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ABSTRACT

A great deal of effort  is now being cicvoted  to the study, analysis, prediction and

minimi~,ation  of software maintenance cxpcckxi  cost, ]ong before software is dclivcrccl  to users or

cus[onm’s.  ]t hat] been estimated that, on the average, the cffor[ spent on sof[warc rnaintcnance is

as costly as the effort spent on all software costs. Software design methods should bc the starting

~Joint  to aid in al]cviating  the problems of software maintenance complexity and high costs. ‘Iwo

aspects of maintenance deserve attention: ( 1 )protoco]s for locating defects, and rectifying them,

and ensuring that no ncw defects arc introduced in the development phase. of the software process,

ancl (2)protocols for moclifkation,  Cnhancc.mcnt  ami upgrading.

This paper focuses on the second aspect - mainly, the dcvc]opmcnt  of protocols for helping

incrcasc  the quality and reduce the costs associated with modifications, enhancements, and /’. . . .
upgrades of existing software. ‘l’his s[duy  ckvclopcd  parsimonious models and a relative

I U
complexity metric for complexity measurement of software that were used to rank the modules in ‘
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IIIC sys[c.m, relative (0 each other. Some success was achieved in Hsing the models and relative

metric to identify maintenance prone moclulcs,

1. lntrocluction

A. l’rojcct  Ohjcctivcs

~’hc primary objective of this s[udy was to ctcterminc whether sof[ware metrics

could help guide our efforts in the development

systems that wc develop for NASA’s l)ccp

developed control rcccive.rs, transmitters,

and maintenance of the real-time embedded

Space Network. Generally, the systems

e.xcitcrs,  and signal paths through the

communication harclwarc. I’hc most conlmcln programming language in our systems is , ,

1’1 ./M for Intel 8080, 8086,  ancl 80286  microprocessors;  ;and the systems range in siz,c

from 20,000 to 100,000 Nor~-Co~~][~~c.r]tccl  1.incs Of Code (NC] ,OC). Approximately 65%

of the funding received in our environment is dedicated towards extending the life span of

the previously dcvclopcd systems; of this, 15% is spent on finding and fixing defects,

w}lilc  8570 is for adding automation features, adding capabi]itics,  and increasing capacity.

~llr CffOrLS have bccJl Succcssflll  in that the life span of our systems arc four to

eight years, and incrcasi  ng. As su~q~ort  for ncw spacecraft becomes necessary, these older

systems arc being used in new ways, thereby increasing the importance of quality, clefcct

free and cost effcctivc Cnhanccnmlts  to the. software. ]’rotoeo]s and guidance for locating

and rectifying defects in the software sustaining environment were c]ccmcd critical

espccia]ly  with the added complications that the people maintaining the systems arc not the

people who originally dcvclopcd thcm and that there is little or no confidence in the

software documentation.



Specifically, wc were looking for ways to identify which modules shou]d bc rc-

c.nginccred,  and which modules would need extra ctcvclopmcnt  ancl  test time in order to

maintain. The prc)blcms  we face in our mvironmcnt  arc quite common in the industry.
‘J ‘

Sof(ware maintenance cost is about  two to four times the original ctcvclopmmt  cost, Ilochm \’

I
[3], Glass [ 13], Fairlcy [ 10], and Munson ancl Khoshgof(mr  [9]. Charcttc [5] cmphasims

the fact (hat 60 to 80 percent of the total sof[warc costs arc rc.late.ct tc) maintenance. This

will ]ikc]y remain so for the inclcflnite future [7, ] 1, 24].

l;ig[lrc 1 shows the initial cost breakdown in developing a new project

(unfor[unatc]y  wilh maintenance costs hicldcn)  ancl Figure 2 shows the costs of software

(iuring its life cycle as ctiscusscd  by 7.clkowitz  [34], Software maintenance is not what

people think it is: Software maintenance actually encompasses fixing software errors in

addition to software enhancements and adcling ncw functions to existing systems, system

conversion, training anti supporting users, ailct improving systems performance [31-33].

Jirror correction, which is oflcn pcrccivcd  as the substance of maintcnancc,is  only a small ~ /’”

part of the software maintenance cff~rt,  ]Ickleva  [8], and l;ochrn and ~’apaccio  [4]. Tab]c ]

shows the. distribution of the avc.rage time spent on various maintenance tasks for four

years as reported by I.cnts  and Swanson [ 19]. NTotc that functional c.nhanccmcnt

constitutes the major portion of the tilnc  spent on software maintenance. Charcttc [5]

discusses another reason why the cost of software is so high and cites some statistics as

rc.por[ed  by the Comptroller General [6] and shown in Table 2. It is reported that only two

percent of the software contracted for coulct  work on delivery, three percent could  work

after some rework, forty-five percent was delivered but never successfully put to USC,

twenty percent was used but either was extensively reworked or abandoned, and thirty

pcrccnt  was paid for but never delivered.



I;or the project dcscribcct here.in, wc took (hcsc steps:

1) dc.tcrminc  what the literature suggests;

,2) clcvelop  a course< of action to be tried on mm of our opcmtional

systems hopefully as a rcprc.scntativc of all the others;

3) perform the steps allci analyze  lhc results.

‘1’hc actions ancl results of taking each of tllcsc steps arc described below.

1] . Suggestions from I,iterature and CoursC of Actiot~

one of the earlier stuclics  cncountcrcd  pertaining to our objectives was undcriakc.n

by Shcn, Yu, ‘1’hcbaut  and Paulsa]  [27]. Tl~is  stucly asscsscci the potentia]  usefulness of

product and process metrics in identifying components of the system which were most

likely  to contain errors. Their goal was to establish an empirical basis for the usc of

objective criteria in developing strategies for the allocation of testing effort in the software

.maintcnancc  environment. It was found that the number of unique operands, as cicfinc.ci  by

IIalstcad  [ 14], was the best predictor of problem reports on modules that were reported

after the initial ciclivery. Aciciitionaily,  sinqde mc.tries related to the number of unique

operands, sLIch as the cyclomatic complexity (defined by McCabe [20]), also pcrformc(i

well. Shen et. al., concluded that these metrics arc useful in finding error prone moctulcs at

an early stage.

Kafura  and Rccidy [1 7], in 1987, publisheci  the results of using software

complexity metrics (iuring the soflwarc  maintenance phase of a system, They related SCVCJI

separate rnctrics to the experience of n)ain[cnance  activities on medium siz,c systems. ‘J’wo

of the results reported were that the overall complexity of a system grows with time and

that the individual complexity scores of the software modules agree well with the expert

opinions of the programmers. Their conclusion was that metrics could form the control
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clement in a formal mainlmancc mcthoct,

l]arrison  and Cook [ 15, 16] discusses the clccision,  frequently cncountcrcd  by

software mainlcnancc pe.rsonnc],  of whether 10 make an isolated change in a module or to

totally redesign and rewrite the module anew. ‘1’hcy (icvclopc.d  an objcctivc  decision rule

10 identify modules which should bc rc.wittcn rather Ihan moclificd. This decision mlc was

whether the total change in 1 lalstcad Software Scicncc  Vo]um metric cxcccdcd  a threshold

value. ‘1’his threshold va]uc seems to bc subjective since it depends upon the risk-taking

propcmsity  and cxpcricncc  of the clc.cisicm  maker and must bc tuned  for a particular

environment.

1.cnnsclius, Wohlin and Vrana 18] discuss the possibility of using complexity

metrics to identify error-prone modules, ancl  thus Il~aiI~tcr]al~cc-~~rorlc  modules. “1’hcy

su~gmt that a module whose ccmplc.xity  lies at least one standarcl ctcviation above the

.acccptab]e  mean of complexity of the project may bc consic]crcd  as a r~lainteI~aI~cc-l~ronc

module. ‘1’JIc  authors however, emphasiz,c that metrics cannot rcp]ace the decision-making

process of software managers.

Rodriguc~, and ‘1’sai [23] usc discriminant  analysis to develop a methodology for the

evaluation of software metrics. ‘1’hc authors sllggcst that when classifying units of

software as either complex or normal, more attention is usually paid to the complex group

to either redesign it or test it more thoroughly. ‘1’heir methodology is based on the

assumption of normal distribution ancl homogeneity of variances of the two groups. ‘J’hc

authors considmcd  13 metrics clcpicting IIalstcad’s Software Science Metrics, McCabe

Complcxit  y Metrics, and Non-ConInwnted  1.incs of Code (N CI.OC) metrics. I’hcy

conc]uclcd  that these metrics arc corrclatccl.
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Stalhanc  [29] ctisc.usscs  how to estimate the number of defects in a software unit

from varicms software metrics, and how to estimate the rc.liability  of the same software.

l’he author also rcachcs  the conclusion that complcxi[y incrcascs  as the size of code

incrcascs.  Stalhanc  asserts Ihat ll]isLll](lclslarldillg  the specifications will increase with the

spc.cification comp]cxity  and that complexity may bc transfcrrcct to the coctc  and thus lead to

lll:lilltcl)allcc-~Jr(}llc  complex cmlc and comp]cx  modu]cs.

Munson and Khoshgof(oar  [21] employ factor ana]y(ic  techniques to rcducc the

dimcnsionali[y  of the complexity problcm space to produce a set of rcduccct  metrics. The

rcducc(i comp]cxity  metrics arc subscc]ucntly  combincct into a sing]c relative comp]cxity

measure for the purpose of comparing and classifying programs, in particLdar,  the relative

complexity metric can bc seen to represent the complexity of a particular software module  at

a particular lCVCI  of systcm release.. “J’hc authors investigate McCabe Complexity Metrics,

IIalstcad  So f tware  Scicncc  Metlics  and Non-Comnlcntccl  ].incs  of (~odc (NC I.[E)

h4ctrics. l’hc comparison of complexity is again of a rc]ativc and sLlbjcctivc  natLlrc.

l)indcr  and Poorc  [2] investigated tbc possibility of inclLlding the nLlmbcr of

commc.nts  in the code as a variable in de.tcrminil~g the qLlality  of the code. ‘J’hcy assert that

comments only contribute to clLlality  when they arc nee.dcd  and meaningful. 3’llc authors

suggest a software qLlality  mcasLmc  called the “1.11-ratio” dcilncct as the ratio of the numbe,r

of Operators to the sum of the number of opcl ands and nLlmbc.r of comments. l“hc authors

agree that their cxpcrimcnts with the “1.11-ratio”  ncccl adctitiona]  work and refinement since

including the concept of mcaningfu]  comments in the formula seems to bc problematic and

sLlbje.ctivc  at best.

“1’hc sLlggcstions  that were clcdLlccd  from these soLmces  arc:

1) An csfimatc of errors and reliability can bc determined froln software product

metrics [20, 27, 2.9];



2) Software. product metrics could bc usc.d to find error prone modules and could

form the control element in a formal software maintenance mcthoctology  [15-

18];

3) The soflwarc pmcluct  metrics tha( may bc consictc.rc.ci  include all of 1 Ialstcact’s

Software Scicncc h4c.tries, h4cCabc’s Complexity h4ctric  [ 14, 23, 27], and the

Non-(  ;ommcnt  Source 1.incs of Code (NC1 XX) [21];

4) l:actor analysis can bc used to identify those software measures that arc high]y

and significantly rclatcct to all olhcr measures, ‘1’his economy of description will

facilitate the analysis of software complexity [21],

5) Comments in lhc code contribute to the quality of software [2].

Wc thercfom  set fmlh on tllc following coLlrse:

1 ) l>ctcrminc  the 1 lalstc.ad Software Scicncc, h4cCabc Complexity, NCI .CX, and

I .I1-Ratio from sequential releases of a rcprcscntativc  software system;

2) Perform factor analysis on the metrics from the software modules to cietcrminc

the unique dimensions I eprescnteci  by the metrics;

3) l’repose a model to calculate a relative metric; and

4) Dctcrminc  if this metric can ictcntify  maintenance prone modules in the software

by using the mean plus one standard deviation as the relative metric cutoff

value.
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11. NIcthocl,  Analysis ancl I{cwlts

A . l<cprescntativc  System and Metrics Collection

A. 1. Nature of Software

Wc anal yzcci the source ]mgram  in the VCI-y 1 .ong Baseline lntcrfcromctry (VI ,131)

Rcceivcr  Conlrollcr  Software Systcm (VRC), using factor analysis for sixteen software

measures. ‘J’hc soLlrcc program is a real-time embedded system in the rcccivcr-cxcitcr

subsystem of NASA’s (National Aeronautics and

Network (lISN). It serves as a col~~l~lLlrlicatic)~~

configures

Assembly.

OP-c (224

and monitors the status of the hTarrow

Space A(tl~~i~~istlatio~l)  1 )ccp Space

intc.rfacc  to VI,BI subsystems and

Channel Bandwidth VI .111 Receiver

‘J’hrcc releases of the. systcm  software were analyz.exl:  01>-13 (222 modules),

mc)clulcs),  and a draft version of 01]-11 (235 modules), I’lICSC were used as a

.rcprcsentativc maintenance project in this study. I’hc source coclc for these three releases

was originally written in P] ./M, but was late.r converted to C using PIX%6 conversion

program (from Micro-Processor Sc.rviccs).

A. 2. Soflwarc  Metrics and Measures.

Software Metrics arc quantitative measures of certain characteristics of a

clcvclopJncnt  project that can be valuable management and engineering tools. Software

metrics can be used to achieve various project-specific results such as: Predicting sourcc-

codc complexity at the design  phase; monitoring and controlling software reliability and

functionality, predicting cost and schedule; and identifying high risk modLdcs,  in a software

project [28].
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10.

11.

12.

13.

14.

15.

16.

“1’hc sixtc.cn  software measures that were used to analyz,c the VI..B1 Receiver controller

(Vl<~) software arc:

1)1

1)2

N]

N2

N

i

v

1;

vG j

VG2

1 .(K

13/(:

,<;>

s],

N(3 XX -

1.ll-Ratio  -

number of unique operators

number of {lniqLlc  operands

numtmroftotal  opc.raters

number of total  operands

]cI@l(Nl+  N2)

cstimalecl length = [n I (log2(n 1 ))+-n2(log2 (n2))]

VO]UI1lC  == N * 10g2 (n) v (N] + N2) 10g2(nj  + 112).

effort = V/[(2/n J ) * (n2/N2)]

Mccabc  ~yclonlatic  ~omplcxity  (number of clccisions  -t 1 )

extended  complexity (clccisions  + ANIM 4 01<s -t 1)

lines of code (includes blank an(l comment lines)

number of blank lines -1 number of comment lines

number of executable semi-colons

average maximum lines between variable references

Non comm.ntc.d  lir]cs of code = 1 XX - 13/{;

[Nj/(N2-t We)]

‘1’hc first eight measures belong to the I lalstcad  software science family of software

complexity measures. IIals{cad  [14] uses a series of soflwarc science equations to measure

the complexity of a program basecl on the lc.xical counts of symbols used. Generally, the

measurements arc made for c.ach module, and the total measurements of the modules

const itutc the measurement of the program. 1 lalstcad’s metrics become available on] y after

the coding is done, and therefore can be of usc only during the testing and maintenance

phases. Althoug}l  IIalstcad’s  metrics are usefLll  in determining the complexity of

progrmns,  their weaknesses arc that they do not measure control flow complexity, and have



lit[lc predictive valLlc.

Measures number nine ald tcJ~, i.e. VG I and VG2 bclcmg to McCabe and were

adapted from the mathematical cmccpts of graph theory. h4cCabc cyclomatic complexity

metric V(; I is a measure of the, maxinmn number of linearly indcpcndcnt circuits in a

program control graph. “1’hc primary pLlrposc of this metric is to i(ientify soflwarc moddes

that will bc difficult to test or maintain as e.xplaincd  by h4cCabc  [20]. The value of McCabe

metric is available only after the dctailccl  design k done. AlthoLlgh  h4cCabc  metric is very

LISCfLl]  at lllCaSLlril)~  CO1ltlOl fJOW COlllp)e.Xity,  itS we.akncss  iS t h a t  it iS llC)t SCllSitiVC  tO

program si~c; for example, if pl ograms of different size arc composed cxclLlsivcly  of

scclLm)lial  statements, then they may have the same cyc]omatic  nLlmbcr.

Mcasw-cs  nLlnlbcr clcvcn to fiflecn deal with the si?.c of the program or nLlnlbcr  of

lines. AlthoLIgh many rcscarchcrs do not filial this measure as appcalins,  Bochm [3] points

.c)ut that no other metric has a clear advantage over NC3.0~  as a metric. It is easy to

measure, conccptua]ly  familiar to software dcvclopcrs,  and it is used in most productivity

clatabascs and cost estimation models.

McasLwc nLmlbcr sixteen, the “1.}~-Ratio”;  is dcfinccl  by Binder and Poorc  [2] as the

ratio of the nLlmbcr  of operators to the SLIIIl  of the llLIJllbCr  of operands ancl nLlnlbcr of

comments. It appears to captLlre  the idea of distingLlishing bctwe.cn nlcaningfLll  conmcnts

in the code and jLlst comments in gem] al. “J’hc wcalmcss  of this metric is its rcliancc  on

defining the number of meaningful comments which seems to be more sul>jective  than

c]uantitativc.
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11. Analysis of’ Data, IVlodcls, and Validation

‘J’hc sixteen software mcasms of the three rclcascs of the (VR~) mclc;  (01’-11,  OP-

~ and draft C)P-lJ)  were analyzed  using IJacmr Analysis, Gmc.lation, Analysis of Variance

and Regression Analysis. ‘liable 3 shows t}lc number of nlodLJks  and the mean value per

nmciLJlc  for each of the sixteen measures. ‘J’ablcs 4-6 show the correlation matrix of the

sixteen measures for the three ] clcascs. l’hc data show a high degree of cc~rrclation.

l~xccpt  for the measure “1 .B-Ratio”,  the rc.maining fifteen measures arc high] y correlated. It

can be seen that the }Ialstead volLJmc metric (V), Mc~abc  {;yclomctric  ~omplcxity  metric

(VG 1 ) and NC3 .O~ metric arc highly ancl significantly correlated while t}lc 1.J3-Ratio  metric

is not. ‘] ’hcsc results agree with what olhcr rcscarchcrs  have foLlnd,  Ramamur[hy  and

Mc]ton [22], Gill and Kc.mcrcr [12], Salilaclzadch  and Nandakumar  [25], Basi]i and

IIutchins [1], ]ivangclist [9] and KafLlra ancl Rcddy  [ 17].

‘1’hc factor analysis matrix is shown in I’able 7. All measures cxccpt the 1.B-Ratio

are. loaded on factor 1, and thus there is no cross-loading, ‘1’his is a desired rcsLllt, since

cross-loadillg  on many factors makes the interpretation of the result ambiguous. ‘1’hc

Analysis of Variance of the three sets of rc.leases did not show any significant difference at

the level  of significance of 0.05. ‘1’his means that on the average the values of say, the

Mc~abc  ~yclomatic  Complexity Metric (VCi I ) of the three releases arc not significantly

different at Alpha of S%, The same is also trLIc for the other fifteen measure.s.

Regression Analysis had been LISCC1 to develop models  of relationships of the most

intcrre]atcd  measures. These arc: “l’he 1 ?alstcad  VOILIIIIC Metric (V), the Mc~abe

~yclomatic  Metric (VG 1 ), and the Non ~ornmcntcd  1,incs of Code (NCI.0~) metric, as

discussc.d  next.



11.1.  Fnctor  Analysis l)iscussion

Three releases of software were analyzed by factor analysis to show the existence

of meaningful relationships among known software complexity measures. ‘l’he analysis

shows the number of fi~ctors W}lCIC sof[ware  complexity measures tend to loacl  high or

low, and also the percentage of the. variability cxplainccl by each Pdctor. ‘1’his rcscarc}l also

shows the matrix of cone] ation summari~ing  the rclat ionships among the sixteen software

cmplcxity  measures for each release.

I/actor analysis of the three rc.leases of software had shown that the first fiftcm

measures of complexity arc closely rclatc(l  to some measure of similarity and arc in

consequence all intcmlatcd,  IIowcvcr, the sixtccmth  complexity measure (1.13-Ratio) does

not seem to be typical of the other fifteen measures, and thus it is unlike the rest of the (iata

set. The three releases show two factors that concisely state the pattern of relationships

within the sixteen mc.asurcs.  however, measures one to fifteen load most strongly on the

first factor with explained variability of 90% to91 %, while the second factor displays lCSS

interesting patterns with loading of 9% to 10%. liactor analysis had also shown that three

c.omplcxity  measures: the Mc~abc  ~yclomatic  ~omplcxity  Metric (VG I ), the Ilalsteacl

Volume Metric (V), and (N~I.0~) arc highly and strongly related. Thcrcforc, in order to

achicvc  an economy of description, these tl]rcc measures arc considered to give a strong

similarity and representation of all the fifteen measure.s.

~’hc correlation matrix fol each release of the soflwarc  also shows that the first

fifteen complexity measures arc related, while

inte.rrc]atcd  to any of the other fifteen measures.

Analysis of variance does not show any

the 1,B-Ratio  measure is not related or

significant difference bctwccn the three
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rclcascs at the level of signifkancc  of 5%. [his means that as the software evolves through

its releases, the ir~tcrlclatiol)sl]i~>s  bciwccn  the complexity measures seem to bc preserved.

1 lmvcvcr wc shoulci  note that withot]t normalization to size, adding on to a program will

make a more complex program. ‘1’hjs seems to agree with what other researchers have

f o u n d  a s  cliscLlsscd  by Valett  and McGarry  [30], IIarrison an(i cook [15] and

Schncidcwind [26].

Since factor analysis tcc}uliquc.s showed that the first fif[ecn software mcasurm are

closely rclatcci  to some nlcasLmc  of similarity, and since three of these measures: McC;abc

~yclomatic  ~omplcxity  Metric (VG 1 ), 1 Ialstcad Volume  Metric (V), and NO .()~ metric

[ire highly and significantly related, they are ccmsidcrcd  to give a strong similarity and

rcprcscntation  of all fiftec.n  measures. ‘1’his c.conomy of cicscription  made it appealing to

develop a set of parsinlonioL1s  models for software complexity mcasurcmc.nts  usi~lg  data

from the three software rclcascs.” ‘1’hc five composite models together with their coefficient

,of determination (R2) are as follows:

1 .  <vGj> = 1.48 + 0.005(V), R2=96%

2 .  <VG1> = 0.510+ 0.136 (N(:LOC), R2=96%

3. <vGl> = 0.786 i 0.001 3(V) -i 0.0976 (NCLOC), R2=96%

4. <v> = -206+ 29.5(NC1.OC), R2=99%

5. <v> = -210 -I 8.7(VG])  -t 28.3(NC1.OC), R2=99%

Statistical analysis, model back testing, and model tcsling  with independent segments of

software are used for validation of the con]posite  models and ascertaining their dcgrcc of accuracy.

‘1’hc dcvc]oped  models had shown a high degree of accuracy in predicting software complexity and

thus they can serve as baseline for other software projects in identifying software modules with

high complexity (maintcnancc  prone) so that actions can bc taken before their release to users.
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11.2.  B a c k  T e s t i n g  o f  M o d e l s

‘1’hc five composite complexity models shown above were chcclmt with actLlal  data from

the three releases, 01’-B, 01’-c  and OP-1). ‘1’ab]c 8 ancl l:igure  3 show the actual average values of

the dcpcnclcnt  variables (VG1 ) and values predicted by tl]c first three moclcls.  ‘l’able 9 and I~igure 4

show the actual average va]ucs of (V) and va]ucs prcclictcc]  by moclcls  4 and 5. It can bc seen that

the diffcrcncc in predicting (VG 1 ) by the first three composite moctcls  ranges  from 3.2% to 10.6%

1JC1OW actual  average value of (VCi 1 ) as calcu]atcci  by Mc~abc  ~;yclomatic  ~omplexity  metric.

Also, the difference in prccticting  (V) by mocicls four and five ranges from 1.2% to 1.396 above

act ual average value of (V) as calcu]ate.d by I la]stea(t’s  Volume. metric.

1!. 3. ‘J’esting ‘1’hc Five Composite Models  by External C h e c k

“1’hc flVC COIllpOSitC CO1ll])lCXity  models Were tCStCd  agaillSt fOUr iIldCpCnCICIlt

segments of software with characteristics as shown in ‘1’able 10. A sample calculation of

,actLla]  average va]ucs of (VG I ) ant] va]ucs predicted by Moctcl  1 for the four segments of

soflwarc is shown in ‘I’able 11. “Mc summary of the actual grand average values of (VG ] )

ancl (V) and t}lcir  valLlcs as prcdictcct  by Models 1 ,2,3 and Modc]s 4 and S rcspcctivcly for

the four segments of software is shown in “Iablc 12, and 13 and Figures 5 and 6. It can be

seen that the difference in predicting (VG 1 ) by the first three composite models ranges from

17.3% below to 0.7% above actual average value of (VG 1 ). Also, the diffcrcncc  in

predicting (V) by models four and five is 9,7% above actual avc.rage value of (V) for the

four segments of software.

c. l’arsimonious  Mode]  and Representative System

Since the five complexity models developed in this study show direct relationships

bctwccn (VG I ) and (V) and also (NCX.OC);  wc had chosen the third model



<VCi ] > = 0.786 -+ 0.001 3(V) + 0,0976(NCI  .(X)

as a rcprcscntativc model for cstilnating the va]uc of (V~J I ) given tbc mcasumd values of

(V) and (NCI.CX).

C. 1. l)cvcloprncmt  of the Rclatiw C o m p l e x i t y  Metric

Wc propose to captLlrc tbc total com~dcxity  of a program basccl on its control flow

complexity, the lexical counts of symbols used, and tbc program sire. In csscncc,  a

complexity metric that aCCOU1ltS fOI’ a program tOtal comp]cxity  dLIC to vo]umc and control

flow and normali~.ccl  by the number c)f lines of COCIC would present a relative comp]cxity

metric that is more uscfu] to consiclcr  fc)r detecting lllailltcrlaflcc-I~rollc  programs. “1’hc

relative complexity metric (R(;h4)  will bc derived for cm}] moclulc  from tbc measurccl value

of (V), tbc cstimatccl  value of (VG I ) from Inodcl 3, ancl normali~cd  by the mociu]c  lines of

~oclc.  “1’hc R~M for moclu]c  is:

15



C. 2. Analysis of The Three ltelcascs  lJsinK “1’hc Nclative  Complexi ty  Nlctric

(RUM)

‘1’hc Relative Gmplcxity h4etric.  (R~h4)  was used to analyze the moclulcs of the

three rclcascs as shown below.

Rclc.asc

01’-11

01’-c

01’-1 )

Rc]ative {:omplcxit-——. . .-

‘1’otal # Of ‘1’otal

‘1’

hfax h4in h4cclian Mean std. I)CV,

Moclulcs — - —  .

222. 2799 45 0.4 10.9 12.6 10.0—— —-—- -

224 2837 45 0.4 10.9 12.7 9.6--

235 493470 - 0.4 12.2 14.8 11.3

Note that, as rcportccl by Kafura and Redc]y [ 17], the Relative {~omp]cxity  Metric (R~M)

has grown with each release from a 2799 total in OP-Fl to a 3470 total in the draft of OP-11,

lJsing  the criterion of l’hc mean relative. complexity value plus onc standard clcviation  as a

cut-off value for acccptab]c  nlodLllcs, wc can identify those modules that can bc considered as

out licrs, or mai nte.nancc-prone  nlodLl]cs.  WC obt ain the following for the three releases:

Rclcasc

.———.

0]’-11

op-~

01’-1)

‘i’otal  #of

Modules

222

224

235

~- ——-—-————-—

(R~M) cutoff

Valm

——— .. —-.

22..6—.. —-—..

22.3- —  — . -  — - .

26.1— — — - .———. —

16
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$% Modules over
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in orclcr to determine whe(hcr the modules above lhc cutoff value were more at risk

(o bc modificci for cnhanccmemt  or fixes than modules below the cutoff value, the

transitions bctwccn  the re.leases were examined. ‘1’hc. rcsL]l(s appear in the table below. of

the 33 modules over the cutoff value of RC~h4 in 01’-11, 40% WCIC actually modified in

order to implement OP-~. C)f the 36 modu]cs in 01’-~ over 01’-C’S R~M cutoff valLlc,

SO% were actual] y modified to inqdcmmt the draft version of OP-1),

Transit icm

1 “10111  01’-13 to

01’-(:

1 JI’om”ol’-c to

01’-11

#/ of h40clulcs

Modificcl

13

38

-. ——.. —..—-. ——

(Rch4) cutoff

Value

——— —._

22.6

———. —

22.3

—. ——. —-—

% of Modif_lcd

ModLdcs  Over

~utoff Value

46

47

% of all Moclu]cs

c)vc.r  mltoff

Value that were

ActLlally  Modified

40

50

Although the cutoff value sccrns to evenly clividc  the moclulcs  that were actually

modified, the modules over the cu!off value for each rclcasc were more likcl y (o be changed

than the modules below the cutoff value. “l’he relative complexity metric (RCM) was

thcrcforc  able to identify maintenance prone modules.

111. Discussion ancl Conclusion

Given that a metric which measures software complexity S}1OUIC1 prove to bc a useful

predictor of software maintenance costs, it is rccomrnendcd  that modules that show a high order of

17



cxmplcxity within a rclcasc be looked upon as modules with propensity to bc.mmc maintenance

prone after rclcasc and clclivcry  to users. It is imperative that a maintenance prone mociulc bc

improved, enhanced, or simpl ificci  into two or more modules before final delivery. ‘1 ‘hc composite

complexity models and the relative comp]cxity  metric clcvclopcd in this study can bc consiclcrcd as

a baseline for comparison with other projects and may serve as a set point for simplifying and

rcduc.ing  complexity of clcvclopcd  software.

‘1’his research was carriccl out by the Jet Propulsion 1.aboratory,  ~;alifornia  lnslitLltc of

“1’cchno]ogy  under contract with the National Aeronautics and Space A(l~~lir~istlatiol~,  The authors

would like to express their sinccrc thanks to l>r. William J, I]urd, Deputy Manager, and Paul A.

Willis; Supervisor, Raclio  Iircqucncy  and Microwave Sobsystcms  Section, IJr. Robert ~.

‘1’ausworthc; ~hicf “J’cchno]ogist,  lnforlnation  Systems l)ivision,  and Dr. IJona]cl S. Rcmcr,

‘l”clccol~llllilllicatiol~s  and l>ata Acquisition I’lanning for comments ancl  suggestions that greatly

imJwovcd  this rcpori.
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Figure  1. The initial Cost Breakdown in Developing a New Project

Module Test 8%
\

Code 7%

Design 5%

Specifications 3% -

Requirements 3%

Integration Test 7%

/

P
___

Maintenance 67%

L__._/
Figure  2. The Cost of’ Software During its Life Cycle
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‘l’able 1. l’crccntngc  of ‘1’imc Spent On  Va r ious  IMaintenance  ‘l’as

— .

% Time Spent

ks

Mainkmmcc  “l’asks 1977 1985 1987 1990

] hlhWlCClllt2J)tS

(1.mccicms

SupportiJ]g  LJSCIS

kCJl~iJICCJ’iJ)~

Adapt at ions

ImmJncJlfation

‘J”UJliJlg

l;va]uating  Requests

~][hCJ’

59

22

NA

NA

6

6

4

NA

3

44

15

21

NA

8

NA

NA

8

4

41

18

12

10

9

5

3

NA

2

43

16

12

9

8

6

5

NA

1
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‘1’able 2. Comptroller General  Statistics on IIclivercd  Software

Qualify of Software Percentage (%)) of

l)cliverec] Software l)e]iverecl

1. (:olllci  work 011 CIclivcry 2

2. Could  work af(cr some rework 3

‘3. . Never succcssful]y  put to usc 45

4. 1 lxtcnsivc] y rcworkcc] 20

‘i. . LJSCICSS 30

l’otal 100
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Table 3. 01’-11, 01’-C  and 0}’-1) Modules and Mean }7aluc of the Sixteen
Nleasurm

Measure Q1’-l! ~]~.~ 01’-1)-... .— —:
(222 Modules) (224 Moclules) (23s  Nloclulcs)

Mean Mean Iblcan

1, Ill

2. 112

3 N]

4. N2

5. N

6. A
7. v

8. 1;

9. VGI

10, V(;2

11. I,QC

12. WC

13. <;>

14. s]’

15. NC] .OC

16. l.B-Ratio

12

12

70

42

113

103

704

53781

4

5

73

43

12

5

30

1

12

12

75

44

119

110

721

58198

4

4

78

46

13

5

31

1

13

15

87

52

140

126

844

61715

5

5

83

49

15

6

34

1
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Table 4. Grrelation Nlatrix of Sixteen Nleasures .For OP-B

n!

[] ~
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?42

v
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v
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v<;!
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LOC

DC

CR
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Tablc 7. The Factor Matrix For The Sixteen Measures of OP-C, OP-B, OP-D.

—————— ————— —____________ —.—

1. n,

2. nz

3.  N1

4 ,  N~

5. N

6.  NA

7. v

8. E

9.  VG1

10. VGZ

11. LOC

12. B/C

13. <;>

14. SP

15. NCLOC

16. LB-Ratio

.78

.94

.97

.97

.98

.91

.96

.89

.94

.77

.94

.61

.97

.70

.98

-.03

-.17

-.02

.10

.06

.09

-.01

.14

.22

.09

.12

-.25

-.64

.03

-.05

.05

.83

.79

.94

.98

.97

.98

.96

.97

.90

.95

,95

,96

.7’2

.97

.60

.98

-.01

-.12

-.02

,83

.04

.07

-.00

.09

.15

.08

.07

-.17

-.50

.04

-.01

.05

.92

— ---

.78

.93

.97

.96

.97

.96

.96

.88

.93

.93

.95

.70

.97

.72

.98

-.02

-.17

-.03

.08

-.05

.07

-.01

.09

.15

.10

.10

-.19

-.53

.06

.04

.05

.90

Percentage of 90 10 91 9 91 9

explained variability

——. ——-.
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‘J’able 8. Summary of Actual Average Values of (VG1) and Values Predicted by

Moclcls  1, 2, and 3.

.

(V) Value l)clta ]tr*.Or(~)

Model l?c.lease Actual . .  (A] ~mdictcd(l’) [A):-L13 l)elta.m.~

1. 0}’-1; 4.45 5.00 -0.55 -12.40

OP-C 4,53 5,09 -0.56 -12.40

OP-D 5.30 5,70 -0.40 -7.50

Grand Average 4.76 5.26 -0.50 -10.60

2. oP-13 4,45 4.59 -0.14 -3.10

OP-C 4.53 4.86 -0.33 -7.30

C)P-r) 5.30 5.27 -0.03 0.60

Grand Avc.rage 4.76 4.91 -0.15 -3,10

‘3., OP-B 4,45 4.62 -0.17 -3.80

OP-C 4.53 4.84 -0.31 -6.80

OP-D 5.30 5.30 0.00 0.00

Grand Average 4,76 4.92 -0.16 -3.40
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‘J’alJlc  9. Summary of Actual Average Values  of (V) and Values l’rcdictcd

Models  4 and  S.

,(,

31

4. 01>-13 704 679 +25 +3.6

01’-c 722 738 -16 -2,2

OP-1) 845 826 +-19 -t-2.2

Grand Average 7 5 7 748 -t9 +1 .2

5. . 01’-11 704 678 +26 +3.7

OP-C 722 735 -13 -1.8

01’-11 845 826 +]9 +2.2

Grmcl Average 757 746 -10 +-1 .3



,!.

‘1’able JO. Characteristics of Four independent Segments of Software

Ac!wi! _Awwgc_. ValIIE
Sc’gmc!nt Number of Y(il y N(;1 ,()~
INumbcr Modules

1. 16 16.4 3343 102

2 . 16 17.9 4016 139

3. s o 8 . 1 6 1823 64

4 . 5 5 11.10 2212 71
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Table  11. Sample  Calcula t ion  of  Actual  Awxagc  Values  of (VGI  ) and }Ta]ucs

l’rcdictcd  by Model 1 l~or Segments 1 to 4.

—.

(v) Valllc lk]ul 1 ;Ilor(%)

~lodcl Segment A cl~l.a I M) ]’r@iclSd[P) [A.]:..(P) ]Mt.a...> fA)

1 . 1 16 .40 18.19 -1.79 -10.9

2 17.90 21. S6 -3.66 -20 .4

3 S.16 10. s9 -2.03 -24 .4

4 11.10 12. S4 -1.44 -13 .0

Grand Average 13.39 15.72 -2.33 -17 .3
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‘J’able 12. Summary of Actual Grand Average Values of (VG1)  and Values

Prcclictccl by Models  1, 2 and  3 For Segments 1 to 4.

1 . lto4 13.39 ls. s7 -2 .33 -17 .3

2 . lto4 13.39 13.31 +0.08 +- 0.6

3c. l t o 4 13.39 13.48 -0.09 + 0 . 7
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I’able  13. Summary of Actual Grand Average  Values of (V) and Values I’rcdictcd

by Models 4 and S l~or Segments 1 to 4.

4 . l t o 4 2848 2570 +278 +-9.7

5. . lto4 2848 2S71 +277 + 9 . 7
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