

Preliminary One-Year Outocome After Sirolimus-eluting Stent Implantation The j-Cypher Registry Update

Takeshi Kimura MD. Kyoto University Hospital
Kazuaki Mitsudou MD. Kurashiki Central Hospital
Masakiyo Nobuyoshi M.D. Kokura Memorial Hospital
on behalf of the j-Cypher Registry Investigators

Disclosure

Takeshi Kimura

Grant Cordis Cardiology Japan

Baseline Characteristics

j-C)	PHER e	-CYPHER	P Value
	N=5115	N=15157	
Age	68 <u>+</u> 10	62 <u>+</u> 11	0.0001
> 80 y.o.	12 %	4 %	0.0001
Male	75 %	78 %	0.0005
Clinical presentation			0.0001
Stable Angina	54 %	42 %	
UAP / NSTEMI	14 %	33 %	
STEMI	7 %	13 %	
Silent Ischemia / C	MI 19 %	10 %	
Coronary Stenosis	5 %	3 %	
Off-label Use	80%	N.A.	

Urban P, et al. Circulaion. 2006;113:1434-1441.

Baseline Characteristics

j-CYPHER e-CYPHER P Value N=5115 N=15157

Prior MI	29 %	30 %	0.11
Prior PCI	53 %	29 %	0.0001
Prior CABG	8 %	11 %	0.0001
Multi-vessel Disease	55 %	57 %	0.0001
Diabetes	44 %	29 %	0.0001
On Insulin	10 %	10 %	1.0
CKD (CCr < 60)	51 %	N.A .	
Hemodialysis	6 %	N.A.	
Hx of Heart Failure	13 %	N.A.	
PVD	12%	7 %	0.0001
Hx of Stroke	9 %	3 %	0.0001

Procedural Characteristics					
	CYPHER e - N= 7690 I	CYPHER 1 N=18295	P Value		
Stent length / lesion (mm)	29.0 ± 15.5	N.A.			
Stent length / pt (mm)	41.2 ± 27.4	27.3 ± 16.1	0.0001		
Direct stenting	24 %	34 %	0.0001		
IVUS use	41 %	N.A.			
Pressure at deployment (atm)	17.6 ± 5.2	14.3 ± 2.8	0.0001		
Post-dilation	41 %	21 %	0.0001		

Current Anti-thrombotic Therapy Adjunctive to Cypher Stent Placement in Japan Intra-procedure Unfractionated Heparin 5000 - 10000 U **Pre- and post-procedure** Aspirin 81 - 200 mg indefinitely Ticlopidine 200 mg / day at least 3 months More contemporary anti-thrombotic agents such as clopidogrel, GP(B)b(D)a antagonists, and bivalirudin are not available.

Stent Thrombosis in j-Cypher

n of pts

at risk

30

60

0

0

5115

90

0.32%

4903

0.53%

4597

120 150 180 210 240 270 300 330 360

Follow-up interval (Days)

0.62%

4240

Stent Thrombosis in j-Cypher

ARC Definite

ARC Probable

Stent Thrombosis in j-Cypher

ARC All Stent Thrombosis

One-Year Mortality in j-Cypher

*j-~pher

All-cause mortality

Cardiac mortality

One-year Event Rate in Selected Subgroups

Predictors of Stent Thrombosis Through 1 Yea (ARC Definite / Probable)

Univariate analysis

Stent thrombosis in 30 patients among 5115 patients

Variables	Present		Absent		P Value
	N	Incidence	N I	ncidence	
	000	0.05%	4000	0 4004	0.0004
I wo stent for difurcation	282	3.05%	4833	0.48%	0.0001
Ostial CX	72	2.93%	5043	0.59%	0.03
Emergency	558	1.96%	4544	0.46%	0.002
Hemodialysis	285	1.52%	4830	0.57%	0.001
LVEF <i>≦</i> 40%	506	1.49%	3896	0.51%	0.03
≥ 2 vessels treated	1000	1.33%	3848	0.41%	0.003
≧ 3 stents used	1125	1.33%	3970	0.4%	0.01
Bifurcation	1284	1.17%	3831	0.44%	0.02
Multivessel CAD	2309	1.05%	2806	0.27%	0.001

Predictors of Stent Thrombosis Through 1 Yea (ARC Definite / Probable)

Univariate analysis

Stent thrombosis in 30 patients among 5115 patients

Variables	Present		Absent		P Value
	N	Incidence	N Ir	ncidence	
СТО	597	1.29%	4518	0.53%	0.09
Concomitant use of BMS	512	1.28%	4584	0.55%	0.12
STEMI	369	1.2%	4736	0.58%	0.24
Unprotected LMCA	193	1.17%	4922	0.6%	0.5
Ostial LAD	277	1.17%	4838	0.59%	0.34
Ostial RCA	196	1.07%	4919	0.6%	0.12
Diabetes (Insulin)	504	1.05%	4611	0.57%	0.3

Predictors of Stent Thrombosis Through 1 Yea (ARC Definite / Probable)

Univariate analysis

Stent thrombosis in 30 patients among 5115 patients

Variables	Present		Absent		P Value
	N I	ncidence	N In	cidence	
Lesion length ≧ 30mm	971	0.98%	4144	0.53%	0.22
Diabetes	2247	0.85%	2868	0.44%	0.12
Vessel size < 2.5mm	1836	0.81%	3279	0.51%	0.25
CKD (CCr < 60 / Non-HD)	2306	0.74%	2524	0.41%	0.1
Off-label use	4115	0.69%	1000	0.32%	0.28
IVUS use	2316	0.64%	2799	0.60%	0.62
Male gender	3818	0.63%	1295	0.59%	0.58
Age ≧ 75	1506	0.57%	3609	0.64%	0.55
In-stent restenosis	1018	0.51%	4097	0.65%	0.89

Predictors of Stent Thrombosis Through 1 Year (ARC Definite / Probable) Multivariate analysis ST 30 patients (0.62%) in 5015 patients **O.R. 95%C.I. P** Value **Factors** 2.05 (1.22 - 3.3) 0.0085 Two-stent approach for bifurcation Hemodialysis 2.04 (1.22 - 3.16)0.009 1.73 (0.97 - 2.82) 0.06 Emergency procedure

Limitations When Comparing Clinical Outcome Between BMS and DES in the Real World

1. Heavy selection bias when using concurrent BMS group as the control group.

2. Marked differences in baseline demographics and improvement in terms of technology, technique and concomitant medical management when using historical BMS control group.

Despite those limitations, however, we should make some comparison in order to be sure that we are not doing harm to our patients by placing DES in the real world clinical practice !!

CREDO-KYOTO PCI/CABG Registry

(Coronary REvascularization Demonstrating Outcome Study in Kyoto) Multi-center (30 centers) registry of patients undergoing first coronary revascularization from 2000 - 2002 excluding acute MI

Interim analysis in 9873 patients

Isolated Coronary	Revascularizatio	on 9389 pts
PCI		6876 pts
Stent Use		82%
Isolated CABG		2513 pts
IMA Use		94 %
CABG combined w	ith other operati	on 484 pts
Mean Follow-up Interv	al of Survivors	1314 ± 452 Days
Follow-up rate at	1 year	97%
-	2 years	95%
	3 years	73%

CREDO-Kyoto Registry 9873 pts

PCI without stent : 1249 pts

Current Analysis 5115 pts

j-Cypher Registry

Prior PCI / CABG : 2826 pts

STEMI : 306 pts

PCI using BMS 5627 pts

PCI using SES 1983 pts

CREDO-Kyoto versus j-Cypher

Baseline characteristics

	CREDO	j-Cypher	p Value
N	5627	1983	
Age	67.5±10.1	68.2±10.4	0.0036
Male	71%	71%	0.65
Emergency	5.9%	7.3%	0.03
Heart failure	12%	12%	0.72
Diabetes	37%	42%	0.0001
Hemodialysis	3.2%	5.0%	0.0003
CCr < 60	39%	49%	0.0001
EF < 40%	6.5%	9.3%	0.0002
Target LMCA	2.0%	4.4%	0.0001
N of target vessel	s 1.31±0.56	1.33±0.58	0.33
Statin Tx at disch	arge 32%	44%	0.0001

CREDO-Kyoto versus j-Cypher

*j-~pher

Target Lesion Revascularization

CREDO-Kyoto versus j-Cypher

*j-c-pher

All-cause Mortality

CREDO-Kyoto versus j-Cypher

Sudden Death

CREDO-Kyoto versus j-Cypher

*j-~pher

Myocardial Infarction

Adjusted Risk of Cardiovascular Events : BMS vs. SES

Adjusted Risk of Cardiovascular Events : BMS vs. SES

Summary

Preliminary One-year Result from the j-Cypher Registry suggests

- Stent thrombosis rate up to 1 year under Ticlopidine anti-platelet regimen in Japan seemed to be lower as compared with those reported from other registries in the real world, despite the fact that high risk patients such as diabetes and CKD were quite prevalent in the j-Cypher registry.
- 2. Although we have data only up to 1 year, attenuation of the rate of stent thrombosis was seen between 6 months and 1 year.
- 3. Two-stents approach for bifurcation and hemodialysis were identified to be independent predictors of stent thrombosis. Other more common factors such as diabetes, CKD not on HD, and multivessel stenting did not adversely affect stent thrombosis.

Summary

Preliminary One-year Result from the j-Cypher Registry suggests

- 4. Extended dual anti-platelet therapy up to 1 year as compared to discontinuation of thienopyridine within 1 year did not have favorable effect on stent thrombosis.
- 5. Compared to a historical control of BMS, PCI using SES in the j-Cypher registry was associated with similar mortality, less myocardial infarction, and strikingly less TLR at 1 year, despite prevalence of more morbid patients such as diabetes, CKD, elderly, and left main stenting in the SES group.