained in this analysis.

8.3 Kaon Backgrounds

8.3.1 KL → π+π−π◦

The long lived kaon decaying into KL → π+π−π◦ is one of the most relevant back-

grounds for our analysis, mainly because the number of kaons in the experiment is

huge (about 500 time the number of Ξo). To generate the number of events using

Monte Carlo for this decay would requre too much computing time and capacity.

This is one of the dominant KL decay modes with a branching ratio (BR) of

12.56% and could be a background when the positive pion goes down the beam hole

and is mistakenly called a proton. This background can easily be indentified and

removed. The cuts mKL → π+π−π◦ > 0.55Gev, |mpπ− − 1.115684| < 0.015GeV

to keep the events, the timing cut to reject the accidental γs (see the section 7.5),
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and the charged vertex transverse mometum cut are effective for removing these

events.

To measure this background level of charge symmetric KL → π+π−π◦ decays, it

is not feasible to use the Monte Carlo to generate the number of events for this de-

cay. The solution of this problem was to use data itself to simulate KL → π+π−π◦

background. We employed a wrong-sign charge analysis to measure the background

level. The wrong-sign analysis of KL → π+π−π◦ used the symmetry between π+

and π−. It consisted of selecting events having a negative high-monemtum particle

in the beam satisfying the proton selection criteria and a positive low-momentum

particle in the calorimeter satisfiying the π− identification criteria. This technique

took advantage of the symmetry between π+ and π− in KL → π+π−π◦ decay and

of the suppression of anti-hyperon production at the KTeV facility; the Ξo pro-

duction rate being an order of magnitude smaller than the Ξo rate [59].

This method is perfect to investigate the contribution of KL → π+π−π◦ back-

ground and the corresponding anti-hyperon decay. There were no background

events seens from the wrong sign charge analysis after applying all selection crite-

ria.

8.4 Backgrounds After Selection Criteria

Backgrounds from Kaon and hyperon decays are studied for possibly faking the

Ξ◦ → Λ◦π◦γ.

From the study, the main background is from our normalization mode (Ξ◦ → Λ◦π◦

with Λ◦ → pπ−). We generated 280M events (about 30M/tape), and there were
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no background events of this kind left in our analysis. Also for all the other modes

which we listed previously, there were no background events left either after they

were subjected to all the cuts.

8.5 Hadron-Anti correction for the candidate events

First, we pointed out the Hadron-Anti problem when we did the normalizaion

mode Ξ◦ → Λ◦π◦ analysis. We know that the bank of scintillator hodoscopes,

called “Hadron Anti” (HA), was used to reduce the trigger rate by vetoing the

events producing charged pions. In particular, in our normalization mode and

signal mode, the HA frequently vetoed on the pions from the decay of lambda,

Λ◦ → pπ−. In our data, Trigger 10 included the HA veto (Trigger 11 did not).

It means that a lot of Trigger 10 events were vetoed out, and in the current

MC version the HA effects were not implemented. As we have noticed, all the 4

candidate events are trigger 10 events, we need to make some correction when we

do the branching ratio caculation. In this section, we present the methodology for

estimating the HA effect on the trigger 10 data.

Since the Hadron-Anti was not part of Trigger 11, by using Trigger 11 Ξ◦ → Λ◦π◦

data we can study the correction of HA efficiency versus the π− momentum. As-

sume that N(11) is the total number of Ξ◦ → Λ◦π◦ events with Trigger 11 latch

ON (Trigger 10 could be either ON or OFF), and N(11•10) is the number of events

with Trigger 10 and 11 on. From section 3.4, we can see that the major difference

between these two triggers is the Hadron-Anti requirement. If trigger 11 fires and

trigger 10 doesn’t fire, it is only because of the veto from the Hadron Anti.
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From the studies of the cascade flux in section 6.4, we have a table for

Ξ◦ → Λ◦π◦ events that were tagged by Trigger 11.

Trigger 11 Tape Data studies:

TotalTrig11 Trig11 • Trig10 Trig11 • Trig10

Λ0π0 1,279,299 688,311 590,988

The Figure 8.3 shows us the π− momentum distrubution of the Trigger 11

data subject to the HA’s effects. The hollow histogram is for all Trigger11 data,

and the hatched histogram is for Trig11 • Trig10 (Both Trigger 11 and 10 are

ON) data. From this Figure, we can clearly see the HA effects on the Ξ◦ → Λ◦π◦’s

Trigger 11 data. We can conclude that the same effects must exist in the Trigger

10 data, since both Trigger 11 and Trigger 10 data that we are studying have the

π− as a decay particle.

We have constructed the table 8.1 for each bin in the Figure 8.3. From the

column of efficiency, we can see that with the π− momentum increasing, more

events will be vetoed out by HA. It is true since higher momentum π− would

more easily pass through the Calorimeter and hit the HA scintillator and leave a

sufficiently large veto signal.

Based on the efficiency which was calculated in the above table, we can rea-

sonably make a correction for our 4 candidate events using the HA veto effects for

the Trigger 10.

The Run Number, Momentum and other information about these four events

are shown in table 8.2.
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Table 8.1: The HA effects for Ξ◦ → Λ◦π◦ Trigger 11 data.

Momentum Range (GeV) TotalTrig11 Trig11 • Trig10 Efficiency

(0,5] 1 1 100.0%

(5,10] 2909 2455 84.4%

(10,15] 54673 43052 78.7%

(15,20] 134773 96169 71.4%

(20,25] 170587 109200 64.0%

(25,30] 177331 101604 57.3%

(30,35] 172390 89234 51.8%

(35,40] 157273 75254 47.8%

(40,45] 133625 59767 44.7%

(45,50] 103094 44215 42.9%

(50,55] 71912 29335 40.8%

(55,60] 45585 17902 39.3%

(60,65] 26525 10132 38.2%

(65,70] 14539 5256 36.1%

(70,75] 7489 2586 34.5%

(75,80] 3604 1213 33.6%

(80,85] 1713 559 32.6%

(85,90] 748 225 30.1%

(90,95] 329 91 27.7%

(95,100] 130 40 30.8%
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Figure 8.3: HA effects on π− momentum distrubution for the Trigger 11 data

Table 8.2: The detailed information for these 4 candidate events.

RunNo. EventNum InvMass Pt(Mev) Pπ−(GeV ) Trig10 Trig11

14745 56283695 1.315457 15.64 25.1 -1 0

14853 12796658 1.313265 4.67 48.4 -1 0

14986 5783654 1.315632 19.35 24.6 -1 -1

15310 80192848 1.316296 8.09 36.9 -1 0
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Also from table 8.1, we have used the HA effects for the corresponding π−

momentum range for the 4 candidate events.

Momentum Range (GeV) Efficiency

(20,25) 64.0%

(25,30) 57.3%

(35,40) 47.8%

(45,50) 42.9%

Each trigger 10 event is corrected with the corresponding efficiency in the table

8.1 and then summed over these events. After considering the Hadron Anti effects,

we get 7.73 Events.



Chapter 9

Systematics

We will describe the systematic errors in our analysis in this section. There are

several important sources of systematic errors. The most important one is caused

by the Monte Carlo Generator problem. Also the cuts I used could bias the results.

I will discuss them separately.

9.1 Old and New MC Comparison

Because there are no published theoretical calculations in the literature about our

signal decay mode Ξ◦ → Λ◦π◦γ, when we did the analysis initially, we used the

generic Monte Carlo generator which is called GENBD8 in the CERN Library for

our 3-body decay. Basically this generator assumes that the events are uniformly

distributed in its phase space, and of course it may not be a good approximation.

Later, Prof. Charles J. Goebel at the University of Wisconsin Madison did a

theoretical calculation for us in which he assumed all radiation came from changes

in the hyperon magnetic moments during the decay Ξ◦ → Λ◦π◦γ. You can refer

the appendix A for the calculation.

Based on his calculation, we developed a new Monte Carlo generator in our
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analysis. Since the theoretical calculation is not published, we are going to list the

results based on these two Monte Carlo generators in this thesis, and also do some

comparison of these two Monte Carlo generators. We will use any discrepancy as

one measure of the systematic error.

In the Fig. 9.1, the top two plots show us the angular distribution between the

γ and the π0 in the Ξ0 CM system. In each of the plots, the histogram shows

the distribution of the MC samples without any cuts applied. The dashed lines

show accepted events after the cuts, and the arrows are the values of cos(θ) of 4

candidate events. The bottom two plots show us the different number of Monte

Carlo events which passed the same cuts for 1 Million Monte Carlo Ξ◦ → Λ◦π◦γ

events. We can see big different acceptances (1.12 × 10−3vs.2.15 × 10−3) for the

new and the old Monte Carlo generators for the same cuts.

9.2 Systematics by Monte Carlo Simulation

The first issue here is the Monte Carlo of our signal mode Ξ◦ → Λ◦π◦γ. Because

there is no published theoretical literature about this decay mode, initially we

used the isotropic n-body decay model with the name of GENBD8 to simulate the

events from KTeV standard Monte Carlo. We stated in our previous section 9.1

that based on the Prof. Goebel’s theoretical calculation, we made a new Monte

Carlo generator. We assume the different efficiency corrections obtained using

these two M.C. programs are a measure of our main systematic error.

After we applied all the cuts to the 1 Million Monte Carlo events, we got pretty

different results for the two Monte Carlo generators. As we know from Section 8.5,
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Figure 9.1: Comparasion of the NEW Monte Carlo and Old GENBD8 Monte

Carlo for Ξ◦ → Λ◦π◦γ. The upper two plots are the Cos(θ) between γ and π0.

The bottom two plots are the reconstructed Ξ mass subjected to the same cuts on

1 Million Ξ◦ → Λ◦π◦γ Monte Carlo events. These plots are in the arbitray scales.
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we got 7.73 candidate events after the hadron anti correction. For the calculation

of BR, we used the Ξ flux from Section 6.4 which is 301.8 Million, based on a

trigger 11 analysis.

From the Table 9.1, we can see a big difference in the BR calculated by using

efficiencies from these two M.C. programs. We estimate a systematic error from

the M.C. to be half this difference, and it is ±0.48 × 10−5.

Table 9.1: Systematics caused by difference of the Old MC and the NEW MC

Generator.

Old GENBD8 MC NEW MC

MC Events After Cuts 2152 1196

Efficiency 2.152 × 10−3 1.196 × 10−3

Efficiency Corrected Events 3570 6425

Branching Ratio 1.19 × 10−5 2.14 × 10−5

9.3 Systematics by Selection of the Cut Values

Also the systematic error could be caused by the selection of the cut values we

applied. We will express our concern about several severe cuts like the coplanarity

cut, the pt cut and the TRD cut. In the following analysis, we will discuss the

Branching Ratio results without using these cuts. The invariant Λ0π0 mass plot

for events without these three cuts was already showed at Figure 7.8.

In the Fig. 9.2, we plot the re-constructed mass peak for the Λ0π0γ invariant
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mass for the Old and New Monte Carlo and for Data on the tapes. All of them

are subjected to the same cuts. A background appears because we have not used

the final three cuts mentioned above. As we illustrate in the 3rd plot, we used a

very simple and effective way to do the background subtraction.

In these 3 plots we used 3Mev for each mass bin. We will calcalate the back-

ground level in the two side bands of the third plot, and linearly fit the background

level, and then subtract the fitted number from the center band in the plot. For

the better background and signal ratio, we consider the areas of less than 1.310

Gev and larger than 1.319 Gev as our side bands. For the left side band, i.e.

[1.271, 1.310], there are 16 events in these 13 bins; for the right side band, i.e.

[1.319, 1.343], there are 6 events in these 8 bins. Based on this, we say that there

are 1.23 background events per each left bin, and 0.75 events per each right bin.

Linearly interpolating we find that there is 0.96 background events in the bin of

[1.310, 1.313], 0.94 background event in the bin of [1.313, 1.316], and 0.91 back-

ground event in [1.316, 1.319].

We still need to follow the same procedure as we did in section 8.5 for the

Hadron-Anti correction of the events in the center band [1.310, 1.319]. There are

9 events in these bins. They are listed in the table 9.2. After we do the Hadron

Anti correction for the trigger 10 data (8 of them), we get 14.86 events including

1 trigger 11 event. With the background subtraction, we get 14.86 × (9 − 0.96 −

0.94 − 0.91)/9 = 10.22 events.

We compare the results I got with the current analysis to the results with

all the cuts in my previous discussion in Table 9.3. In Table 9.3, we make
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Figure 9.2: The first plot is the histogram for the constructed mass of Ξ for 1

Million GENBD8 Monte Carlo events. The 2nd plot is for the NEW Monte Carlo

events. The 3rd plot is for the data. In this plot, we show the way we did the

background subtraction. All 3 plots are subjected to the same cuts.
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Table 9.2: The Detailed info. of these 9 candidate events.

RunNue InvMass Pπ−(GeV ) Trig10 Trig11

14745 1.315457 25.08478 -1 0

14853 1.313265 48.43148 -1 0

14956 1.315063 33.49725 -1 0

14986 1.315632 24.62168 -1 -1

15218 1.315668 19.12901 -1 0

15310 1.316296 36.87109 -1 0

15427 1.314119 19.66224 -1 0

15427 1.318065 18.10586 -1 0

15548 1.313911 36.26654 0 -1
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efficiency corrections for both sets of cuts using only old GENDB8 for the events

in the central band [1.310, 1.319]. The two results give BR’s which are different by

0.01× 10−5. We assign half of this values (±0.005× 10−5) as a limit on systematic

error due to our final 3 cuts.

Table 9.3: Systematics caused by some Severe Cuts in OLD GENBD8 MC

With All the Cuts Without Some Cuts

MC Events After Cuts 2152 3442-559

Efficiency 2.165 × 10−3 2.883 × 10−3

Signal Candidates 7.73 10.22

Efficiency Corrected Events 3570 3545

Branching Ratio 1.19 × 10−5 1.18 × 10−5

Also for the NEW Monte Carlo case, we got a similar table 9.4. We used

the same procedure for the new Monte Carlo events without several cuts. We

corrected the event number correspondingly, e.g., we only consider the events in

the central band [1.310, 1.319] as we discussed above. From this table 9.4, the two

BR’s difference is about 0.05 × 10−5. We assign half of this value (±0.025 × 10−5

as a limit on systematic error for this case.

We estimate a systematic error from these 3 cuts to be half the sum of these

two numbers, and it is ±0.015 × 10−5.
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Table 9.4: Systematics caused by some Severe Cuts in NEW MC

With All the Cuts Without Several Cuts

MC Events After Cuts 1196 1969-364

Efficiency 1.196 × 10−3 1.627 × 10−3

Signal Candidates 7.73 10.22

Efficiency Corrected Events 6425 6281

Branching Ratio 2.14 × 10−5 2.09 × 10−5

9.4 Systematics by Polarization Effect

For the unpolarized Ξo decay into spin-1/2 baryon and a spin-0 meson, the longitu-

dinal polarization of the baryon will be proportional to the asymmetry parameter

α. With that baryon decaying into the other final baryon, the angular distribu-

tion of the final spin-1/2 baryon is related to the asymmetry parameter and the

polarization of the decaying particle [12]. In the case of our normalization mode,

we observed there was 7% systematic error if we didn’t consider this effect for

Ξ◦ → Λ◦π◦. In the current Monte Carlo generator I used, we couldnot introduce

this effect. Here we assume this (1.67×10−5×7% = 0.12×10−5) was the systematic

error of our signal mode Ξ◦ → Λ◦π◦γ because of the polarization effect.
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9.5 Summary of all systematics

If we combine all the sysmatics which we discussed in the previous subsections, we

get the total sysmatics is ±0.50 × 10−5.



Chapter 10

Conclusion

10.1 Summary of Results

The decay Ξ◦ → Λ◦π◦γ has been searched for in the 1999-2000 dataset of the

KTeV/E799-II collaboration at FermiLab.

We used the principal decay of Ξ◦ → Λ◦π◦ where Λ decays to a proton and a π−

as the flux normalization mode. We used the isotropic decay model and the new

Monte Carlo model based on the calculation of PDG Page 684 and Prof. Charles

J Goebel to simulate the signal mode Ξ◦ → Λ◦π◦γ. 4 candidate events for decay

mode Ξ◦ → Λ◦π◦γ were observed. Various background events were also simulated

and studied, but no background events were observed. We studied the Systematics

error, and also used poisson statistics from PDG [8] and Feldman and Cousins’

paper [60] to get the statistical error at 90% level with 4 observed events. We got

the Branching Ratio of the decay mode Ξ◦ → Λ◦π◦γ:

B.R. (90%CL) = (1.67 +1.45
−0.80(stat.) ± 0.50(syst.)) × 10−5

B.R. (68.27%CL) = (1.67 +1.16
−0.69(stat.) ± 0.50(syst.)) × 10−5

The BR is the average of that obtained using the efficiency obtained from the
156
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two Monte Carlo programs.

10.2 Prospects

Future experiments must collect more Ξ◦ decays for better observing and studying

this Ξ◦ → Λ◦π◦γ decay mode.

This hyperon weak neutral radiative decay mode was not well-studied theo-

retically or experimentally in the past. Hopefully, later theorists will pay much

more attention to it and develop a more complete theory about it. Based on that,

more accurate Monte Carlo simulation can be done and a more precise branching

fraction can be achieved.



Appendix A

A theoretical calculation of BR for the decay

Ξ◦ → Λ◦π◦γ

This work is done by combining PDG [8] 864 and a calculation of Prof. Charles

J. Goebel at the Physics Department of University of Wisconsin-Madison.

A.1 Hyperon nonleptonic decay fundmentals

The amplitude for a spin-1/2 hyperon decaying into a spin-1/2 baryon and a spin-0

meson may be be written in the form

M = GF m2
π · uf (A − Bγ5)ui (A.1)

where A and B are constants [61]. Starting from this expression, we have

ui =

 χi

0

 (A.2)

uf = (
Ef + mf

2mf

)

 χf

(σ·pf )

Ef+mf
χf

 (A.3)

where χi and χf are two-component spinors. Thus
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M = GF m2
π(

Ef + mf

2mf

)1/2(Aχ†
fχi + Bχ†

f

(σ · pf )

Ef + mf

χi) (A.4)

We now define p̂ = pf/|pf |, s = A, and p = |pf |B/(Ef + mf ). Thus we get

M = GF m2
π(

Ef + mf

2mf

)1/2[χ†
f (s + pσ · p̂)χi] (A.5)

The transition rate is proportional to

|χ†
f (s + pσ · p̂)χi|2 = tr[(

1 + σ · nf

2
)(s + pσ · p̂)(

1 + σ · ni

2
)(s∗ + p∗σ · p̂)] (A.6)

Evaluating the trace by standard means, we find that the transition rate is pro-

portional to

Γ = 1 + γnf · ni + (1 − γ)(nf · p̂)(ni · p̂) + α(nf + ni) · p̂ + βp̂ · (nf × ni) (A.7)

where the p̂ is the unit vector in the direction of the final baryon mementum, and

nf and ni are unit vectors in the directions of the initial and final baryon spins.

The parameters α, β, and γ are defined as

α = 2Re(s∗p)/(|s|2 + |p|2), (A.8)

β = 2Im(s∗p)/(|s|2 + |p|2), (A.9)

γ = (|s|2 − |p|2)/(|s|2 + |p|2) (A.10)

where s = A and p = |pf |B/(Ef + mf ); here Ef and pf are the energy and

momentum of the final baryon. The parameters α, β, γ satisfy

α2 + β2 + γ2 = 1 (A.11)
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A.2 Ξ◦ → Λ◦π◦Decay Rate

For decay Ξ◦ → Λ◦π◦, we consider the unpolarized case for Ξ0. From the previous

section, the transition rate for Ξ◦ → Λ◦π◦ is proportional to

tr[A + Bσ · p]2
.
= 2(A2 + B2p2) (A.12)

where we use tr1⃗ = 2, trσ⃗ = 0 and trσ⃗σ⃗ = 2⃗1

Use the Golden Rule, and let’s integrate the whole phase space. We get

Γ = 2π
2(A2 + B2p2)

v · 2ω
vd3pδ(ωp − ∆)

(2π)3
(A.13)

=
1

π
(A2 + B2p2)p|ωp=∆ (A.14)

Where MΞ −MΛ ≡ ∆ in our notation, and p is the momentum of particle π in the

Center of Mass system of Ξ.

A.3 Ξ◦ → Λ◦π◦γDecay Rate

In the following calculation for the decay rate of Ξ◦ → Λ◦π◦γ, we will use the static

approximation method. We have the decay diagram like A.1. The decay has two

possible components, and we have two parts in the amplitude formula.

If we assume radiation originates exclusively from the hyperon magnetic mo-

ment, the amplitude of the decay is like

(A + Bσ · p)√
v · 2ω

(σ · k × ϵ)√
v · 2k

µΞ

(−k)
+

(σ · k × ϵ)√
v · 2k

(A + Bσ · p)√
v · 2ω

µΛ

k

=
1√

4v2ωk3
[µΛ{Aσ · k × ϵ + Bp · k × ϵ + iBσ · (k × ϵ) × p}

−µΛ{Aσ · k × ϵ + Bp · k × ϵ − iBσ · (k × ϵ) × p}]
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Figure A.1: We have two possibilities for the decay diagram of Ξ◦ → Λ◦π◦γ.

=
1√

4v2ωk3
[{(µΛ − µΞ)Ak × ϵ + i(µΛ + µΞ)B(k × ϵ) × p} · σ

+(µΛ − µΞ)B(p × k) · ϵ] (A.15)

The transition rate is proportional to tr|above|2

tr|above|2 = 2[{DA∗k × ϵ − iSB∗(k × ϵ) × p}

·{DAk × ϵ − iSB(k × ϵ) × p}

+D2B∗B(p × k · ϵ)2] (A.16)

Where D = µΛ − µΞ and S = µΛ + µΞ. We will use the below formula to evaluate

the transition rate

∑
ϵ

(k × ϵ) · (k × ϵ) =
∑

ϵ

k2ϵ2 − (k · ϵ)2 = 2k2 (A.17)∑
ϵ

(k × ϵ) · (k × ϵ × p) = 0 (A.18)
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∑
ϵ

[(k × ϵ) × p]2 =
∑

ϵ

(k · p)2ϵ2 + k2(p · ϵ)2

= 2(k · p)2 + p · (k2 − k · k) · p

= (k · p)2 + k2p2 (A.19)∑
ϵ

(p × k · ϵ)2 = (p × k)2

= p2k2 − (p · k)2 (A.20)

Let’s integrate the whole phase space. We got

ΓΞ◦ → Λ◦π◦γ
dΩ

=
2π

4v2ωpk3

∫ ∫
[2D2A2k2 + S2B2k2p2(1 + C2)

+D2B2k2p2(1 − C2)]
v2d3kd3pδ(ωp + k − ∆)

(8π3)2
(A.21)

Simplify the intergal a little bit. We got

ΓΞ◦ → Λ◦π◦γ
dΩ

=
1

32π4
[2A2D2 + B2p2{(S2 + D2) + (S2 − D2)C2}]

(∆ − ω)

ω
p2dp|k=∆−ω (A.22)

In our expression, we have

C ≡ k · p
kp

, (A.23)

∆ ≡ MΞ − MΛ, (A.24)

S ≡ µΛ + µΞ, D ≡ µΛ − µΞ, (A.25)

m2 + p2 = (∆ − k)2 ≡ ω2 (A.26)

where µΛ, µΞ are the magnetic moments, MΛ and MΞ are the invariant masses of

particle Λ and Ξ which you can get from PDG. k and p are the momentum of the

radiative γ and π0 during the process of the decay.



163

Using the following integral formulas helps to evaluate the transition rate in

the above formula

∫ x2dx√
x2 + a2

=
x

2

√
x2 + a2 − a2

2
log(x +

√
x2 + a2) (A.27)∫ x4dx√

x2 + a2
=

x3

4

√
x2 + a2 − 3a3

4

∫ x2dx√
x2 + a2

(A.28)

After integrating the solid angle and momentum phase space, We can get the result

Γ
(Ξ◦ → Λ◦π◦γ)

=
1

8π3
[2A2D2{∆2

√
∆2 − m2

2
− (∆2 − m2)3/2

3

−m2∆

2
log

(∆ +
√

∆2 − m2)

m
}

+B2(
4S2

3
+

2D2

3
){∆2(∆2 − m2)3/2

4
− 3m3∆2(∆2 − m2)1/2

8

−(∆2 − m2)5/2

5
− 3m5∆

8
log

(∆ +
√

∆2 − m2)

m
}] (A.29)

Where A, B are the constant which you can get from the measurement of α, β or

γ. m is the mass of π0. Other variables are with the same meaning as disscussed

before.

A.4 Ξ◦ → Λ◦π◦γ Branching Ratio

In the previous sections, we got the decay rate Eq. A.14 and Eq. A.29 for decay

modes Ξ◦ → Λ◦π◦ and Ξ◦ → Λ◦π◦γ. Since the decay Ξ◦ → Λ◦π◦ is well studied,

from the ratio of these two decay rates we can get the Branching Ratio of the

mode Ξ◦ → Λ◦π◦γ.

From PDG, we know the α = −0.411. We assume that φ = 0 which is not

quite 210 ± 120 as listed in the book. Using the Eq. A.8 to solve the equation, we
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got the relation for A and B. B = −3.5683A. We assume A = 1 and B = −3.5683

in our calculation. We can get two solutions for solving equation from α. The

reason why we choose this solution is that only it agrees with the values of γ in

the particle data book [8].

In the natural unit, h̄ = c = 1, the nuclear magneton µN = eh̄/2mp = e/2mp,

we can get

µ2
N =

e2

4m2
=

πα

m2
p

(A.30)

because of

α =
e2

4π
(A.31)

In the calculation, we changed the unit of µ and other variables to the natural

unit. We have all the variables like this

A = 1 (A.32)

B = −3.5683 (A.33)

m ≡ 0.1349766Gev (A.34)

∆ ≡ MΞ − MΛ = 0.19915Gev (A.35)

S = µΞ + µΛ = (−1.250 − 0.613)µN = −1.683µN (A.36)

D = µΞ − µΛ = (−1.250 + 0.613)µN = −0.637µN (A.37)

When we input these number into the the decay rates Eq. A.14 and Eq. A.29,

we get

Γ
(Ξ◦ → Λ◦π◦

)
= 5.294 × 10−2 (A.38)

Γ
(Ξ◦ → Λ◦π◦γ)

= 9.6543 × 10−8 (A.39)
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Based on this, we get that the Branching Fraction of Ξ◦ → Λ◦π◦γ is

BF (
Ξ◦ → Λ◦π◦γ

Ξ◦ → Λ◦π◦ ) = 1.824 × 10−6 (A.40)
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