[image: image2.jpg]™ cancer Biomedical
caBIG" “informatics ria™

an initiative of the National Cancer Institute.

Software Requirement Specifications Document
DOCUMENT CHANGE HISTORY
	Version Number
	Date
	Contributor
	Description

	Vx.x
	
	
	

	
	
	
	

	
	
	
	

** Note to Document Author – Red and blue text in this document is directed at the template user to list process, build standards and help build the document. The text should be removed before submitting any formal documentation, including both draft and/or final, deliverables. ****

TABLE OF CONTENTS

3Background/Summary

Introduction
3
Document Overview
3
Related documents
3
Application System Diagram
4
Application Core Data
4
Release Overview
4
Definitions
4
caBIG requirements
5
Vocabularies and Data Elements
5
Environment
5
Application Functional Requirements
6
New user creation and login
7
New User Registration
7
Logging into the System
7
Retrieving Forgotten Password
7
Contacting Administrator
8
APPLICATION QUALITY (aka NON-functional) requirements
8
GUI Specifications
13
Security Requirements this is one of the QRs
13
Audit this is a Functional Requirement (or multiple FRs) associated with one or more non-user actors and should therefore be documented as part of a Use case Specification
15
Database schema how did we get to this relaitvely low-level design/implementation level in an SRS?
16
Requirement Change Management
17
GLOSSARY
17

Background/Summary

<<Insert project background and summary information>>

Introduction
Document Overview

The System Requirements Document (SRS) document includes detailed functional requirements for the system on ‘what’ are the behaviors based on specified end-user use cases as well as non-functional requirements such as GUI, quality & performance, usability and system behavior requirements that directly or indirectly impact the system.

<<Insert document overview information and approach in developing the Requirements to meet the key project goals. Please describe your methodology for both Functional and Quality Requirements>>
 Related documents

<<Insert other reference document(s) with location>>
	Document Name
	Version
	Location

	Vision & Scope doc.
	
	

	Use Case Specification Doc.
	
	

	Requirement Traceability Matrix
	
	

	Architecture Doc.
	
	

	Quality Requirements Specification Document
	
	

Application System Diagram

<<Insert block diagram that depicts the different functional units of the system and the actors who perform those functions. Add reference to architecture document for more info. If applicable.>>

I think we should require that this document be expressed in UML, e.g. Deployment Digram, etc. so that all documentation becomes representable in standardized normenclature.

Application Core Data

<<Insert core data categories and/or dependencies with access privileges.>>

Release Overview

<<Insert the scope and objectives of the project with release information.>>

	Release
	Date Released
	Version comments

	
	
	

	
	
	

	
	
	

Definitions
Developers and Adopters are expected to clearly understand on the definitions and agree upon the ranking of the definitions used with any given requirement.

MUST - This word means that the definition is an absolute requirement of the specification.

MUST NOT - This phrase means that the definition is an absolute prohibition of the specification.

WILL - This word means that the definition is an absolute future requirement of the specification.

WILL NOT - This phrase mean that the definition is an absolute future prohibition of the specification.

SHOULD - This word means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.

SHOULD NOT - This phrase means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

MAY - This word means that a requirement is truly optional. The developer may choose to include the item based on the needs of their design.

caBIG requirements

<<Insert common requirements that may have direct dependency and/or constraint to build standards and inherit requirements from caBIG requirements. For examples, see below. >>

Vocabularies and Data Elements

	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Environment
All caBIG projects must be platform and database-independent applications. In the case of caTISSUE Core, it means it should be possible to run it on any operating system, should support any database and should work on any web browser.

However, considering the large number of combinations of test scenarios, caTISSUE Core must at least be certified on the following scenarios:

	Operating system
	Solaris 2.8

	
	Windows 2000, NT, XP

	
	Linux

	Database
	Oracle 9i, 10g

	
	MySQL 4.1

	Browser
	Netscape 7 and above

	
	Internet Explorer 5 and above

	Java
	1.3.1 and above

	R #
	Environment
	Application must support the environments outlined in above table

	
	
	

	
	
	

	
	
	

	
	
	

Application Functional Requirements
<<Insert application specific requirements that may have direct/indirect dependency and includes ALL user workflow. Add reference to Use Case Specification document as appropriate and include all the use cases in the functional requirements. Please list each requirement for each step of the workflow. >>
<<Use or refer to responsibility based UML activity diagrams including the documentation of ObjectsWithState (datagrams) that occur between activities and lists dependencies with Forks if applicable to split and merge into two parallel processes.>>

Note: Some examples are listed on the following pages. The formatting should be mimicked.
[image: image1.png]Cu

@-»{_Decide to order book)

m

WattorBook orger) (Process Grea Gara)
Order Arrved

Getaox) (Coethproval)

approved

Tprice OK]

‘Send Box to Customer

Enjoy book

New user creation and login

<<Insert description of this functional section. See below for an example.>>

This section describes the requirements for the following four functionalities:

1. Registration of new users

2. Logging into the system

3. Retrieving forgotten password

4. Reporting a problem without logging into the system

New User Registration
<<Insert description>>
The following requirements describe this process of ……..

	R #
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Logging into the System
<<Insert description>>
The following requirements describe this process of Logging into the System:

	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Retrieving Forgotten Password
<<Insert description>>
The following requirements describe this process
	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

Contacting Administrator
<<Insert description>>
The following requirements describe this process
	R #
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

APPLICATION QUALITY (aka NON-functional) requirements
<<Insert application specific non-functional (Quality) requirements that may have direct/indirect dependency. Non-functional requirements include GUI specifications, Security requirements, Performance criteria, availability requirements, etc. Quality Requirements, in order to be testable and verifiable must have an associated Fit Metric and a given QR may have a Use Case-specific FM, i.e. may be associated with multiple UCs, each with a different FM (e.g. Performance or Usability QRs often have different FMs depending on the specifics of the associated UC).>>

Please refer to below list of the 18 common quality requirements that may be associated with functional requirements and/or use cases.

1. Availability

Definition: The amount or percentage of time that the System is available for use by the users. Availability may be negatively impacted by a variety of events including, but not limited to, user error, hardware failure, external system events, unavailability of support personnel, etc.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

2. Compatibility

Definition: The ability of the System under discussion to appropriately interact with others systems in its context.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

3. Completeness

Definition: For the domain of the System, the allowable maximum number or percentage of errors of omission.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

4. Correctness

Definition: The allowable maximum number or percentage of errors of commission

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

5. Cost of ownership/Return on Investment

Definition: The total costs (direct and indirect) of owning the System.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

6. Environmental

Definition: The environmental conditions in which the System must function
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

7. Extensibility

Definition: The use of the System in the same context with additional functionality.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

8. Installation Complexity

Definition: The combination of direct or indirect costs of the installation of the System

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

9. Parallel Processing

Definition: The ability of the System to fulfill requirements simultaneously using duplicated rather than shared resources.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

10. Performance
Definition: A measure of user expectations of System response times.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

11. Portability

Definition: The ability of the System to fulfill its requirements in more than one operating environment.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

12. Regulatory

Definition: The specific regulation(s) with which the System must be compliant.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

13. Reusability

Definition: The use of the System in a different context with the same functionality.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

14. Scalability

Definition: The ability of the System to fulfill its requirements for increasing numbers of users, transactions, etc.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

15. Security

Definition: The requirements of the System with respect to access control and/or other context-specific security rules and or regulations.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

16. Time To Market

Definition: The statement of the time at which the System must become available to and operable by its intended users.
Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

17. Training Complexity

Definition: The combination of direct or indirect costs for the training of the System’s users.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

18. Usability

Definition: The measurement of how often, how efficiently, and/or correctly people use the System.

Statement of Requirement:

Fit Metric/Success Criteria:

Rank:

Some examples are listed below.

<<IF quality metrics have been used within Use Cases, please refer to those with detailed fit metric.>>

GUI Specifications
The following is a list GUI requirements to include the design, layout and usability.
	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Security Requirements this is one of the QRs
<<Insert security requirements based on user roles and responsibilities. >>
The following table contains the different kinds of user groups. (For example see below.)
	Administrator
	· Is a "super-user" who manages the application
· Has privileges to submit, edit, disable, and query all types of data in the system.
· Approves and manages user registration process.
· Has a privilege to add and modify a new module.
· Has a privilege to see all the identified data.

	Supervisor
	· Is similar to Administrator but does not have access to administrative functions.
· Has a privilege to submit, edit and disable participant and module data in the system.
· Has read only privilege to administrative data.

	Technician
	· User role assigned to an individual who is in-charge of entering data into the system.
· Handles curation, storage and distribution of samples.
· Has access to only de-identified data.

	Collector
	· User role assigned to an individual responsible for the physical collection of samples.

· Is not expected to use the system and hence does not have any access privileges

· Will be used only to fill the COLLECTED_BY data element of collection event parameter of that specimen.

	Public
	· Anyone having general research interest

· Has read-only access to aggregate data

Table 1
Application must address following security privileges by using the caBIG CSM module.

	R#
	Req. Name
	Requirement details

	Req. #
	System level Privileges
	Application must address system wide privileges by creating predefined roles and by assigning appropriate privileges to the roles. Error! Reference source not found. lists the predefined roles and associate privileges.

	Req. #
	Proprietary Privileges
	Application must address proprietary privileges by assigning the read only permission on proprietary data to specific user or group of users.

Note that the default security assignment is that all actors can view all de-identified records and that the owner of the data would need to specify that the data is not “global view” and have to restrict view to designated users.

For example, When an actor (clinician) registers a COLLECTION PROTOCOL then view privileges for that COLLECTION PROTOCOL and all children objects (SPECIMEN COLLECTION GROUP, SPECIMEN, SPECIMEN EVENTS) can be restricted to specific actors (clinicians, scientists). The exception is the administrator actor and other actors defined as technicians/supervisors.

	Req. #
	Regulatory Privileges
	Application must address regulatory privileges by reveling only de-identified data to unauthorized user.

For example, an actor (clinician) enters a PARTICIPANT onto a COLLECTION PROTOCOL. The clinician has access to all identified information for that PARTICIPANT, but does not have access to identified information for other PARTCIPANTs or to identified information for that same PARTICIPANT with respect to a different COLLECTION PROTOCOL

	Req. #
	Cascading Privileges
	It must be possible to propagate the privileges down in the hierarchy for the children objects when a particular privilege is applied to its parent object.

For example, READ permission on a COLLECTION PROTOCOL enables the READ permission to all specimens collected under that protocol.

	Role\Data
	Administrative Data
	Participant Data
	Biospecimen Data

	Administrator
	Add / Edit / View
	Add / Edit / View
	Add / Edit / View

	Supervisor
	Identified View
	Add / Edit / View
	Add / Edit / View

	Technician
	De-identified View
	De-identified View
	Add / Edit / View

Audit this is a Functional Requirement (or multiple FRs) associated with one or more non-user actors and should therefore be documented as part of a Use case Specification
The system must be possible to audit each and every user action that results in database access (read or write). Examples include: add/edit administrative or biospecimen data, user login, query, distribution, and so forth.

The audit information must contain the following information:

1. User who performed the action

2. IP address of the computer from which the action is performed.

3. Timestamp of action

4. Object and data element (i.e. table name and column name)

5. Previous value and current value of the data element

** Note that the audit table must contain one entry per data element. In case of some use cases like edit or disable, there might be more than one entry in the audit tables per user action. For example, user updates more than one data element in one edit action.

<< Sample constraint: The administrator is the only actor who has access to read the audit data. The administrator will use the query interface to read the audit data.>>
	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Database schema how did we get to this relaitvely low-level design/implementation level in an SRS?
<<A script must be supplied to create the application Core database schema in an automated manner. The script must create all the necessary objects like tables, indexes, tablespaces, and any other database constraints. A separate script for each adopter should be supplied for creation of default users, roles and access privileges that is required for setting up the dependant setup and schema.>>
The following are the requirements foe the database schema:

	R#
	Req. Name
	Requirement details

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Requirement Change Management

<<Insert detailed process and workflow to manage change in requirements. See table example below for details that are required.>>
The following is the change configuration log for this document:

	Date
	Submitted By
	Change type
	Change ID
	Change Details
	Status

	02/08/2006
	K. Holland
	Modification
	RCM_1
	RC_Login_002 – Modified the requirement to allow unregistered users to view only records.
	Approved

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

GLOSSARY
<<Insert data definitions used for the application.>>

	Term
	Definition

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

<<Project Name- Institution Name>>

Updated � DATE \@ "MMMM d, yyyy" �July 31, 2006�

PAGE
2

