

LOAD ALLEVIATION ON WIND TURBINE BLADES USING VARIABLE AIRFOIL GEOMETRY

Peter Bjørn Andersen, Mac Gaunaa, Christian Bak and Thomas Buhl

Wind Turbine

www.risoe.dk

The variable geometry (or flap)

- 10% chord length
- Allowed deflections +/- 5 deg

Piezo-electric material

The blade – Risoe B1-18

SHOW VIDEO (3min)

Result (step flap)

Risoe B1-18 with flap mounted

Result (step flap)

Result (pitch + flap)

Modelling the TE flap – Mac Gaunaa

- Unsteady thin-airfoil potential model
- Model expansion of camber-line
- Dynamic wake modeled using a series of indicial functions

2D model

SHOW 2D MODEL (2min)

-

Button1	Label1		Label3 Label3	7	CheckBox1					
				Turbulen	s	s1	s2 s	3 1-s1/s2 [%]	1-s3/s2 [%]	
T ^{40cm}					var(Fx)	0	0 0	0	0	
				Sin	var(Fy)	0	0 0	0	0	
Total				10m/s	var(Mtot)	0	0 <mark>0</mark>	0	0	
+20cm					var(Mflap)	0	0			
-10cm					mean(Ex)	0	0 0	0	0	
+0cm		🖪 Quick Screen Reco	rder		mean(Ev)	0	 0 0	0	0	
		File Options View H	elp		mean(M)	0		ů	ů n	
+-10cm			🕸 🏭 🌾 📐	📸 🤌 🛛 –	ocen(Mflee)	0	0 0 0	0	Ŭ	
+-20cm					nean(mnap)	0	Ŭ			
					min(Fx)	0	0 0	0	0	
				akt	tor min(Fy)	0	0 0	0	0	
±-40cm		Etrusoft			min(M)	0	0 <mark>0</mark>	0	0	
		🖳 Quic	k Screen R	ecorder	min(Mflap)	0	0			
		http://www.e	trusoft.com/screen	-recorder/	max(Fx)	0	0 <mark>0</mark>	0	0	
	0cm 20cm				max(Fy)	0	0 <mark>0</mark>	0	0	
Wind T	heta 🛛 🕄 🗍			*	max(M)	0	0 <mark>0</mark>	0	0	
T 24					max(Mflap)	0	0			
± 22										Ĩ
<u>∓</u> 20		Press the Stop Button to	stop recording					Load	Save	
± 18										
1 ¹⁶				Ax 0	Atheta 0		Ax 0	Atheta	0	_
\pm^{14}_{12}				Bx 0	Btheta 0		Bx 0	Btheta	0	-
$\pm \frac{12}{10}$				Cx 0	Ctheta 0		Сх 0	Ctheta	0	-
± 8				A. 0	A		A		0	_
<u>+</u> 6							Pu 10	Aa	10	
<u>+</u> 4				By JO			By [-10	_		
± 2							Uy [·U			
🏄 Start	🧭 ae n wind - Com	Ewec.ppt	O Indbakke - Micros	E:\Peter\dtu\Mast	76 Simulate		wick Scre	en Re	« 🔍 🔍 🔊	8:29 Al
					·					

<u>2D.avi</u>

3D model

3D model structure

- Slender cantilever beam theory
- Blade length 33m
- Known structural data
- Mode shapes and eigenfreq.
 1f,2f,3f,4f,1e,2e,1Θ,2Θ

3D model aerodynamic

- Turbulent wind series "Paul S. Veers"
- Induced velocity "Bramwell"
- Dynamic inflow model "TUDk"
- Tip-loss factor "Prandtl"
- Known static lift and drag
- Dynamic flow "Mac Gaunaa"

3D model control

• SET FLAP ANGLE USING SIMPLE PID FEEDBACK LOOP

Object function: Minimizing equivalent flapwise root moment

<u>3D.avi</u>

3D model results (1)

3D model results (2)

3D model results (3)

Open questions

- Measure flapwise deflection
- Power output
- Gain
- ...

Flapwise root moment convensional flapping moment [kNm] time [s]