

Estimating Photometric Redshifts using Gaussian Process Regression in the Sloan Digital Sky Survey (and 2MASS)

Michael Way (NASA/Goddard Institute for Space Studies) Paul Gazis, Jeffrey Scargle (NASA/Ames, Space Sciences Division) Ashok Srivastava (NASA/Ames Intelligent Systems Division) Les Foster + Students (San Jose State University)

http://astrophysics.arc.nasa.gov/~mway/Stanford-200807.pdf

- What are Photometric Redshifts?
- A quick background on common training set methods
- What is Gaussian Process Regression?
- Do different kinds of Kernels matter?
- Does better quality photometry matter?
- How many galaxies do I need to get a good fit?
- Do SDSS morphological indicators help?

Photometric Redshifts: A **rough** estimate of the redshift of a galaxy without having to measure a spectrum.

$$z_{photo} = z(C,m)$$

 $Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$ z=0.0

 $z_{photo} = z(C,m)$

$$z_{photo} = z(C,m)$$

z~0.06 (18000 km/s)

 $Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$ z~0.6

 $z_{photo} = z(C,m)$

 $Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$ z~0.90

 $z_{photo} = z(C,m)$

 $Z_{\text{spec}} = (\lambda_{\text{measured}} - \lambda_{\text{rest}}) / \lambda_{\text{rest}}$ z~1.10

 $z_{photo} = z(C,m)$

Photo-z methods

- 1.) Spectral Energy Distribution (SED) Fitting:
 - model based approach
 - uses redshifts derived from spectra of artificial galaxies (e.g. Bruzual & Charlot)
- 2.) Training-Set methods:
 - empirical approach
 - uses *spectroscopic* redshifts from a sub-sample of galaxies with the same band-pass filters

Photo-z The Empirical Approach

Training Set Methods need a sub-sample of Galaxies:

- of known spectroscopic redshift
- with a comparable range of magnitudes (u g r i z) to our Photometric survey objects
- These will be our "Training Samples"

"Training Set" Methods

Galaxy Photometric Redshift Prediction History

- Linear Regression was first tried in the 1960s
- Quadratic & Cubic Regression (1970s)
- Polynomial Regression (1980s)
- Neural Networks (1990s)
- Kd Trees & Bayesian Classification Approaches (1990s)
- Support Vector Machines & GP Regression (2000s)

Gaussian Process Regression \Leftrightarrow Kernel Methods

Kernel Methods have replaced Neural Networks in the Machine Learning literature WHY?: given a large # of hidden units => GP (Neal 1996).

Kernel Methods - Gaussian Process Regression

GP regression builds a linear model in a very high dimensional *parameter space* ("feature space" → Hilbert space).

• One can map the data using a function F(x) [kernel] into this high (or infinite) dimensional *parameter space* where one can perform linear operations.

Original Data without Kernel

Mapped Data using Kernel

Data in original space: highly complex decision boundaries.

Data in high dimensional feature space after mapping through F(x) can yield simple decision boundaries.

GP Regression (Kernels)

GP Advantages:

- Small input data training samples (good for higher redshifts?) yet low errors
- Over fitting is eliminated by use of proper priors
- Realistic estimation of individual redshift errors

GP Regression

GP Disadvantages:

- Possibly large CPU time requirements
 - The Kernel (Covariance Matrix) **can** be large: $K=(\lambda^2 I+XX^T)^2$ if X=5x180,000 (our case) then K is a matrix 180,000 x 180,000 and we have: $y^* = K^*(\lambda^2 I + K)^{-1}y$
 - Need to invert this large K matrix O(N³) operation
- Kernel Selection is ambiguous?

GP: Which Kernel??

Using GPs Part I: Pick a transfer/covariance function

Matern Class Fcn Radial Basis Fcn

$$k(r) = \frac{2^{l-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu r}}{l}\right)^{\nu} J_{\nu}\left(\frac{\sqrt{2\nu r}}{l}\right) \qquad \nu \to \infty \qquad k(r) = \exp\left(\frac{r^2}{2l^2}\right)$$

Rational Quadratic Polynomial Neural Nets

$$k_{RQ}(r) = 1 + \left(\frac{r^2}{2\alpha l^2}\right)^{-\alpha} \qquad k(x, x') = \left(\sigma_o^2 + x^T \sum_p x'\right)^p \qquad k_{NN}(x, x') = \frac{2}{\pi} \sin^{-1} \left(\frac{2x^T \Sigma x'}{\sqrt{(1 + 2x^T \Sigma x)(1 + 2x'^T \Sigma x')}}\right)$$

GP Regression How-to

Using GPs Part II: That matrix inversion...

With our SDSS (DR3) Main Galaxy spectroscopic sample (180,000 galaxies) the matrix size is 180,000 x 180,000

- Need a SSI supercomputer with a LOT of ram and cpu time?
- One can take a random sample of ~1000 galaxies & invert that while bootstrapping n times from full sample (Paper I)
- However, some *low-rank matrix approximations* work well (Cholesky Decomposition, Subset of Regressors, Projected Process Approx, etc.)

Results: Other authors

Method Name	σ_{rms}	$Dataset^1$	Inputs ²	Source
CWW	0.0666	SDSS-EDR	ugriz	Csabai et al. (2003)
Bruzual-Charlot	0.0552	SDSS-EDR	ugriz	Csabai et al. (2003)
ClassX	0.0340	SDSS-DR2	ugriz	Suchkov et al. (2005)
Polynomial	0.0318	SDSS-EDR	ugriz	Csabai et al. (2003)
Support Vector Machine	0.0270	SDSS-DR2	ugriz	Wadadekar (2005)
Kd-tree	0.0254	SDSS-EDR	ugriz	Csabai et al. (2003)
Support Vector Machine	0.0230	SDSS-DR2	ugriz+r50+r90	Wadadekar (2005)
Artificial Neural Network	0.0229	SDSS-DR1	ugriz	Collister & Lahav (2004)

GP Regression (Results)

Results: SDSS (DR3) Main Galaxy Sample

- Paper I: Compared linear, quadratic, Neural Networks and GPs on the SDSS
- With ONLY 1000 samples GPs performed well compared to the other methods
- Paper II: With *low-rank matrix inversion approximations* GPs performed better than all other methods

Paper I Results: Comparing Methods

Latest Results: Comparing Methods

 \clubsuit Beyond 20% (~36000) Rank 400 is fairly flat

Main Galaxy Sample 80000 Linear

Main Galaxy Sample 20000 GPR

Main Galaxy Sample 80000 GPR

Luminous Red Galaxies 20000 GPR

LRG 80000 GPR

MGS + 2MASS 20000

MGS + 2MASS 80000

LRG+2MASS 20000

LRG+2MASS 80000

Results?

- Morphology does not *generally* increase accuracy of photo-z estimation *with GPR*
- Better quality photometry and/or removal of error outliers does not help
- Additional Near IR filters (2MASS) increase accuracy
- Galaxy classification helps: MGS vs LRG
- Optimal filters? u-g-r-i-z and j-h-k

