
I) EVI!I.01’MENT AND AI’I’L1CATION OF CONII’OSITN
COMI’J.]1XITJ7 MoI)~}]Js AND A RIH.ATIW COMPI. IE%ITJ’

METRIC IN A SOIUWARE MAINTIZNAN(X ItNVIRONMENT

.lonathan M. I Iops
Radio l~recluency and Micrc~wavc Subsystems (JPl.)

California lnstitutc of Technology, Pasaclcna, California, 91109

JoscplI S. Shcrif
Sof[ware Pro(lud Assurance (J}’].)

California institute of ~’cchnology, Pasadena, California, 91109
and

California State lJnivcrsity, liullcrton, California, 92634

ABSTRACT

A great deal of effort is now being cicvoted to the study, analysis, prediction and

minimi~,ation of software maintenance cxpcckxi cost,]ong before software is dclivcrccl to users or

cus[onm’s.]t hat] been estimated that, on the average, the cffor[spent on sof[warc rnaintcnance is

as costly as the effort spent on all software costs. Software design methods should bc the starting

~Joint to aid in al]cviating the problems of software maintenance complexity and high costs. ‘Iwo

aspects of maintenance deserve attention: (1)protoco]s for locating defects, and rectifying them,

and ensuring that no ncw defects arc introduced in the development phase. of the software process,

ancl (2)protocols for moclifkation, Cnhancc.mcnt ami upgrading.

This paper focuses on the second aspect - mainly, the dcvc]opmcnt of protocols for helping

incrcasc the quality and reduce the costs associated with modifications, enhancements, and /’. . . .
upgrades of existing software. ‘l’his s[duy ckvclopcd parsimonious models and a relative

I U
complexity metric for complexity measurement of software that were used to rank the modules in ‘

1

IIIC sys[c.m, relative (0 each other. Some success was achieved in Hsing the models and relative

metric to identify maintenance prone moclulcs,

1. lntrocluction

A. l’rojcct Ohjcctivcs

~’hc primary objective of this s[udy was to ctcterminc whether sof[ware metrics

could help guide our efforts in the development

systems that wc develop for NASA’s l)ccp

developed control rcccive.rs, transmitters,

and maintenance of the real-time embedded

Space Network. Generally, the systems

e.xcitcrs, and signal paths through the

communication harclwarc. I’hc most conlmcln programming language in our systems is , ,

1’1 ./M for Intel 8080, 8086, ancl 80286 microprocessors; ;and the systems range in siz,c

from 20,000 to 100,000 Nor~-Co~~][~~c.r]tccl 1.incs Of Code (NC] ,OC). Approximately 65%

of the funding received in our environment is dedicated towards extending the life span of

the previously dcvclopcd systems; of this, 15% is spent on finding and fixing defects,

w}lilc 8570 is for adding automation features, adding capabi]itics, and increasing capacity.

~llr CffOrLS have bccJl Succcssflll in that the life span of our systems arc four to

eight years, and incrcasi ng. As su~q~ort for ncw spacecraft becomes necessary, these older

systems arc being used in new ways, thereby increasing the importance of quality, clefcct

free and cost effcctivc Cnhanccnmlts to the. software.]’rotoeo]s and guidance for locating

and rectifying defects in the software sustaining environment were c]ccmcd critical

espccia]ly with the added complications that the people maintaining the systems arc not the

people who originally dcvclopcd thcm and that there is little or no confidence in the

software documentation.

Specifically, wc were looking for ways to identify which modules shou]d bc rc-

c.nginccred, and which modules would need extra ctcvclopmcnt ancl test time in order to

maintain. The prc)blcms we face in our mvironmcnt arc quite common in the industry.
‘J ‘

Sof(ware maintenance cost is about two to four times the original ctcvclopmmt cost, Ilochm \’

I
[3], Glass [13], Fairlcy [10], and Munson ancl Khoshgof(mr [9]. Charcttc [5] cmphasims

the fact (hat 60 to 80 percent of the total sof[warc costs arc rc.late.ct tc) maintenance. This

will]ikc]y remain so for the inclcflnite future [7,] 1, 24].

l;ig[lrc 1 shows the initial cost breakdown in developing a new project

(unfor[unatc]y wilh maintenance costs hicldcn) ancl Figure 2 shows the costs of software

(iuring its life cycle as ctiscusscd by 7.clkowitz [34], Software maintenance is not what

people think it is: Software maintenance actually encompasses fixing software errors in

addition to software enhancements and adcling ncw functions to existing systems, system

conversion, training anti supporting users, ailct improving systems performance [31-33].

Jirror correction, which is oflcn pcrccivcd as the substance of maintcnancc,is only a small ~ /’”

part of the software maintenance cff~rt,]Ickleva [8], and l;ochrn and ~’apaccio [4]. Tab]c]

shows the. distribution of the avc.rage time spent on various maintenance tasks for four

years as reported by I.cnts and Swanson [19]. NTotc that functional c.nhanccmcnt

constitutes the major portion of the tilnc spent on software maintenance. Charcttc [5]

discusses another reason why the cost of software is so high and cites some statistics as

rc.por[ed by the Comptroller General [6] and shown in Table 2. It is reported that only two

percent of the software contracted for coulct work on delivery, three percent could work

after some rework, forty-five percent was delivered but never successfully put to USC,

twenty percent was used but either was extensively reworked or abandoned, and thirty

pcrccnt was paid for but never delivered.

I;or the project dcscribcct here.in, wc took (hcsc steps:

1) dc.tcrminc what the literature suggests;

,2) clcvelop a course< of action to be tried on mm of our opcmtional

systems hopefully as a rcprc.scntativc of all the others;

3) perform the steps allci analyze lhc results.

‘1’hc actions ancl results of taking each of tllcsc steps arc described below.

1] . Suggestions from I,iterature and CoursC of Actiot~

one of the earlier stuclics cncountcrcd pertaining to our objectives was undcriakc.n

by Shcn, Yu, ‘1’hcbaut and Paulsa] [27]. Tl~is stucly asscsscci the potentia] usefulness of

product and process metrics in identifying components of the system which were most

likely to contain errors. Their goal was to establish an empirical basis for the usc of

objective criteria in developing strategies for the allocation of testing effort in the software

.maintcnancc environment. It was found that the number of unique operands, as cicfinc.ci by

IIalstcad [14], was the best predictor of problem reports on modules that were reported

after the initial ciclivery. Aciciitionaily, sinqde mc.tries related to the number of unique

operands, sLIch as the cyclomatic complexity (defined by McCabe [20]), also pcrformc(i

well. Shen et. al., concluded that these metrics arc useful in finding error prone moctulcs at

an early stage.

Kafura and Rccidy [1 7], in 1987, publisheci the results of using software

complexity metrics (iuring the soflwarc maintenance phase of a system, They related SCVCJI

separate rnctrics to the experience of n)ain[cnance activities on medium siz,c systems. ‘J’wo

of the results reported were that the overall complexity of a system grows with time and

that the individual complexity scores of the software modules agree well with the expert

opinions of the programmers. Their conclusion was that metrics could form the control

4

clement in a formal mainlmancc mcthoct,

l]arrison and Cook [15, 16] discusses the clccision, frequently cncountcrcd by

software mainlcnancc pe.rsonnc], of whether 10 make an isolated change in a module or to

totally redesign and rewrite the module anew. ‘1’hcy (icvclopc.d an objcctivc decision rule

10 identify modules which should bc rc.wittcn rather Ihan moclificd. This decision mlc was

whether the total change in 1 lalstcad Software Scicncc Vo]um metric cxcccdcd a threshold

value. ‘1’his threshold va]uc seems to bc subjective since it depends upon the risk-taking

propcmsity and cxpcricncc of the clc.cisicm maker and must bc tuned for a particular

environment.

1.cnnsclius, Wohlin and Vrana 18] discuss the possibility of using complexity

metrics to identify error-prone modules, ancl thus Il~aiI~tcr]al~cc-~~rorlc modules. “1’hcy

su~gmt that a module whose ccmplc.xity lies at least one standarcl ctcviation above the

.acccptab]e mean of complexity of the project may bc consic]crcd as a r~lainteI~aI~cc-l~ronc

module. ‘1’JIc authors however, emphasiz,c that metrics cannot rcp]ace the decision-making

process of software managers.

Rodriguc~, and ‘1’sai [23] usc discriminant analysis to develop a methodology for the

evaluation of software metrics. ‘1’hc authors sllggcst that when classifying units of

software as either complex or normal, more attention is usually paid to the complex group

to either redesign it or test it more thoroughly. ‘1’heir methodology is based on the

assumption of normal distribution ancl homogeneity of variances of the two groups. ‘J’hc

authors considmcd 13 metrics clcpicting IIalstcad’s Software Science Metrics, McCabe

Complcxit y Metrics, and Non-ConInwnted 1.incs of Code (N CI.OC) metrics. I’hcy

conc]uclcd that these metrics arc corrclatccl.

5

Stalhanc [29] ctisc.usscs how to estimate the number of defects in a software unit

from varicms software metrics, and how to estimate the rc.liability of the same software.

l’he author also rcachcs the conclusion that complcxi[y incrcascs as the size of code

incrcascs. Stalhanc asserts Ihat ll]isLll](lclslarldillg the specifications will increase with the

spc.cification comp]cxity and that complexity may bc transfcrrcct to the coctc and thus lead to

lll:lilltcl)allcc-~Jr(}llc complex cmlc and comp]cx modu]cs.

Munson and Khoshgof(oar [21] employ factor ana]y(ic techniques to rcducc the

dimcnsionali[y of the complexity problcm space to produce a set of rcduccct metrics. The

rcducc(i comp]cxity metrics arc subscc]ucntly combincct into a sing]c relative comp]cxity

measure for the purpose of comparing and classifying programs, in particLdar, the relative

complexity metric can bc seen to represent the complexity of a particular software module at

a particular lCVCI of systcm release.. “J’hc authors investigate McCabe Complexity Metrics,

IIalstcad So f tware Scicncc Metlics and Non-Comnlcntccl].incs of (~odc (NC I.[E)

h4ctrics. l’hc comparison of complexity is again of a rc]ativc and sLlbjcctivc natLlrc.

l)indcr and Poorc [2] investigated tbc possibility of inclLlding the nLlmbcr of

commc.nts in the code as a variable in de.tcrminil~g the qLlality of the code. ‘J’hcy assert that

comments only contribute to clLlality when they arc nee.dcd and meaningful. 3’llc authors

suggest a software qLlality mcasLmc called the “1.11-ratio” dcilncct as the ratio of the numbe,r

of Operators to the sum of the number of opcl ands and nLlmbc.r of comments. l“hc authors

agree that their cxpcrimcnts with the “1.11-ratio” ncccl adctitiona] work and refinement since

including the concept of mcaningfu] comments in the formula seems to bc problematic and

sLlbje.ctivc at best.

“1’hc sLlggcstions that were clcdLlccd from these soLmces arc:

1) An csfimatc of errors and reliability can bc determined froln software product

metrics [20, 27, 2.9];

2) Software. product metrics could bc usc.d to find error prone modules and could

form the control element in a formal software maintenance mcthoctology [15-

18];

3) The soflwarc pmcluct metrics tha(may bc consictc.rc.ci include all of 1 Ialstcact’s

Software Scicncc h4c.tries, h4cCabc’s Complexity h4ctric [14, 23, 27], and the

Non-(;ommcnt Source 1.incs of Code (NC1 XX) [21];

4) l:actor analysis can bc used to identify those software measures that arc high]y

and significantly rclatcct to all olhcr measures, ‘1’his economy of description will

facilitate the analysis of software complexity [21],

5) Comments in lhc code contribute to the quality of software [2].

Wc thercfom set fmlh on tllc following coLlrse:

1) l>ctcrminc the 1 lalstc.ad Software Scicncc, h4cCabc Complexity, NCI .CX, and

I .I1-Ratio from sequential releases of a rcprcscntativc software system;

2) Perform factor analysis on the metrics from the software modules to cietcrminc

the unique dimensions I eprescnteci by the metrics;

3) l’repose a model to calculate a relative metric; and

4) Dctcrminc if this metric can ictcntify maintenance prone modules in the software

by using the mean plus one standard deviation as the relative metric cutoff

value.

7

11. NIcthocl, Analysis ancl I{cwlts

A . l<cprescntativc System and Metrics Collection

A. 1. Nature of Software

Wc anal yzcci the source]mgram in the VCI-y 1 .ong Baseline lntcrfcromctry (VI ,131)

Rcceivcr Conlrollcr Software Systcm (VRC), using factor analysis for sixteen software

measures. ‘J’hc soLlrcc program is a real-time embedded system in the rcccivcr-cxcitcr

subsystem of NASA’s (National Aeronautics and

Network (lISN). It serves as a col~~l~lLlrlicatic)~~

configures

Assembly.

OP-c (224

and monitors the status of the hTarrow

Space A(tl~~i~~istlatio~l) 1)ccp Space

intc.rfacc to VI,BI subsystems and

Channel Bandwidth VI .111 Receiver

‘J’hrcc releases of the. systcm software were analyz.exl: 01>-13 (222 modules),

mc)clulcs), and a draft version of 01]-11 (235 modules), I’lICSC were used as a

.rcprcsentativc maintenance project in this study. I’hc source coclc for these three releases

was originally written in P] ./M, but was late.r converted to C using PIX%6 conversion

program (from Micro-Processor Sc.rviccs).

A. 2. Soflwarc Metrics and Measures.

Software Metrics arc quantitative measures of certain characteristics of a

clcvclopJncnt project that can be valuable management and engineering tools. Software

metrics can be used to achieve various project-specific results such as: Predicting sourcc-

codc complexity at the design phase; monitoring and controlling software reliability and

functionality, predicting cost and schedule; and identifying high risk modLdcs, in a software

project [28].

8

1.

2.

3. .

4.

5. .

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

“1’hc sixtc.cn software measures that were used to analyz,c the VI..B1 Receiver controller

(Vl<~) software arc:

1)1

1)2

N]

N2

N

i

v

1;

vG j

VG2

1 .(K

13/(:

,<;>

s],

N(3 XX -

1.ll-Ratio -

number of unique operators

number of {lniqLlc operands

numtmroftotal opc.raters

number of total operands

]cI@l(Nl+ N2)

cstimalecl length = [n I (log2(n 1))+-n2(log2 (n2))]

VO]UI1lC == N * 10g2 (n) v (N] + N2) 10g2(nj + 112).

effort = V/[(2/n J) * (n2/N2)]

Mccabc ~yclonlatic ~omplcxity (number of clccisions -t 1)

extended complexity (clccisions + ANIM 4 01<s -t 1)

lines of code (includes blank an(l comment lines)

number of blank lines -1 number of comment lines

number of executable semi-colons

average maximum lines between variable references

Non comm.ntc.d lir]cs of code = 1 XX - 13/{;

[Nj/(N2-t We)]

‘1’hc first eight measures belong to the I lalstcad software science family of software

complexity measures. IIals{cad [14] uses a series of soflwarc science equations to measure

the complexity of a program basecl on the lc.xical counts of symbols used. Generally, the

measurements arc made for c.ach module, and the total measurements of the modules

const itutc the measurement of the program. 1 lalstcad’s metrics become available on] y after

the coding is done, and therefore can be of usc only during the testing and maintenance

phases. Althoug}l IIalstcad’s metrics are usefLll in determining the complexity of

progrmns, their weaknesses arc that they do not measure control flow complexity, and have

lit[lc predictive valLlc.

Measures number nine ald tcJ~, i.e. VG I and VG2 bclcmg to McCabe and were

adapted from the mathematical cmccpts of graph theory. h4cCabc cyclomatic complexity

metric V(; I is a measure of the, maxinmn number of linearly indcpcndcnt circuits in a

program control graph. “1’hc primary pLlrposc of this metric is to i(ientify soflwarc moddes

that will bc difficult to test or maintain as e.xplaincd by h4cCabc [20]. The value of McCabe

metric is available only after the dctailccl design k done. AlthoLlgh h4cCabc metric is very

LISCfLl] at lllCaSLlril)~ CO1ltlOl fJOW COlllp)e.Xity, itS we.akncss iS t h a t it iS llC)t SCllSitiVC tO

program si~c; for example, if pl ograms of different size arc composed cxclLlsivcly of

scclLm)lial statements, then they may have the same cyc]omatic nLlmbcr.

Mcasw-cs nLlnlbcr clcvcn to fiflecn deal with the si?.c of the program or nLlnlbcr of

lines. AlthoLIgh many rcscarchcrs do not filial this measure as appcalins, Bochm [3] points

.c)ut that no other metric has a clear advantage over NC3.0~ as a metric. It is easy to

measure, conccptua]ly familiar to software dcvclopcrs, and it is used in most productivity

clatabascs and cost estimation models.

McasLwc nLmlbcr sixteen, the “1.}~-Ratio”; is dcfinccl by Binder and Poorc [2] as the

ratio of the nLlmbcr of operators to the SLIIIl of the llLIJllbCr of operands ancl nLlnlbcr of

comments. It appears to captLlre the idea of distingLlishing bctwe.cn nlcaningfLll conmcnts

in the code and jLlst comments in gem] al. “J’hc wcalmcss of this metric is its rcliancc on

defining the number of meaningful comments which seems to be more sul>jective than

c]uantitativc.

10

11. Analysis of’ Data, IVlodcls, and Validation

‘J’hc sixteen software mcasms of the three rclcascs of the (VR~) mclc; (01’-11, OP-

~ and draft C)P-lJ) were analyzed using IJacmr Analysis, Gmc.lation, Analysis of Variance

and Regression Analysis. ‘liable 3 shows t}lc number of nlodLJks and the mean value per

nmciLJlc for each of the sixteen measures. ‘J’ablcs 4-6 show the correlation matrix of the

sixteen measures for the three] clcascs. l’hc data show a high degree of cc~rrclation.

l~xccpt for the measure “1 .B-Ratio”, the rc.maining fifteen measures arc high] y correlated. It

can be seen that the }Ialstead volLJmc metric (V), Mc~abc {;yclomctric ~omplcxity metric

(VG 1) and NC3 .O~ metric arc highly ancl significantly correlated while t}lc 1.J3-Ratio metric

is not. ‘] ’hcsc results agree with what olhcr rcscarchcrs have foLlnd, Ramamur[hy and

Mc]ton [22], Gill and Kc.mcrcr [12], Salilaclzadch and Nandakumar [25], Basi]i and

IIutchins [1],]ivangclist [9] and KafLlra ancl Rcddy [17].

‘1’hc factor analysis matrix is shown in I’able 7. All measures cxccpt the 1.B-Ratio

are. loaded on factor 1, and thus there is no cross-loading, ‘1’his is a desired rcsLllt, since

cross-loadillg on many factors makes the interpretation of the result ambiguous. ‘1’hc

Analysis of Variance of the three sets of rc.leases did not show any significant difference at

the level of significance of 0.05. ‘1’his means that on the average the values of say, the

Mc~abc ~yclomatic Complexity Metric (VCi I) of the three releases arc not significantly

different at Alpha of S%, The same is also trLIc for the other fifteen measure.s.

Regression Analysis had been LISCC1 to develop models of relationships of the most

intcrre]atcd measures. These arc: “l’he 1 ?alstcad VOILIIIIC Metric (V), the Mc~abe

~yclomatic Metric (VG 1), and the Non ~ornmcntcd 1,incs of Code (NCI.0~) metric, as

discussc.d next.

11.1. Fnctor Analysis l)iscussion

Three releases of software were analyzed by factor analysis to show the existence

of meaningful relationships among known software complexity measures. ‘l’he analysis

shows the number of fi~ctors W}lCIC sof[ware complexity measures tend to loacl high or

low, and also the percentage of the. variability cxplainccl by each Pdctor. ‘1’his rcscarc}l also

shows the matrix of cone] ation summari~ing the rclat ionships among the sixteen software

cmplcxity measures for each release.

I/actor analysis of the three rc.leases of software had shown that the first fiftcm

measures of complexity arc closely rclatc(l to some measure of similarity and arc in

consequence all intcmlatcd, IIowcvcr, the sixtccmth complexity measure (1.13-Ratio) does

not seem to be typical of the other fifteen measures, and thus it is unlike the rest of the (iata

set. The three releases show two factors that concisely state the pattern of relationships

within the sixteen mc.asurcs. however, measures one to fifteen load most strongly on the

first factor with explained variability of 90% to91 %, while the second factor displays lCSS

interesting patterns with loading of 9% to 10%. liactor analysis had also shown that three

c.omplcxity measures: the Mc~abc ~yclomatic ~omplcxity Metric (VG I), the Ilalsteacl

Volume Metric (V), and (N~I.0~) arc highly and strongly related. Thcrcforc, in order to

achicvc an economy of description, these tl]rcc measures arc considered to give a strong

similarity and representation of all the fifteen measure.s.

~’hc correlation matrix fol each release of the soflwarc also shows that the first

fifteen complexity measures arc related, while

inte.rrc]atcd to any of the other fifteen measures.

Analysis of variance does not show any

the 1,B-Ratio measure is not related or

significant difference bctwccn the three

12

rclcascs at the level of signifkancc of 5%. [his means that as the software evolves through

its releases, the ir~tcrlclatiol)sl]i~>s bciwccn the complexity measures seem to bc preserved.

1 lmvcvcr wc shoulci note that withot]t normalization to size, adding on to a program will

make a more complex program. ‘1’hjs seems to agree with what other researchers have

f o u n d a s cliscLlsscd by Valett and McGarry [30], IIarrison an(i cook [15] and

Schncidcwind [26].

Since factor analysis tcc}uliquc.s showed that the first fif[ecn software mcasurm are

closely rclatcci to some nlcasLmc of similarity, and since three of these measures: McC;abc

~yclomatic ~omplcxity Metric (VG 1), 1 Ialstcad Volume Metric (V), and NO .()~ metric

[ire highly and significantly related, they are ccmsidcrcd to give a strong similarity and

rcprcscntation of all fiftec.n measures. ‘1’his c.conomy of cicscription made it appealing to

develop a set of parsinlonioL1s models for software complexity mcasurcmc.nts usi~lg data

from the three software rclcascs.” ‘1’hc five composite models together with their coefficient

,of determination (R2) are as follows:

1 . <vGj> = 1.48 + 0.005(V), R2=96%

2 . <VG1> = 0.510+ 0.136 (N(:LOC), R2=96%

3. <vGl> = 0.786 i 0.001 3(V) -i 0.0976 (NCLOC), R2=96%

4. <v> = -206+ 29.5(NC1.OC), R2=99%

5. <v> = -210 -I 8.7(VG]) -t 28.3(NC1.OC), R2=99%

Statistical analysis, model back testing, and model tcsling with independent segments of

software are used for validation of the con]posite models and ascertaining their dcgrcc of accuracy.

‘1’hc dcvc]oped models had shown a high degree of accuracy in predicting software complexity and

thus they can serve as baseline for other software projects in identifying software modules with

high complexity (maintcnancc prone) so that actions can bc taken before their release to users.

13

14

11.2. B a c k T e s t i n g o f M o d e l s

‘1’hc five composite complexity models shown above were chcclmt with actLlal data from

the three releases, 01’-B, 01’-c and OP-1). ‘1’ab]c 8 ancl l:igure 3 show the actual average values of

the dcpcnclcnt variables (VG1) and values predicted by tl]c first three moclcls. ‘l’able 9 and I~igure 4

show the actual average va]ucs of (V) and va]ucs prcclictcc] by moclcls 4 and 5. It can bc seen that

the diffcrcncc in predicting (VG 1) by the first three composite moctcls ranges from 3.2% to 10.6%

1JC1OW actual average value of (VCi 1) as calcu]atcci by Mc~abc ~;yclomatic ~omplexity metric.

Also, the difference in prccticting (V) by mocicls four and five ranges from 1.2% to 1.396 above

act ual average value of (V) as calcu]ate.d by I la]stea(t’s Volume. metric.

1!. 3. ‘J’esting ‘1’hc Five Composite Models by External C h e c k

“1’hc flVC COIllpOSitC CO1ll])lCXity models Were tCStCd agaillSt fOUr iIldCpCnCICIlt

segments of software with characteristics as shown in ‘1’able 10. A sample calculation of

,actLla] average va]ucs of (VG I) ant] va]ucs predicted by Moctcl 1 for the four segments of

soflwarc is shown in ‘I’able 11. “Mc summary of the actual grand average values of (VG])

ancl (V) and t}lcir valLlcs as prcdictcct by Models 1 ,2,3 and Modc]s 4 and S rcspcctivcly for

the four segments of software is shown in “Iablc 12, and 13 and Figures 5 and 6. It can be

seen that the difference in predicting (VG 1) by the first three composite models ranges from

17.3% below to 0.7% above actual average value of (VG 1). Also, the diffcrcncc in

predicting (V) by models four and five is 9,7% above actual avc.rage value of (V) for the

four segments of software.

c. l’arsimonious Mode] and Representative System

Since the five complexity models developed in this study show direct relationships

bctwccn (VG I) and (V) and also (NCX.OC); wc had chosen the third model

<VCi] > = 0.786 -+ 0.001 3(V) + 0,0976(NCI .(X)

as a rcprcscntativc model for cstilnating the va]uc of (V~J I) given tbc mcasumd values of

(V) and (NCI.CX).

C. 1. l)cvcloprncmt of the Rclatiw C o m p l e x i t y Metric

Wc propose to captLlrc tbc total com~dcxity of a program basccl on its control flow

complexity, the lexical counts of symbols used, and tbc program sire. In csscncc, a

complexity metric that aCCOU1ltS fOI’ a program tOtal comp]cxity dLIC to vo]umc and control

flow and normali~.ccl by the number c)f lines of COCIC would present a relative comp]cxity

metric that is more uscfu] to consiclcr fc)r detecting lllailltcrlaflcc-I~rollc programs. “1’hc

relative complexity metric (R(;h4) will bc derived for cm}] moclulc from tbc measurccl value

of (V), tbc cstimatccl value of (VG I) from Inodcl 3, ancl normali~cd by the mociu]c lines of

~oclc. “1’hc R~M for moclu]c is:

15

C. 2. Analysis of The Three ltelcascs lJsinK “1’hc Nclative Complexi ty Nlctric

(RUM)

‘1’hc Relative Gmplcxity h4etric. (R~h4) was used to analyze the moclulcs of the

three rclcascs as shown below.

Rclc.asc

01’-11

01’-c

01’-1)

Rc]ative {:omplcxit-——. . .-

‘1’otal # Of ‘1’otal

‘1’

hfax h4in h4cclian Mean std. I)CV,

Moclulcs — - — .

222. 2799 45 0.4 10.9 12.6 10.0—— —-—- -

224 2837 45 0.4 10.9 12.7 9.6--

235 493470 - 0.4 12.2 14.8 11.3

Note that, as rcportccl by Kafura and Redc]y [17], the Relative {~omp]cxity Metric (R~M)

has grown with each release from a 2799 total in OP-Fl to a 3470 total in the draft of OP-11,

lJsing the criterion of l’hc mean relative. complexity value plus onc standard clcviation as a

cut-off value for acccptab]c nlodLllcs, wc can identify those modules that can bc considered as

out licrs, or mai nte.nancc-prone nlodLl]cs. WC obt ain the following for the three releases:

Rclcasc

.———.

0]’-11

op-~

01’-1)

‘i’otal #of

Modules

222

224

235

~- ——-—-————-—

(R~M) cutoff

Valm

——— .. —-.

22..6—.. —-—..

22.3- — — . - — - .

26.1— — — - .———. —

16

#of Modu]cs

r

$% Modules over

Iixceeding (RCM) Gtoff

(R~M) cutoff Value

in orclcr to determine whe(hcr the modules above lhc cutoff value were more at risk

(o bc modificci for cnhanccmemt or fixes than modules below the cutoff value, the

transitions bctwccn the re.leases were examined. ‘1’hc. rcsL]l(s appear in the table below. of

the 33 modules over the cutoff value of RC~h4 in 01’-11, 40% WCIC actually modified in

order to implement OP-~. C)f the 36 modu]cs in 01’-~ over 01’-C’S R~M cutoff valLlc,

SO% were actual] y modified to inqdcmmt the draft version of OP-1),

Transit icm

1 “10111 01’-13 to

01’-(:

1 JI’om”ol’-c to

01’-11

#/ of h40clulcs

Modificcl

13

38

-. ——.. —..—-. ——

(Rch4) cutoff

Value

——— —._

22.6

———. —

22.3

—. ——. —-—

% of Modif_lcd

ModLdcs Over

~utoff Value

46

47

% of all Moclu]cs

c)vc.r mltoff

Value that were

ActLlally Modified

40

50

Although the cutoff value sccrns to evenly clividc the moclulcs that were actually

modified, the modules over the cu!off value for each rclcasc were more likcl y (o be changed

than the modules below the cutoff value. “l’he relative complexity metric (RCM) was

thcrcforc able to identify maintenance prone modules.

111. Discussion ancl Conclusion

Given that a metric which measures software complexity S}1OUIC1 prove to bc a useful

predictor of software maintenance costs, it is rccomrnendcd that modules that show a high order of

17

cxmplcxity within a rclcasc be looked upon as modules with propensity to bc.mmc maintenance

prone after rclcasc and clclivcry to users. It is imperative that a maintenance prone mociulc bc

improved, enhanced, or simpl ificci into two or more modules before final delivery. ‘1 ‘hc composite

complexity models and the relative comp]cxity metric clcvclopcd in this study can bc consiclcrcd as

a baseline for comparison with other projects and may serve as a set point for simplifying and

rcduc.ing complexity of clcvclopcd software.

‘1’his research was carriccl out by the Jet Propulsion 1.aboratory, ~;alifornia lnslitLltc of

“1’cchno]ogy under contract with the National Aeronautics and Space A(l~~lir~istlatiol~, The authors

would like to express their sinccrc thanks to l>r. William J, I]urd, Deputy Manager, and Paul A.

Willis; Supervisor, Raclio Iircqucncy and Microwave Sobsystcms Section, IJr. Robert ~.

‘1’ausworthc; ~hicf “J’cchno]ogist, lnforlnation Systems l)ivision, and Dr. IJona]cl S. Rcmcr,

‘l”clccol~llllilllicatiol~s and l>ata Acquisition I’lanning for comments ancl suggestions that greatly

imJwovcd this rcpori.

18

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

V. R. Basi]i and l). 11. IIutchins, “An limpirical Study of a Synthetic complexity

l;amily,” ~l~!~J~.TlraI]S,_S_QfiWaIQl&gMCQJ&gi 9, pp. 664-672, 1983

1.. 11. Binder ancl J, 11. l’oore, “J;iclcl l;xpcrimcnts with 1 .ocal Software Quality

h4ch-its,” Softw~!p_~actice and ljxl?eric~cc, 20, pp. 631-647, 1990

B. Bochm, Soilwarc I~ngjJmrcrIIg liconcmj!~ Prentice IIall, Jinglewood cliffs, N.J.,

1981

11. Hochm and 1’, Papamio, “lllldcrstal]clir]~ and controlling Software Costs, ” lIIM~

g’]al~s_, Soft\varc }3~~gi]~ccrir]& 14, pp. 1462-1477, 1988

R. N. U)arcttc, sofI~y.ayG.jll~ gi~lgeTjr!g_&!jI’il~l] ll~cIl~ h4cGraw J I ill, Inc., NCW York,

N. Y., 1986

~omptroller Genera], QmtxmGtilE _Ew_<@u~lJUc.r S.Qftw.ar_c_Dcvcl opmml, Gcnma!

~cxm~l]lting C)ffice Report, GAO, IGMSD-80-4, 1979

.13. Grtis, S . Sheppard, P . h4illin~an, M. Borst ancl ‘l’. I.OVC, “McasLlring the

Psychological ~omp]cxit y of Soflwarc h4aintcnancc. “l’asks With The J l.alste.acl and

Mc~abc Metrics,” IEEE Trans. _S~ftw_arc l~rlgi~ccrj.ng, 5, pp. 96-104, 1979

S. l~cklcva, “Software Maintenance: Any News Besides The Name,” “1’he. Software

Practitioner, 3, pp. 5-8, 1993

W. h4. Evangc]ist, “Software ~omplcxity Metric Sensitivity to l’rogram StrLlctLlre

Ru]cs,” J. of Systcmm..amcd !SSft~are, 3, pp. 2.31-243, 1983

R. 1;. l~airlcy, s~f!lvwc liligit~ccri!]g.~~~l$c~lts, h4cGraw Ilill, New York, N. Y., 1985

V. R, Gibson and J. A. Scnn, “Systcnl StrLlcturc and Software Maintenance

l’crformancc,” co!j~mljunications A~h4, 32, pp. 347-358, 1989

G. K. Gill and ~. F. Kemcrcr, “~yclomatic C:omplcxity Density and Software

Maintenance ~’rodLlctivity,” JFF}i ‘1’rans, .S_oftware lingincc~-, 17, pp. 1284-1288,-_ JJ /---> .

1991

19

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[2.2]

[23]

[24]

R. 1.. Glass, S~fity8r~...h4ai11tcr~ al]cc IIRIIJU!IJQJ, Bnglcwood (;liffs, N, J., Prentice 1 la]],

1981

M. 1 lalstcad,].ilemcnts of Soft!vme. Scj_cIIQc, Ncw York, N.Y, l;lscvicr North 1 Io]lancl,

]nc., 1977.

W, 1 Iarrison and ~. cook, “A h4icro/Macro Measure of soffwm Complexity,” Ths

j.~~lnal of Systems and...S_Qftwaw, 7, pp. 213--219, 1987

w.]]arli son and (~. ~OOk, lJMj.g!lN 011 l~llJ~lQXjIl&_~l’!l_Q_h43illtE!l~11CC _lfiQPCss ‘1’}lr.!!~!l

~ofJ\y.aICMeas!lle~ llcI]ts. Rcporl Naval Ocean Systems ~cmte,r, 3’R 90-4, N66001 -87-1 J-—.——

0136, 1990.

l). Kafuraanci G. R. Rcddy, ““1’hc lJsc of Software ~omplcxity Metrics in Software

Maintenance,”]l!!Hi Trans. SOfty’arc~.llgk.ce1i?3~, 13, pp. 335-343, 1987

B. 1.cnnsclius ~. Wohlin and ~. Vrana, “ScJf(warc h4ctrics: }Jault ~onte.nt lktimation ancl

Software Process Control,” .Microl>JoggssgJLS_?ll~._Mi.crosystcJJm, 11, pp. 365-375, 1987.

B. I’. 1,ic.ntz and 11. B. Swanson, SoftwaIc h4fii?lte.nanqc M_as~ageI~m_cI~t, Rcacling, N4A.

“Addison-Wesley, 1980.

‘J’. J. Mc~abc, “A complexity Measure,” 1 Hljli ~’ran:> _Soflv’are_BrlgiIlccrklg, 2, pp.

308-32.0, 1976.

~. Munson, and T.M. Khoshgoftaar, “Application of a Relative ~omplcxity Metric IJor

Software I’rojcct Management,” Journal of Sys[cm~ar~~ Software, 12, pp. 283-291,

1990

B. Ramamur(hy and A, Mc]ton, “A Synthesis of Software Scicnccs h4casurcs and the

~yc]omat ic NLmlbcr,” lIWE ‘J’rans._.S~fl.ware Enginccrins, 14, pp. 1116-1121, 1988

V. Rodriguez, and W. ‘J’. Tsai, “}~valuation of Software Metrics Using I)iscriminant

Analysis,” The Eleventh Ann. lnt. Computer Software ancl Applications ~onf., pp. 245-

251, 1987.

11. D. Rombach, “A ~ontrol]cd Iixpcrimcnt On 3’IIc impact of Software Structure on

h4aintainability,” IEEE T!ans. Software Engih~ccringl 13, pp. 344-354, 1987

20

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[M]

[34]

h4. H. Samactz,adch and K. Nandakumar, “ A Stucly of S o f t w a r e h4etrics, ” ~J

Sys!c!lg.s.. Sfli.w.?l&, 16, pp. 229-234, 1991

N,I~. Schncidcwin(l, “h4cthoclology IJor Validating Software Metrics,” lli~{~; ~lIIaIIS,

Soft.>v.arc_l~~~. 18, pp. 410-422, 1992.

V. Y. Shcn, T. YLI, Sm. h4. Tllcbaut and 1.. R. l’aulscn, “Identifying llrror-Prone

Software-An limpirical StLIcly,” ~.l~lill “l’r:ins: Sm fing,l 11, pp. 317-323, 1985

Y. S. Shcrif, Ii. Ng ancl J. Stcinbachcr, ” (~omputcr Sof[warc Dcvclopmcnt: Quality

Attributes, Measurements ancl h4ctrics, ” Nava] Research l..ogistics, 35, pp. 425-436,

1988

“1’. Sta]hanc, A IJisgussjon of S~flwarC_ MCti:ics .As .A. h4call~i.~r_S~fl.wat:e_Bsli~b~ljly

~~va]~lation, Report # I’B89-210322, U.S. I)cpt. of (;omnlcrcc, National ‘1’echnica]

information Scrvicc, 1988.

J.]>. Valctt and 1;. Ii. McGarry, “A Summary of Software Measurement Experiences in

the Software }inginccring 1 laboratory, ” clhc_J_oLlrl)a! __~f_Systel~?s _ MMd .S~ftwa[c_, 9, pp.

137-148, 1989

1. Vcsscy and R. Wcbcr, “Son~c I ‘actors Affecting Program Maintcnancc: An lhpirical

StLIdy,” ~onUllL!n~Cati_~~s AKAM. 26, 2, pp. 128-134, 1983

S. Wake, and S. Henry, “A Model Based on Software Quality Factors Which Predicts

Maintainability,” Procccdjl~~L ~;onfcrcnce oD.@ftwarc Maintena~, Phoenix, Arizona,

Ott. 24, 1988, Pp. 382-387, 1988.

S. S. Yau and J. S. ~ollofcllo, “Sonic Stability McasLmes I:cm Sofiware Maintenance,”

~.;lil~ Trans. Software llnginccrirw 6, pp. S4S-552., 1980

h4. V. Yzlkowitz, A. ~. Shaw and J. 11. Grallnon, !?riI@G@~S@W_aI& l~!lg~nccling

@ _l_)x,s~n., Prcnticc 1 la]], Inc., lhglewood cliffs, N. J, 1979

21

Figure 1. The initial Cost Breakdown in Developing a New Project

Module Test 8%
\

Code 7%

Design 5%

Specifications 3% -

Requirements 3%

Integration Test 7%

/

P

Maintenance 67%

L__._/
Figure 2. The Cost of’ Software During its Life Cycle

22.

‘l’able 1. l’crccntngc of ‘1’imc Spent On Va r ious IMaintenance ‘l’as

— .

% Time Spent

ks

Mainkmmcc “l’asks 1977 1985 1987 1990

] hlhWlCClllt2J)tS

(1.mccicms

SupportiJ]g LJSCIS

kCJl~iJICCJ’iJ)~

Adapt at ions

ImmJncJlfation

‘J”UJliJlg

l;va]uating Requests

~][hCJ’

59

22

NA

NA

6

6

4

NA

3

44

15

21

NA

8

NA

NA

8

4

41

18

12

10

9

5

3

NA

2

43

16

12

9

8

6

5

NA

1

23

‘1’able 2. Comptroller General Statistics on IIclivercd Software

Qualify of Software Percentage (%)) of

l)cliverec] Software l)e]iverecl

1. (:olllci work 011 CIclivcry 2

2. Could work af(cr some rework 3

‘3. . Never succcssful]y put to usc 45

4. 1 lxtcnsivc] y rcworkcc] 20

‘i. . LJSCICSS 30

l’otal 100

24

Table 3. 01’-11, 01’-C and 0}’-1) Modules and Mean }7aluc of the Sixteen
Nleasurm

Measure Q1’-l! ~]~.~ 01’-1)-... .— —:
(222 Modules) (224 Moclules) (23s Nloclulcs)

Mean Mean Iblcan

1, Ill

2. 112

3 N]

4. N2

5. N

6. A
7. v

8. 1;

9. VGI

10, V(;2

11. I,QC

12. WC

13. <;>

14. s]’

15. NC] .OC

16. l.B-Ratio

12

12

70

42

113

103

704

53781

4

5

73

43

12

5

30

1

12

12

75

44

119

110

721

58198

4

4

78

46

13

5

31

1

13

15

87

52

140

126

844

61715

5

5

83

49

15

6

34

1

25

Table 4. Grrelation Nlatrix of Sixteen Nleasures .For OP-B

n!

[] ~

,V 1

?42

v

Vv

v

!:

v<;!

vG2

LOC

DC

CR

5P

D! 02 ?-J!
!,m 077205 0 7QQ72

ccl o CYxll o 0Y31

o 771q5 lm 091!s5
Ow)l 00 0. CKX-21

O X7Q72 09! ,55 !. fYnnO.rm)r O,rw)l 0.0 1

N2 N h’ V

069055 0 -7@354 o 72!23
o LYx)l O.LW)I o (w] I

o 93(MI 0.9223? 096!82
Oowll O.cfnl Q,QYJI

0 9R\Q.O 0,99.0! Cw!l
!3LvJl O. CXXJI (Jcwl

o fjyoss o.93c%3 0.985s0 I m 0.99437 0 932.4?
o ml o ml o.cxXJl 00 O.COJI O.!YW!

0.7!X254 O 922>3 0.99801 099437 ! .CxMX
Ocw?l

092114
O(M)! O.m! O.owl 0.0 O’WJI

v E VG I VG2 LOC Pc c,!? SP h’Loc 1.9?.
0 /,5059 o.54n.lo o 7499] o $5794 0.7172?
OWJI

0.5’?0!3 0?(>!:! o 71 f,29
O.WJI 0,%01 Ocw!

0,?1LM2
O.ml

-&o?.t/A
o.(n)! O.cwl Oml o.@JIJ 0 fio7s

O 9T273 o.7?,&3s 0.93249 Q.7Y144 0. B7705 0.5gO12
0.0321 O.KXJI

0936$4 Q ~:~>z
C.W421 O.cir?f 0.W21 o.OXJ!

o V}.!76 4 0?779
O.WXJI 9 (FXJ! o O’M! ?5755

0VR):6 095128
O,(U.VJI

o.933(n O 716>6 O. QQ?R? 951’7!7 c 95?12 o 6?621OCKXJ! O.(XXJI o c4kJ! o ?7s?1 09,Q51O.cwl O.(XKI! o Cw 1 0 LX,KJ 1 0 (?>J I e. 7723

C 97?63 0.99750 0.39624 0.7!2?4 0.9!!!!
n I-inf Ocw?l

0.5657? 095695
Ocwll

0.6! !97
Ofnll Oml

0.97494
Om!

4 cYw79
o CtK!! O.w’)1

o 9?277
OCYXI1 f) ~~,

09?9!5 0.92774 0.72116 0.902s0 o j37j3 f) 9(, Q:> f? 627?: 0 VPJW
o ml O.’cCC! O.fXol OW’JI O.m! OCKX)!

Ot!!?l
O.WJJ! O.cwl Q,~j o ~6J!

26

r-,
.,
cm .,
:, 2~, r.

>.-. ,-- ,,:
c Cl
-. ,,-

-. -. -.-—L -.. .> .?, , ,> r---

(

Tablc 7. The Factor Matrix For The Sixteen Measures of OP-C, OP-B, OP-D.

—————— ————— —____________ —.—

1. n,

2. nz

3. N1

4 , N~

5. N

6. NA

7. v

8. E

9. VG1

10. VGZ

11. LOC

12. B/C

13. <;>

14. SP

15. NCLOC

16. LB-Ratio

.78

.94

.97

.97

.98

.91

.96

.89

.94

.77

.94

.61

.97

.70

.98

-.03

-.17

-.02

.10

.06

.09

-.01

.14

.22

.09

.12

-.25

-.64

.03

-.05

.05

.83

.79

.94

.98

.97

.98

.96

.97

.90

.95

,95

,96

.7’2

.97

.60

.98

-.01

-.12

-.02

,83

.04

.07

-.00

.09

.15

.08

.07

-.17

-.50

.04

-.01

.05

.92

— ---

.78

.93

.97

.96

.97

.96

.96

.88

.93

.93

.95

.70

.97

.72

.98

-.02

-.17

-.03

.08

-.05

.07

-.01

.09

.15

.10

.10

-.19

-.53

.06

.04

.05

.90

Percentage of 90 10 91 9 91 9

explained variability

——. ——-.

,#.

‘J’able 8. Summary of Actual Average Values of (VG1) and Values Predicted by

Moclcls 1, 2, and 3.

.

(V) Value l)clta]tr*.Or(~)

Model l?c.lease Actual . . (A] ~mdictcd(l’) [A):-L13 l)elta.m.~

1. 0}’-1; 4.45 5.00 -0.55 -12.40

OP-C 4,53 5,09 -0.56 -12.40

OP-D 5.30 5,70 -0.40 -7.50

Grand Average 4.76 5.26 -0.50 -10.60

2. oP-13 4,45 4.59 -0.14 -3.10

OP-C 4.53 4.86 -0.33 -7.30

C)P-r) 5.30 5.27 -0.03 0.60

Grand Avc.rage 4.76 4.91 -0.15 -3,10

‘3., OP-B 4,45 4.62 -0.17 -3.80

OP-C 4.53 4.84 -0.31 -6.80

OP-D 5.30 5.30 0.00 0.00

Grand Average 4,76 4.92 -0.16 -3.40

30

‘J’alJlc 9. Summary of Actual Average Values of (V) and Values l’rcdictcd

Models 4 and S.

,(,

31

4. 01>-13 704 679 +25 +3.6

01’-c 722 738 -16 -2,2

OP-1) 845 826 +-19 -t-2.2

Grand Average 7 5 7 748 -t9 +1 .2

5. . 01’-11 704 678 +26 +3.7

OP-C 722 735 -13 -1.8

01’-11 845 826 +]9 +2.2

Grmcl Average 757 746 -10 +-1 .3

,!.

‘1’able JO. Characteristics of Four independent Segments of Software

Ac!wi! _Awwgc_. ValIIE
Sc’gmc!nt Number of Y(il y N(;1 ,()~
INumbcr Modules

1. 16 16.4 3343 102

2 . 16 17.9 4016 139

3. s o 8 . 1 6 1823 64

4 . 5 5 11.10 2212 71

32

Table 11. Sample Calcula t ion of Actual Awxagc Values of (VGI) and }Ta]ucs

l’rcdictcd by Model 1 l~or Segments 1 to 4.

—.

(v) Valllc lk]ul 1 ;Ilor(%)

~lodcl Segment A cl~l.a I M)]’r@iclSd[P) [A.]:..(P)]Mt.a...> fA)

1 . 1 16 .40 18.19 -1.79 -10.9

2 17.90 21. S6 -3.66 -20 .4

3 S.16 10. s9 -2.03 -24 .4

4 11.10 12. S4 -1.44 -13 .0

Grand Average 13.39 15.72 -2.33 -17 .3

33

1’ ,1,

‘J’able 12. Summary of Actual Grand Average Values of (VG1) and Values

Prcclictccl by Models 1, 2 and 3 For Segments 1 to 4.

1 . lto4 13.39 ls. s7 -2 .33 -17 .3

2 . lto4 13.39 13.31 +0.08 +- 0.6

3c. l t o 4 13.39 13.48 -0.09 + 0 . 7

34

-,,

I’able 13. Summary of Actual Grand Average Values of (V) and Values I’rcdictcd

by Models 4 and S l~or Segments 1 to 4.

4 . l t o 4 2848 2570 +278 +-9.7

5. . lto4 2848 2S71 +277 + 9 . 7

35

(VG,)

\7alue

8

6

4

2

Ezl L-1
. ..—

Aciua] l’rdidecl

1
4.76

1

5.26 — .

1
4.76 -

2

Model

4.91
r

[

4.76

.—
3

4.92

Figure 3. Actua] Average Values of (VG ~) and Values I’rcxlictccl

h’ Modc]s 1,2 and 3.

1 20(

(v)
900

Value

600

300

—___

Izl Actual [1 Prcdictecl
L—

4

748

— .—
s

Model

746

Figure4. Actual Avcragc Valucsof ~)and\Talucs Predicted
bY Models 4 and S.

.,

2(

10

5

— ——. —— . .._

Izzl Actual
[3 l’rcdict ml

13.39

1S.72

13.3

—.—.
2

Nlodc]

13.31

—

—
13.39

—
3

13.48

—___

I

4000

(v) 300(
Value

2000

1000

l~igurc S. Actual Average Values of (VG 1) and Values I’rcdictccl by

illodels 1,2 and 3 for Indcpcnclmt Segments of Software.

Izzl Actual n I’rcdictcd
1—

4

2570

——-—

2570

Mode] “
Figure 6. Actual Average Values of (V) and Values Predictc.d
by Modc]s 4 and 5 for lndqmndcnt Segmcnts of Software.

37

