

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

High Availability for Ultra-Scale Scientific High-End Computing

Christian Engelmann

Network and Cluster Computing Group Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, USA

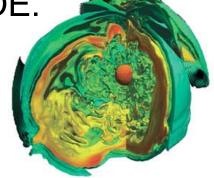
Overview

- Research at Oak Ridge National Laboratory.
- Ultra-scale scientific high-end computing.
- Fault-tolerant heterogeneous metacomputing.
- High availability system software framework.
- Super-scalable algorithms for computing on 100,000 processors.

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Research at Oak Ridge National Laboratory

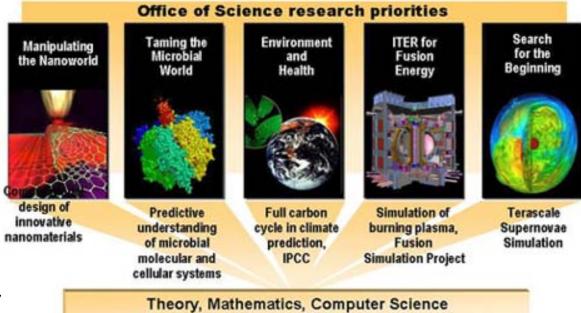

Christian Engelmann

Network and Cluster Computing Group Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, USA

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

- Multiprogram science and technology laboratory.
- Privately managed for the U.S. Department of Energy.
- Basic and applied research and development.
- In biological, chemical, computational, engineering, environmental, physical, and social sciences.
- Staff: 3800 total, 1500 scientists and engineers
- Budget: \$1.06 billion, 75% from US DOE.
- Total land area: 58mi² (150km²).
- ~3000 guest researchers each year.
- ~30,000 visitors each year.



East Campus of Oak Ridge National Laboratory Computational **Sciences Building** Research Office Building **Engineering Technology Facility** Joint Institute for Computational Sciences Research Support Center (Cafeteria, Conference, Visitor)

National Leadership Computing Facility

- Established in 2004.
- \$25M from US DOE.
- Lead by Oak Ridge National Laboratory.
- Collaboration with other laboratories and universities.
- Using capability over capacity computing.
- Advancing the race for scientific discovery.

Leadership Computing for Science Critical for success in key national priorities

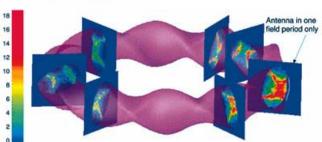
National Leadership-Class Computing Facility for Science

Center for Computational Sciences

- Computer center with 40,000 ft² (3700m²) floor space.
- 3 systems in the Top 500 List of Supercomputer Sites:
 - □ 29. Cray X1 Vector with 504P/2TB ⇒ 5.9 TFLOPS.
 - 80. IBM Power 4 Cluster with 864P/1TB ⇒ 2.3 TFLOPS.
 - □ 245. SGI Altix IA64 SSI with 256P/2TB ⇒ 1.2 TFLOPS.

Leadership Computing Roadmap

- New system installations and upgrades this year:
 - Cray XT3 Opteron Cluster with 5212P/10TB ⇒ 25 TFLOPS.
 - with 1024P/ 4TB \Rightarrow 18 TFLOPS. Cray X1 to X1e
- Upgrades next year:
 - Cray XT3 to 20000P/40TB ⇒ 100 TFLOPS.
- Future roadmap:
 - Upgrade Cray X1e to X2 ~ 2007.
 - Upgrade Cray XT3 to 250 TFLOPS ~ 2007.
 - Installation of a 1 PFLOP system ~ 2009.



Computer Science Research Groups

- Computer Science and Mathematics Division.
 - Applied research focused on computational sciences, intelligent systems, and information technologies.
- CSM Research Groups:
 - Climate Dynamics
 - Computational Biology
 - Computational Chemical Sciences
 - Computational Materials Science
 - Computational Mathematics
 - **...**
 - Network and Cluster Computing (~23 researchers)

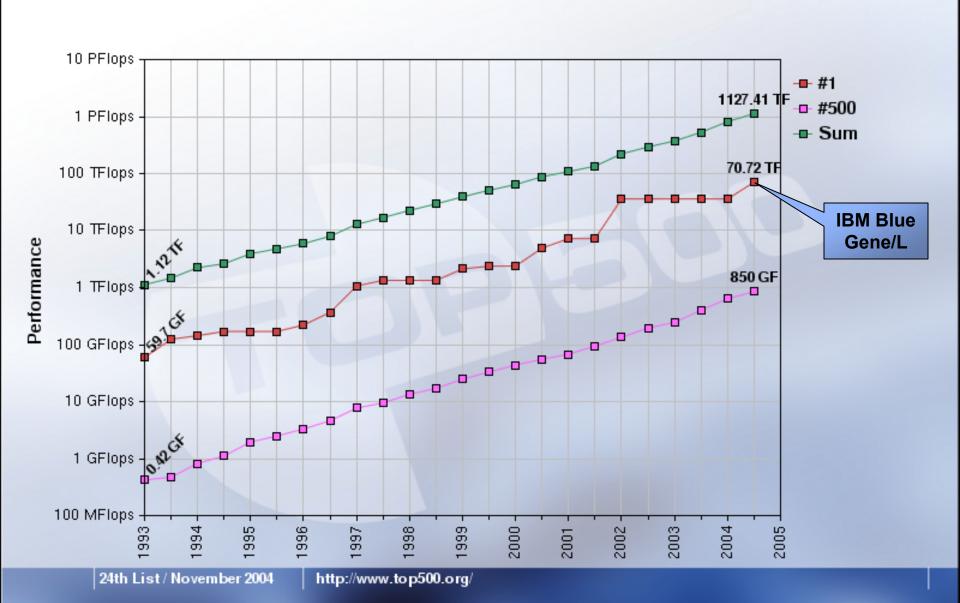
Computer Science Research Projects

- Parallel Virtual Machine (PVM).
- MPI Specification, FT-MPI and Open MPI.
- Common Component Architecture (CCA).
- Open Source Cluster Application Resources
- Scalable Systems Software (SSS).
- Fault-tolerant metacomputing (HARNESS).
- High availability for high-end computing (RAS-MOLAR).
- Super-scalable algorithms research.

OAK RIDGE NATIONAL LABORATORY

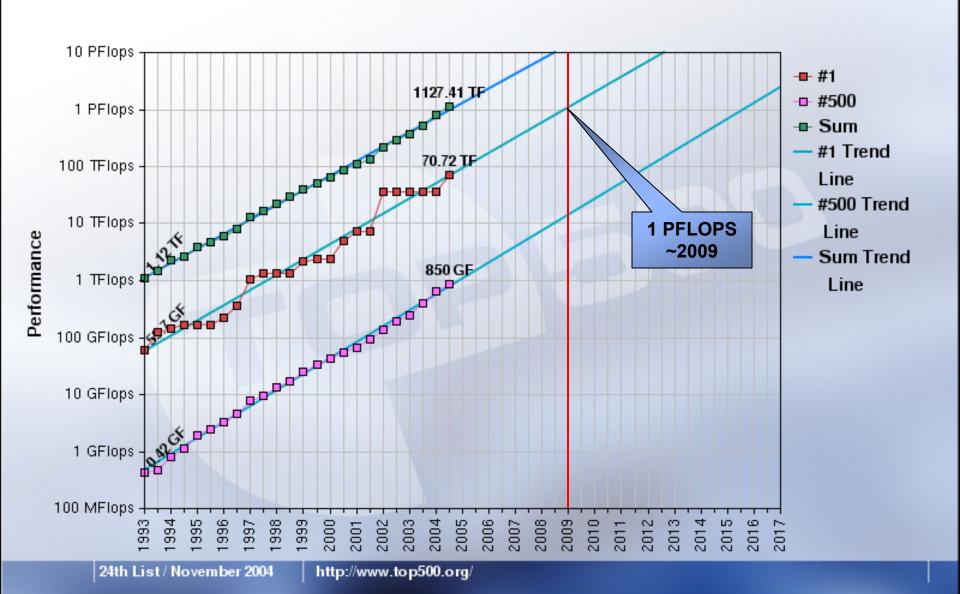
MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Ultra-scale Scientific High-End Computing


Christian Engelmann

Network and Cluster Computing Group Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, USA

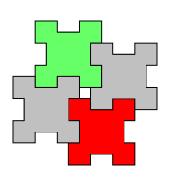
Scientific High-End Computing


- Next generation supercomputing.
 - Large-scale cluster, parallel, distributed and vector systems.
 - 131,072 processors for computation in IBM Blue Gene/L.
- Computationally and data intensive applications.
 - Many research areas: (multi-)physics, chemistry, biology...
 - Climate, supernovae (stellar explosions), nuclear fusion, material science and nanotechnology simulations.
- Ultra-scale = upper end of processor count (+5,000).
 - 25+ TeraFLOPS (25,000,000,000,000 FLOPS and more).

Performance Development

Projected Performance Development

Ultra-scale Software Research Issues


- Capability computing applications require ultra-scale systems and long runtimes (weeks or even months).
- However, larger and more complex systems result in an increase of failure rates and system downtimes.
- Furthermore, application efficiency drops off with increased system scale due to Amdahl's Law.
- → Application software fault-tolerance.
- → High availability system software.
- → Super-scalable algorithms for 100,000 processors.

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

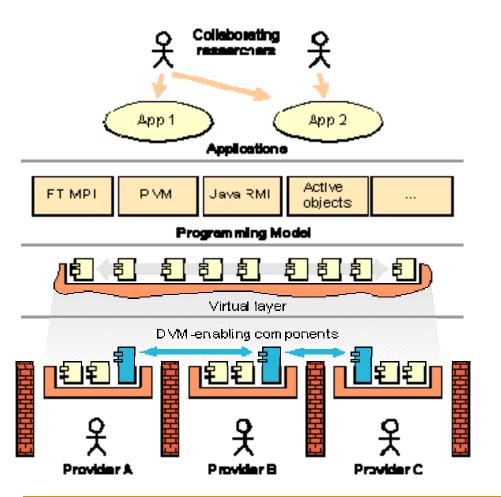
Fault-tolerant Heterogeneous Metacomputing with Harness

Christian Engelmann

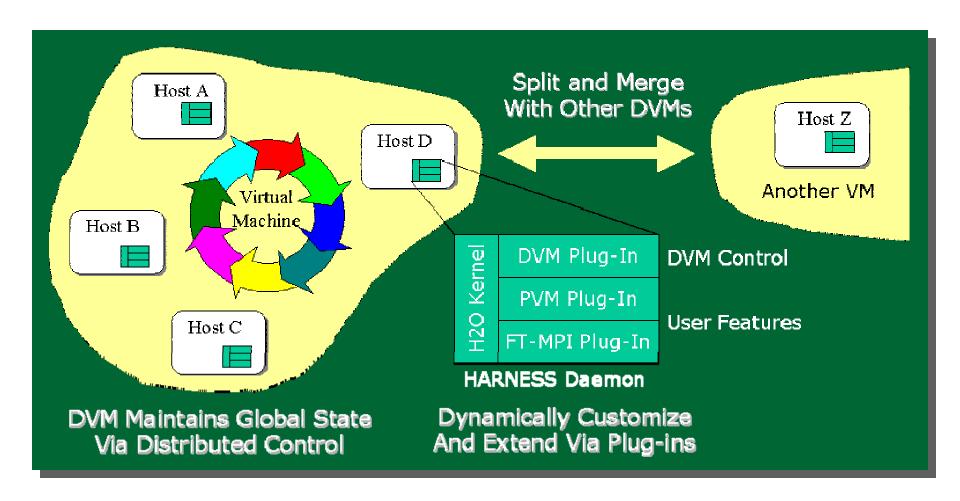
Network and Cluster Computing Group
Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, USA

What is Harness

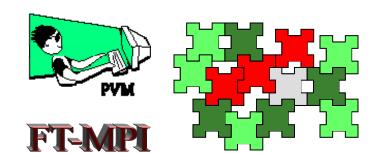
MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY


- A pluggable, reconfigurable, adaptive framework for heterogeneous distributed computing.
- Allows aggregation of resources into high-capacity distributed virtual machines.
- Provides runtime customization of computing environment to suit applications needs.
- Enables dynamic assembly of scientific applications from (third party) plug-ins.
- Offers highly available distributed virtual machines through distributed control.

Harness Research Areas


- Lightweight, pluggable software frameworks.
- Adaptive, reconfigurable runtime environments.
- Parallel plug-ins and diverse programming paradigms.
- Highly available distributed virtual machines (DVMs).
- Advanced ultra-scale approaches for fault tolerance.
- Fault-tolerant message passing (FT-MPI).
- Mechanisms for configurable security levels.
- Dynamic, heterogeneous, reconfigurable communication frameworks (RMIX).

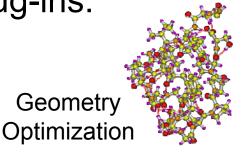
Harness Architecture

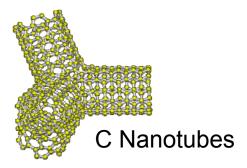


- Light-weight kernels share their resources.
- Plug-ins offer services.
- Support for diverse programming models.
- Distributed Virtual Machine (DVM) layer.
- Highly available DVM.
- Highly available plugin services via DVM.

Harness DVM Architecture

Harness Plug-ins




- PVM emulation plug-in:
 - Replaces the PVM daemon.
 - Allows users a seamless transition to Harness.
 - Plug-ins and applications just link libpvm.
 - PVM is controlled with the Harness console.
- Fault-tolerant MPI (FT-MPI) plug-in:
 - Combines several FT-MPI services in one plug-in.
 - Plug-ins and applications just use ftmpiCC.
 - FT-MPI is controlled with the Harness console.

Harness Plug-ins

Distributed Control

- DVM plug-in:
 - Allows to aggregate multiple Harness kernels.
- Distributed control plug-in:
 - Provides high availability through virtual synchrony.
- RMIX plug-in:
 - Offers multi-protocol RMI (JRMPX, SOAP and RPC).
- Several application plug-ins:
 - Molecular dynamics.
 - Quantum chemistry.

SCC-DF

The Future of the Harness Project

The Harness Workbench:

- Simplify HPC application development & deployment.
- Virtualized Command Toolkit (VCT) providing a common view across diverse HPC environments.
- Next generation runtime environment (Harness-RTE) for automatic adaptation to target architectures.
- Plug-ins for adaptive compilation, linking and staging.
- Configurable application programming environments.
- Back-end for parallel software toolkits and integrated development environments, such as Eclipse.

OAK RIDGE NATIONAL LABORATORY

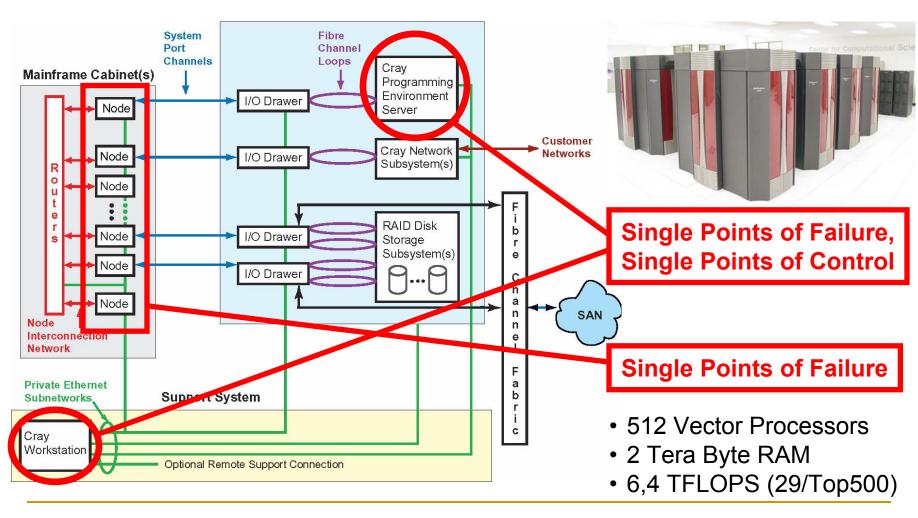
MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

High Availability System Software Framework

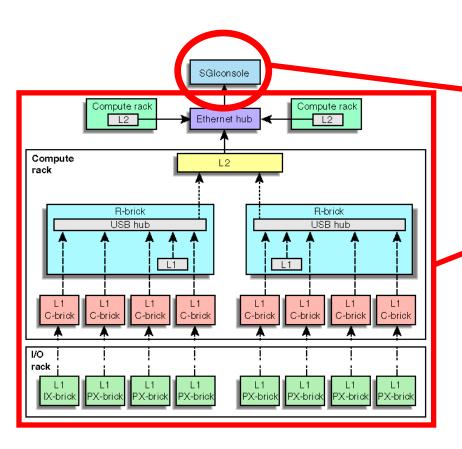
Christian Engelmann

Network and Cluster Computing Group Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, USA

Availability of HEC Systems


- Today's supercomputers typically need to reboot to recover from a single failure.
- Entire systems go down (regularly and unscheduled) for any maintenance or repair.
- Compute nodes sit idle while their head node or one of their service nodes is down.
- Availability will get worse in the future as the MTBI decreases with growing system size.
- Why do we accept such significant system outages due to failures, maintenance or repair?

Availability Measured by the Nines


9's	Availability	Downtime/Year	Examples
1	90.0%	36 days, 12 hours	Personal Computers
2	99.0%	87 hours, 36 min	Entry Level Business
3	99.9%	8 hours, 45.6 min	ISPs, Mainstream Business
4	99.99%	52 min, 33.6 sec	Data Centers
5	99.999%	5 min, 15.4 sec	Banking, Medical
6	99.9999%	31.5 seconds	Military Defense

- Enterprise-class hardware + Stable Linux kernel = 5+
- Substandard hardware + Good high availability package = 2-3
- Today's supercomputers = 1-2
- My desktop= 1-2

Vector Machines: Cray X1 (Phoenix)

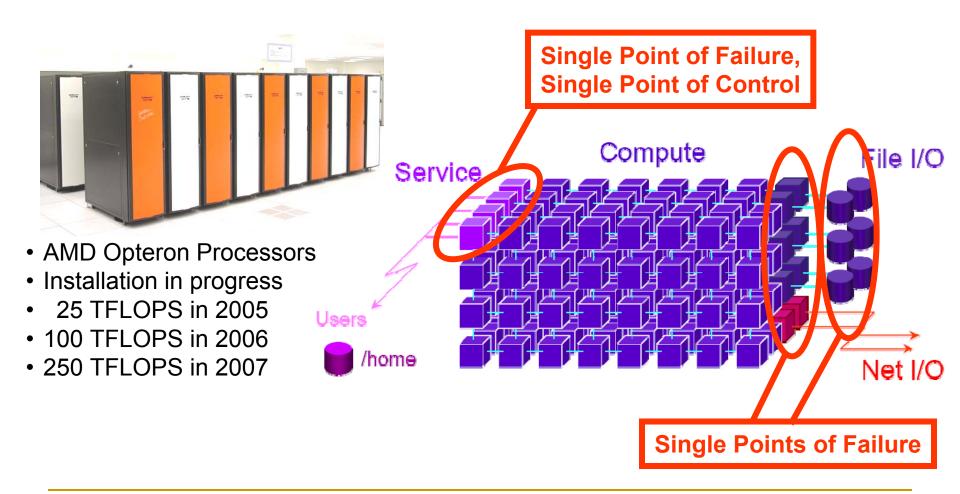
SSI Clusters: SGI Altix (Ram)

Ethernet

----- USB cable

USB signals in NUMA link3
 cable (L1 of C-brick to
 USB hub in R-brick)
 RS-422 signals in

Crosstown2 cable


- 256 Itanium 2 Processors
- 2 Tera Byte RAM
- 1,5 TFLOPS (245/Top500)

Single Point of Failure, Single Point of Control

Single Points of Failure

Clusters/MPPs: Cray XT3 (Jaguar)

High Availability Methods

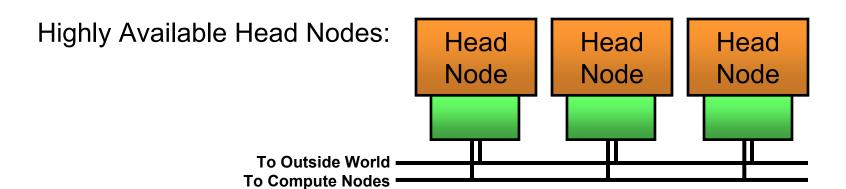
Active/Hot-Standby:

- Single active head node.
- Backup to shared storage.
- Simple checkpoint/restart.
- Rollback to backup.
- Idle standby head node(s).
- Service interruption for the time of the fail-over.
- Service interruption for the time of restore-over.
- Possible loss of state.

Active/Active:

- Many active head nodes.
- Work load distribution.
- Symmetric replication between participating nodes.
- Continuous service.
- Always up-to-date.
- No restore-over necessary.
- Virtual synchrony model.
- Complex algorithms.

High Availability Technology

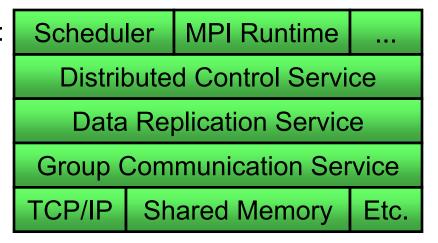

Active/Hot-Standby:

- HA-OSCAR with active/hotstandby head node.
- Similar projects: HA Linux
- Cluster system software.
- No support for multiple active/active head nodes.
- No application support.

Active/Active:

- HARNESS with symmetric distributed virtual machine.
- Similar projects: Cactus ...
- Heterogeneous adaptable distributed middleware.
- No system level support.
- Solutions not flexible enough.
- System-level data replication and distributed control service needed for active/active head node solution.
- Reconfigurable framework similar to HARNESS needed to adapt to system properties and application needs.

Modular HA Framework on Active/ Active Head Nodes


Reliable Services:

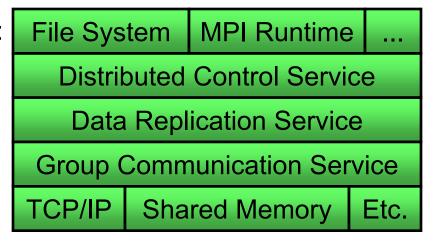
Virtual Synchrony:


Symmetric Replication:

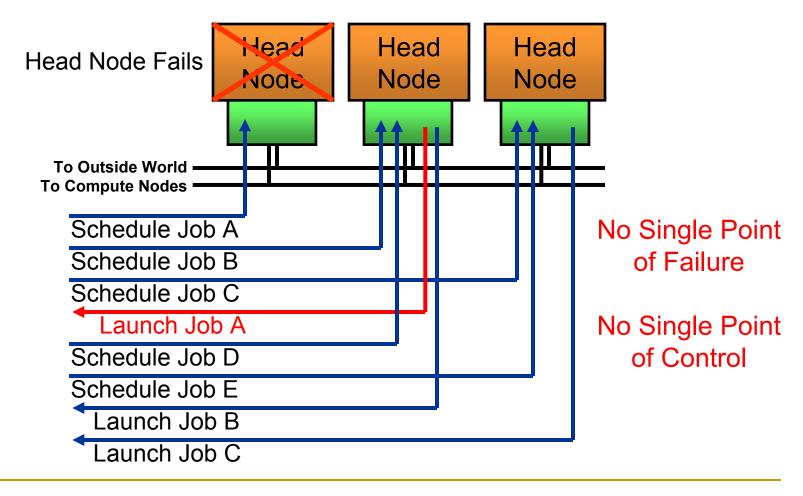
Reliable Server Groups:

Communication Methods:

Modular HA Framework on Active/ Active Service Nodes


Reliable Services:

Virtual Synchrony:


Symmetric Replication:

Reliable Server Groups:

Communication Methods:

Modular HA Framework on Active/ Active Head Nodes: Scheduler Example

Many HA Framework Use Cases

- Active/Active and Active/Hot-standby process state replication for multiple head or service nodes.
 - Reliable system services, such as scheduler, MPI-runtime and system configuration/management/monitoring.
- Memory page replication for SSI and DSM.
- Meta data replication for parallel/distributed FS.
- Super-scalable peer-to-peer diskless checkpointing.
- Super-scalable localized FT-MPI recovery.
- !!! No protection from Byzantine failures !!!

MOLAR: Modular Linux and Adaptive Runtime Support for High-end Computing Operating and Runtime Systems

- The HA Framework is part of the MOLAR project.
- MOLAR addresses the challenges for operating and runtime systems to run large applications efficiently on future ultra-scale high-end computers.
- MOLAR is a collaborative effort:

MOLAR: HEC OS/R Research Map

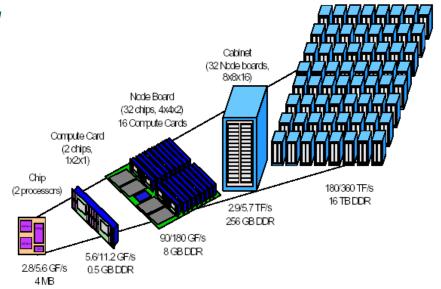
MOLAR: Modular Linux and Adaptive Runtime Support HEC Linux OS: Modular, Custom, Light-weight Kernel Design Monitoring RAS Testbeds Performance Observation Root Cause Extend/Adapt Provided High. Communications, IO Runtime/OS Analysis Availability

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Super-Scalable Algorithms for Computing on 100,000 Processors

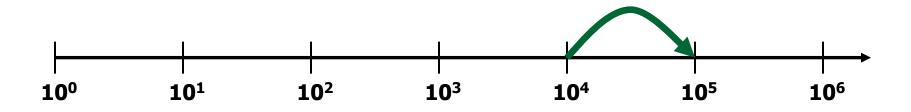
Christian Engelmann


Network and Cluster Computing Group Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, USA

Super-Scale Architectures

- Current tera-scale supercomputers have up to 10,000 processors.
- Next generation peta-scale systems will have 100,000 processors and more.
- Such machines may easily scale up to 1,000,000 processors in the next decade.
- IBM is currently deploying the Blue Gene/L system at research institutions world-wide.

IBM Blue Gene/L


- 64K diskless nodes with 2 processors per node.
- 512MB RAM per node.
- Additional service nodes.
- 360 Tera FLOPS.
- Over 150k processors.
- Various networks.
- Operational in 2005.
- Partition (512 nodes) outages on single failure.
- MTBF = hours, minutes?

Scalability Issues

- How to make use of 100,000 processors?
- System scale jumps by a magnitude.
- Current algorithms do not scale well on existing 10,000-processor systems.
- Next generation super-scale systems are useless if efficiency drops by a magnitude.

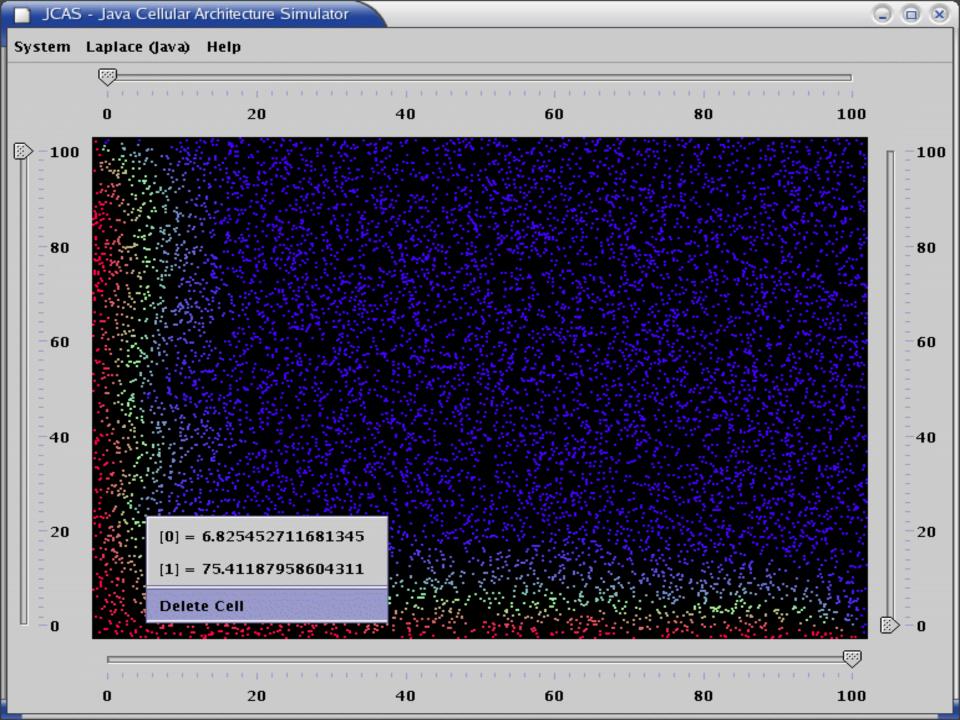
Fault-tolerance Issues

- How to survive on 100,000 processors?
- Failure rate grows with the system size.
- Mean time between failures (MBTF) may be a few hours or just a few minutes.
- Current solutions for fault-tolerance rely on checkpoint/restart mechanisms.
- Checkpointing 100,000 processors to central stable storage is not feasible anymore.

ORNL/IBM Collaboration

- Development of biology and material science applications for super-scale systems.
- Exploration of super-scalable algorithms.
 - Natural fault-tolerance.
 - Scale invariance.
- Focus on test and demonstration tool.
- Get scientists to think about scalability and faulttolerance in super-scale systems!

Cellular Algorithms Theory


- Processes have only limited knowledge mostly about other processes in their neighborhood.
- Application is composed of local algorithms.
- Less inter-process dependencies, e.g not everyone needs to know when a process dies.
- Peer-to-peer communication with overlapping neighborhoods promotes scalability.

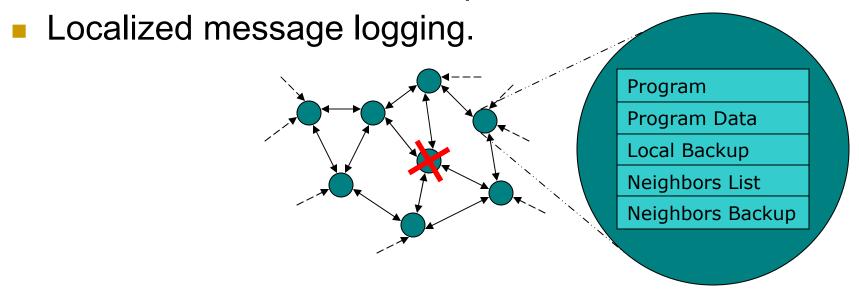
Cellular Architecture Simulator

- Developed at ORNL in Java with native C and Fortran application support using JNI.
- Runs as standalone or distributed application.
- Lightweight framework simulates up to 1,000,000 lightweight processes on 9 real processors.
- Standard and experimental networks:
 - Multi-dimensional mesh/torus.
 - Nearest/Random neighbors.
- Message driven simulation is not in real-time.
- Primitive fault-tolerant MPI support.

Super-scalable Algorithms Research

- Extending the cellular algorithms theory to real world scientific applications.
- Exploring super-scale properties:
 - Scale invariance fixed scaling factor that is independent from system and application size.
 - Natural fault-tolerance algorithms get the correct answer despite failures without checkpointing.
- Gaining experience in programming models for computing on 100,000 processors.

Explored Super-scalable Algorithms


- Local information exchange:
 - Local peer-to-peer updates of values.
 - Mesh-free chaotic relaxation (Laplace/Poisson).
 - Finite difference/element methods.
 - Dynamic adaptive refinement at runtime.
 - Asynchronous multi-grid with controlled or independent updates between different layers.
- Global information exchange:
 - Global peer-to-peer broadcasts of values.
 - Global maximum/optimum search.

Super-scalable Fault Tolerance

- For non-naturally fault tolerant algorithms.
- Does it makes sense to restart all 100,000 processes because of one failure?
- The mean time between failures (MTBF) is likely to be a few hours or just a few minutes.
- Traditional centralized checkpointing and message logging are limited by bandwidth (bottleneck).
- Frequent checkpointing decreases app. efficiency.
- → The failure rate is going to outrun the recovery rate.

Super-scalable Diskless Checkpointing

- Decentralized peer-to-peer checkpointing.
- Processors hold backups of neighbors.
- Local checkpoint and restart algorithm.
- Coordination of local checkpoints.

Super-scalable Algorithms Research

- Super-scale systems with 100,000 and more processors become reality very soon.
- Super-scalable algorithms that are scale invariant and naturally fault-tolerant do exist.
- Diskless peer-to-peer checkpointing provides an alternative to natural fault-tolerance.
- A lot of research still needs to be done.

Conclusions

- Oak Ridge National Laboratory performs basic and applied research in various areas.
- Capability computing is our path to world-class leadership computing.
- Next generation ultra-scale scientific high-end computing is a research challenge for:
 - Application software fault-tolerance.
 - High availability system software.
 - Super-scalable algorithms.

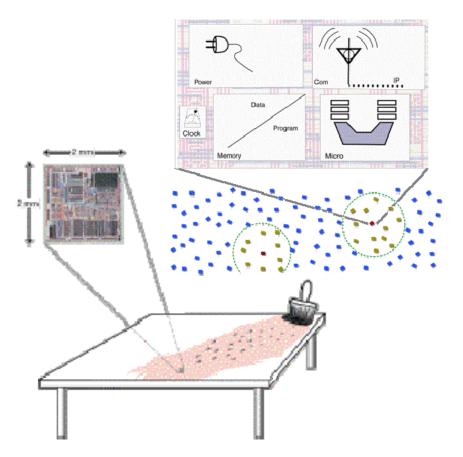
OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

High Availability for Ultra-Scale High-End Scientific Computing

Christian Engelmann

Network and Cluster Computing Group Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, USA


Laboratories and Research Centers

- Oak Ridge Electron Linear Accelerator (ORELA).
- Holifield Radioactive Ion Beam Facility (HRIBF).
- High Flux Isotope Reactor (HFIR).
- Spallation Neutron Source (SNS), see next slide.
- High Temperature Materials Laboratory (HTML).
- National Transportation Research Center (NTRC).
- **.** . . .
- Joint Institute for Computational Science (JICS).
- National Leadership Computing Facility (NLCF).

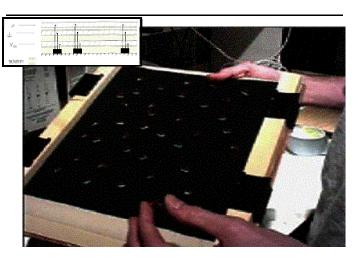
Spallation Neutron Source at Oak Ridge National Laboratory

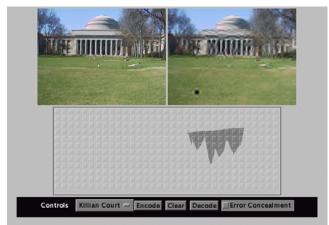
MIT Research: Paintable Computing

- In the future, embedded computers with a radio device will get as small as a paint pigment.
- Supercomputers can be easily assembled by just painting a wall of embedded computers.
- Applications are driven by cellular algorithms.

MIT Research: Pushpin Computing

- 100 embedded nodes.
- 1.25m x 1.25m pushpin board provides power.
- Initial applications:
 - Distributed audio stream storage.
 - Fault-tolerant holistic data (image) storage.
- Ongoing research:
 - Sensor networks.





HARNESS: Pluggable Heterogeneous Distributed Virtual Machine

Exploring New Capabilities in Heterogeneous Distributed Computing

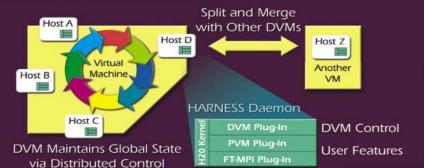
A Collaborative Research Effort Between Oak Ridge National Laboratory, University of Tennessee and Emory University

Fault Tolerance

Petascale Approaches Beyond Standard Checkpoint/Restart

- Checksum Based (a la RAID)
- Localized State Neighborhoods
- Incremental Checkpointing

FT-MPI Application **Templates**


Adaptability

New Dynamic Environments Collaborating and Personal VMs Pervasive Computing

Multiple Plug-Ins and Parallel Paradigms

PVM Plug-In **Application Monitoring** Fault-Tolerant MPI Plug-In

Harness Architecture

Dynamically Customize and Extend via Plug-ins

GRID Lite

Personally Controlled (VM) Resource Sharing

Minimum Modular

Infrastructure

Complements Existing DOE Data and Science Grids

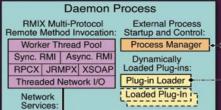
Near Stateless Computing

Task Communication Minimized Global State

Self-Assembling Virtual Machine

Parallel Plug-Ins Provide Capabilities

Parallel Software Modules (Plug-Ins) for Flexibility and Dynamic Customization



http://www.csm.ornl.gov/harness

H2O Kernel

Implementations in C and Java

Portable Multi-Threaded C Implementation

Running Processes: External Process Forker Process Plug-Ins:

Plug-In

OSCAR

- **Den**
- ource
- luster
- pplication

Delete Node Wizard

esources

Management

Add Node Wizard

- Snapshot of "best known methods" for building, programming, and using clusters
- Consortium of academic/research and industry members
- Wizard-based cluster installation
- Automatically configures headnode and services
- Reduces time and expertise to build/install a cluster
- Manages nodes and packages

OSCAR - base build

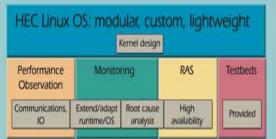
SSS-OSCAR - Scalable System Software build (SciDAC)

Thin-OSCAR - diskless build

HA-OSCAR – high availability cluster build

SSI-OSCAR - single system image build based on Kerrighed

Cluster **Power Tools**


- C3: Cluster, Command, and Control
 - Scalable systems administrator
 - Single system illusion (SSi) for clusters and multi-clusters
 - Application and administration tools for secure cluster through multi-cluster access crossing administrative domains

Applications

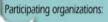
C3 Command Line Cluster Power Tools

- cexec
- clist
- cpush
- cname
- cget
- cnum
- o cpushimage o ckill
- cshutdown • crm

MOLAR: Modular Linux and **Adaptive Runtime Support**

FastOS - Forum to Address Scalable Technology for Runtime and Operating Systems

Problem:


Current OSs and runtime systems (OS/R) are unable to meet the various requirements to run large applications efficiently on future ultra-scale computers.

Goals:

- Development of a modular and configurable Linux framework.
- Runtime systems to provide a seamless coordination between system levels.
- Monitoring and adaptation of the operating system, runtime, and applications.
- Reliability, availability, and serviceability (RAS)
- Efficient system management tools

Impact:

- Enhanced support and better understanding of extremely scalable architectures
- Proof-of-concept implementation open to community researchers.

Super-Scalable Algorithms:

Developing a Foundation for Applications Scaling Beyond 100,000 Processors

Neighbors Backup

http://www.csm.ornl.gov/~gst

Self-healing Algorithms

Inherently fault-tolerant, these algorithms get the correct answer despite multiple task failures and without checkpointing.

Algorithms Developed:

- Finite difference and finite element
- Multigrid
- Global Maximum
- Monte Carlo

Program Program Data Local Backup

- For non-healing algorithms, such as FFT, peer-to-peer diskless checkpointing improves scalability.
- Processors distribute their state to their logical neighbors using RAID like technology

1,000,000 Processor Simulator

Simulator allows testing of fault-tolerance and scalabilty beyond current systems.

Simulator Features:

- Parallel Java running on Windows desktop to Linux cluster
- Adjustable topology: mesh, torus, random and manual
- Simulation of failures in single nodes or groups
- Supports native C and FORTRAN for scientific applications

Collaboration with IBM in Support of:

- design of Blue Gene\L
- creation of life sciences and nanotechnology applications for Blue Gene\L

