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Abstract 

Proposed missions to explore comets and moons 
will encounter environments that are hostile and 
unpredictable. A successful explorer must be able to 
adapt to a wide range of possible operating solutions 
to survive.  Constructing special-purpose behaviors 
requires information about the environment, which is 
not available a priori for these missions.  Instead, we 
propose an explorer that uses a flexible problem-
solver with a significant capacity to adapt its behavior.  
More specifically, the explorer uses stochastic 
optimization techniques to continually adapt its 
behavior while limiting the cost of behavior 
exploration.  With Adaptive Problem Solving, we use 
search techniques to enable a spacecraft to continually 
adapt its environment-specific behavior in-situ. 

1 Introduction 

Optimizing spacecraft behavior is a difficult 
problem; the problem only becomes more difficult 
when the utility feedback function is stochastic (e.g. a 
distribution instead of a single value).  Stochastic 
optimization is the problem of optimizing the expected 
utility of a hypothesis behavior for a certain domain.  
Our adaptive problem solver optimizes the control 
strategy used by a planning system (for this work, the 
Automated Scheduling and Planning Environment, or 
ASPEN [Chien 2000]), which is autonomously 
controlling a spacecraft. The planner searches through 
the space of all possible plans to find a single plan that 
accomplishes the mission goals while satisfying all of 
the resource and temporal constraints of the model. 
The control strategy to be optimized is expressed as a 
vector of weights on heuristic functions used to 
control the search.  Adapting the control strategy will 
impact the generated plans and thus the decision-
making strategy (or behavior) of the spacecraft. 

There are two parts to adaptation by stochastic 
optimization: evaluating hypothesis decision-making 
strategies, and generating the set of candidate decision 
strategies. The evaluation component generates a 
sufficient number of samples for each of the 
hypothesis behaviors to satisfy a given decision 
criterion in order to rank the hypothesis behaviors 
within given statistical bounds [Chien 1995]. The 
generation method uses the ranking from the 
evaluation step to generate the subsequent set of 
hypothesis behaviors to be evaluated.  The cycle stops 
when the highest estimated utility has reached 
quiescence or a time limit has been reached. The two 
parts of the stochastic optimization problem address 
different classes of problems, the first addressing the 
problem of selection and the second addressing the 
problem of search, but algorithms for each part can be 
chosen such that their characteristics can be used in a 
synertistic way to facilitate the overall problem of 
adapation. 

Strategy evaluation is the process in stochastic 
optimization of determining which of the possible 
control strategy hypotheses outperforms the others for 
a specific set of problem instances in the domain.  
Because the utility U(h) cannot be found directly, 
sampling is used to estimate the expected performance 
for each control strategy hypothesis.  A statistical 
decision criterion, which may take several forms, 
determines when enough samples have been taken to 
be reasonably sure of the relative standing of strategy 
hypothesis h, with some user-defined confidence or 
error bounds.  The purpose of the decision criteria is to 
enable intelligent sampling to allocate more samples 
to hypotheses with less certain utility estimates, thus 
reaching a confident decision while reducing sampling 
cost. 

There are many possible decision criteria for use in 
the evaluation function. Some simplify the problem by 
making the assumption that the stochastic data is 
normally distributed, while others do not.  Our current 
work has focused on three different requirements: the 
Probably Approximately Correct (PAC) requirement 
[Valiant 1984], Chernoff bounds (e.g., due to Chernoff 
[Hagerup & Rub, 1990]), Hoeffding’s inequality 



[Hoeffding, 1963], and Bernstein’s inequality 
[Bernstein, 1946].  The PAC requirement assumes 
normally distributed data, whereas Chernoff bounds, 
Hoeffding’s inequality, and Bernstein’s inequality are 
distribution-free, or non-parametric, and do not make 
any assumptions about the distribution of the data.  
With the PAC decision criterion, an algorithm makes 
decisions with a given confidence (probability 1-d, for 
small d) to select a good hypothesis (within error e ?of 
the best hypothesis).  Because any specific decision 
either satisfies or does not satisfy this requirement, the 
PAC criterion holds that over a large number of 
decisions that the accuracy rate must meet 1-? .  For 
data that is not normally distributed, distribution-free 
exponential bounds due to Chernoff, Hoeffding, and 
Bernstein may be substituted for the exact normal-
theory probabilities.  We can use such exponential 
inequalities to get accurate bounds on the probability 
of incorrect selection, retaining a probabilistic 
guarantee, while avoiding the normality assumption. 

Strategy generation is the second component in 
adaptive problem solving.  The search landscape is a 
large, multi-dimensional space.  Local search 
techniques could be used to perform optimization 
within this search space effectively, as they are 
generic, adaptable, and easy to understand. But local 
search techniques will not work well in the search 
space unless gradient information is helpful, the space 
is smooth, or at a very minimum the space is 
continuous.  In addition, the landscape of the search 
space is defined by the neighborhood of the selected 
step function. This means two vector hypotheses that 
are one neighborhood step away from each other using 
a single search function could be many steps from 
each other using another. To search this space 
effectively, we must find a search technique that 
creates a smooth, easily searchable space. 

We evaluate three different search techniques:  
random search, local beam search, and genetics-
inspired search.  The difficulty of searching a 
landscape is tightly coupled to the landscape 
properties of ruggedness, distribution of local optima, 
number of local optima, and topology of attraction 
basins.  These properties will be quantified for the 
three search techniques [Stadler 2000]. Furthermore, 
we compare the actual results of applying the three 
different search algorithms, and illustrate how 
effective local search techniques are on the chosen 
domains. 

In this paper we will describe (1) alternative 
decision criteria to use for evaluating the strategies, 
(2) alternative local search methods and enhancements 
used to generate candidate strategies, and (3) 
performance of the different search algorithms in two 
different planning domains. 

2 Europa Submersible 
Scenario 

Consider NASA’s planned mission to Jupiter’s 
moon, Europa, which will send a robot to the surface 
of the moon Europa in order to analyze the ice surface 
and hypothesized ocean underneath.  Once the 
submersible has dug through the ice, it might have the 
scientific goals of moving to the next target 40% of 
the time allotted to achieving goals, and imaging or 
performing scientific experiments 60% of that time.  
All of the images must be uplinked to the orbiter, and 
an uplink should happen once every orbit in order to 
ensure that the image buffer capacity will not be 
exceeded. 

Many scenarios would force these percentages 
and plans to be adapted.  One scenario might be that 
movement in the ocean is much more resource-
intensive than expected, in which case moving 40% of 
the time would not allow the submersible to make as 
much progress as previously expected, so perhaps it 
might choose to increase this amount. Another 
scenario might be that the ice layer is much thicker 
than previously imagined and uplinking the on-board 
data to the orbiter requires special positioning of the 
submersible.  In this case, it might be better to uplink 
once every few orbits to let the submersible have more 
time to collect experiments before it gets into the 
uplink position.  This creates the need to increase the 
percentage of time devoted to moving, since the 
uplink position will require movement to and from the 
current position of the submersible. The increase in 
the percentage of time devoted to movement will 
cause less science to be taken, which is synergistic 
with the adaptation for fewer uplinks. 

Failure to adapt to these situations could cost the 
submersible the mission, by depleting resources too 
rapidly, not accomplishing mission objectives, or 
wearing out equipment.  Not all possible situations can 
be enumerated before the mission; instead an adaptive 
problem solver checks the current control strategy’s 
performance in the given environment and responds to 
changes by adapting the decision-making strategy, 
independent of the cause of the change. An adaptive 
problem solver would continually adapt the control 
strategy if it found the current strategy sub-optimal. 

In actual operations, the submersible would have 
a planning system controlling its decision-making 
processes using a chosen behavior. The preliminary 
behavior would be responsible for preserving the 
safety of the submersible while it learned about its 
new environment. In a separate process, an alternate 
planner and simulator would be adapting the current 
behavior to include movement and science goals, 
while the simulator receives constant updates from the 



submersible as to the current state of the environment. 
When a decision-making strategy is learned in the 
separate process that preserved the safety of the 
submersible and accomplished mission goals, it could 
be swapped into the primary planning system and used 
operationally.  If this decision-making strategy began 
to degrade in performance, the primary planning 
system would request a new strategy, and update the 
simulator with possible environmental changes or 
spacecraft  degradations.  Thus adaptation relies on 
environmental feedback to improve the current 
decision-making strategy on-board a spacecraft, while 
maintaining the safety of the spacecraft. 

3 Planning Domain 
We investigate stochastic optimization in the context 
of learning control strategies for the ASPEN planner 
[Chien 2000]. ASPEN uses heuristics to facilitate the 
iterative search for a feasible plan.  During each search 
step, a planner confronts a series of decisions such as 
which schedule conflict to repair or which action to 
take to repair a chosen conflict. The planner resolves 
these choices by stochastically applying the heuristics, 
based on weights for each choice point heuristic, 
during iterative repair [Zweben 1994]. Thus the 
weights define the control strategy of the planner, 
which impacts the expected utility of the resulting 
plans. 

Specifically, in our experiments, a strategy 
hypothesis is a vector with a weight for each heuristic 
function and a weight of 0 for a heuristic not in use.  
The utility of a hypothesis can be determined by 
running the planner using the control strategy 
hypothesis on a certain problem instance and scoring 
the resulting plan. A problem generator for each 
domain provides a stochastic set of problem instances 
to enhance the robustness of the expected solution for 
the entire planning domain.   

In our ASPEN planning system, there are twelve 
choice points in the repair search space.  Higher level 
choice points include choosing the conflict to resolve 
and choosing the resolution method, such as preferring 
open constraints before violated constraints, or 
preferring to add activities over moving them.  Once a 
resolution method is selected, further choice points 
influence applications of the choice point such as 
where to place a newly created activity and how to 
instantiate its parameters.  For each choice point, a set 
of heuristics specific to that choice point may be used.  
The hypothesis vector is the list of relative weight that 
is given to each heuristic for that choice point.  Since 
the planner is stochastic, the choice of heuristics that 
are used at each step is randomized, so multiple runs 
even for the same problem instance may yield a range 

of solutions (plans) and hence a distribution of 
utilities. 

3.1 Domains 
The repair heuristics were developed for individual 

domain search requirements from ASPEN [Chien 
2000] applications and subsequently abstracted for 
application in a generic ASPEN domain.  There are 
also domain-specific heuristics, which reference 
particular features of a domain in order to affect the 
search.  For each domain, the human expert strategy 
hypotheses were derived independently from (and 
prior to) our study by manual experimentation and 
domain analysis.   
We examine two different spacecraft domains, which 
satisfy the normality assumption of the evaluation 
method.  The first domain, Earth Orbiter-1 (EO-1), is 
an earth imaging satellite.  The domain consists of 
managing spacecraft operations constraints (power, 
thermal, pointing, buffers, telecommunications, etc.) 
and science goals (imaging targets and calibrating 
instruments with observation parameters).  Each 
problem instance is used to create a two-day 
operations plan: a typical weather and instrument 
pattern, observation goals (between 3 and 16), and a 
number of satellite passes (between 50 and 175).  EO-
1 plans prefer more calibrations and observations, 
earlier start times for the observations, fewer solar 
array and aperture manipulations, lower maximum 
value over the entire schedule for solar array usage, 
and higher levels of propellant [Sherwood 1998].  

The Comet Nucleus Sample Return (CNSR) domain 
models landed operations of a spacecraft designed to 
land on a comet and return a sample to earth.  
Resources include power, battery, communications, 
RAM, communications relay in-view, drill, and ovens.  
Science includes mining and analyzing a sample from 
the comet, and imaging.  The problem generator 
includes between 1 and 11 mining activities and 
between 1 and 24 imaging activities at random start 
times.  The scoring functions for the CNSR domain 
includes preferences for more imaging activities, more 
mining activities, mo re battery charge over the entire 
horizon, fewer drill movements, and fewer uplink 
activities.  

4 Adaptive Problem Solving 
We adopt an iterative approach to statistical 
optimization, as defined by the algorithm in figure 1. 
There are two algorithmic parts of this optimization 
method:  ranking the best hypotheses from a given set 
of hypotheses using hypothesis evaluation, and 
generating a new set of hypotheses using a 



neighborhood function and the current rankings using 
strategy optimization.  In the next sections, we will 
discuss both elements of stochastic optimization, 
including describing a range algorithms used for each 
part, and possibilities for selecting algorithms to aid 
adaptation synergistically. 

4.1 Hypothesis Evaluation 
Hypothesis Evaluation is the key process in 

stochastic optimization of determining which of the 
possible decision-making strategy hypotheses 
outperforms the others for a specific set of problem 
instances in the domain.  This is done by estimating 
the expected utility based on the minimal number of 
samples as determined by a statistical decision 
criterion. 

In the actual evaluation, initial samples are taken 
to generate a starting expected utility and estimated 
variance and select the top control strategy hypothesis 
thus far.  Then the algorithm checks to see whether 
each pairwise comparison between hsel and the other 
hypotheses is statistically correct using a decision 
criterion.  If the comparison satisfies the criterion, no 
more samples are taken to compare the two; if the 
comparison fails to satisfy the criterion, additional 
samples are taken until the criterion is satisfied for all 
of the comparisons.  The idea of selection by pairwise 
comparisons is similar to a common implementation 
of tournament ranking schemes in genetic 
programming. 

Decision criteria enable a choice among a set of 
possible hypotheses (e.g., actions, parameters) when 
the consequence of the choice depends on the 
interactions of the hypothesis in some stochastic 
environment.  We can determine the value of each 
choice from sample interactions at a cost to our 
system.  Decision criteria can be applied to many 
problems, including learning statistical decision 
models [Maron & Moore, 199Error! Reference 
source not found.3], optimizing function parameters 
[Dubrawski & Schneider, 1997], design optimization 
[Fukunaga et al, 1997], algorithm selection [Chien et 
al, 1999], or optimizing planner control strategies 
[Engelhardt & Chien, 2000, Gratch & DeJong 1994].  

The selection of an appropriate decision criterion to 
use for a selection problem set depends heavily on the 
distribution of the  utility values of the hypotheses.  
Our work has examined four decision criteria: a 
probability approximately correct (PAC) criteria 
[Valiant, 1984], Chernoff Bounds [Hagerup & Rub, 
1990], Hoeffding’s inequality [Hoeffding, 1963], and 
Bernstein’s inequality [Bernstein, 1946].  Each of 
these criteria uses information about the data in order 
to converge faster than the costly brute-force 
alternatives.   

Table 1: List of the assumption made for each 
decision criteria 

Parametric decision criteria assume that the 
random variable distribution is based on a distribution 
function given some parameter, and the goal is to 
estimate the parameter.  Our parametric PAC 
algorithm, based on a stopping rule introduced in 
[Nádas, 1969], assumes that the random variable 
distribution is normal, and requires fewer samples.  In 
a specific domain, if the distribution of the data cannot 
be estimated by a common distribution function, non-
parametric (distribution-free) bounds (e.g., due to 
Chernoff, Hoeffding, and Bernstein) may be 
substituted for the normal-theory probabilities above.  
The complexity of these bounds are described by their 
rate of convergence: the probability that the estimated 
expected utility is not within error ε of the actual 
expected utility goes to 0 exponentially fast as the 
number of samples m increases [Hoeffding, 1963]. 
Because of the special nature of the utility estimates 
(i.e., sample means), these bounds typically give 
accurate results due to the concentration of measure 
phenomenon [Talagrand, 1991].  Chernoff bounds 
require the upper bound of the data (“one-sided” 
bound) be specified.  Hoeffding’s inequality makes the 
assumption that the data fall within a given [a, b], and 
will converge at least as fast as Chernoff bounds 
because of the additional information (“two-sided” 
bound).  Bernstein’s inequality makes the assumption 
that the maximum variance of a single sample utility 
from the expected utility is bounded by a value M 
(“two-sided” bound), which further improves 
convergence properties of the criterion.  Convergence 
does not guarantee accuracy when the random variable 
does not satisfy the imposed assumptions, and this 
discrepancy is illustrated in the accuracy measure. 

Stopping 
rule 

Assumption 

Nádas (PAC) Random variable distributed normally 
Chernoff Random variable has upper bound B 
Hoeffding Random variable is bounded by [a, b] 
Bernstein Maximum difference between random 

variable mean and single instance bounded 
by M 

Iterative Stochastic Optimization 
For a set of n hypotheses H 

While (time not exceeded || quiescence not reached) 

    Step 1: Using a decision criterion, select  

                the best hi from H by sampling in the domain

    Step 2: Using hi, generate H’’ using a chosen  
                neighborhood function; H := H’ 
Return current hi 



Given an understanding of how the utility is 
distributed for a specific domain, the choice of 
decision criteria should attempt to maximize the 
amount of encoded information about the distribution.  
For example, if the distribution is parametric, then the 
PAC decision criteria should be used, as convergence 
will require much fewer samples while maintaining 
accuracy than with the non-parametric decision 
criteria.  Our experiments were conducted using the 
PAC criterion with the Nádas stopping rule. 

4.2 Strategy Optimization 
For strategy optimization, we use Memetic 

Algorithms [Memetic 2000, Merz & Freisleben 1999], 
which incorporate both local search methods and 
evolutionary computation approaches.  The search 
methods that we are currently using include random 
samp ling, a local beam search algorithm, and a genetic 
algorithm.  Search is conducted in the following 
manner:  we begin with an initial control strategy h0, 
or in the case of genetic search a set of ranked control 
strategies, and a candidate generation function for 
each of the search algorithms.  The candidate 
generation function generates the next set of 
hypotheses  given the current ranked generation.  The 
hypothesis ranking system ranks the new set of 
hypotheses and choses the best one to become h1, or in 
the case of the genetic algorithm, chooses a subset of 
highest ranking hypotheses for the subsequent 
generation step.  The search algorithm generates 
another set of hypotheses based on using the step 
function with h1, and this process continues until 
quiessence or a time limit is exceeded.  

The three current search functions used are 
biologically inspired search, local beam search, and 
random search. Random search does not rely on the 
previous generation of hypothesis vectors; instead it 

creates a new generation from random, independent 
points in the search space. 

Local beam search takes the top b (where b is the 
size of the beam) ranked strategy hypotheses, and 
builds the next candidate generation using 
neighborhood steps applied to those hypotheses . A 
neighborhood step is defined as a mutation of each 
element of the control strategy hypothesis vector up to 
a certain total percentage.  This is equivalent to 
reproduction and mutation in biologically inspired 
search, although the mutation in local search bounds 
the amount that the vector element can be mutated. 

Biologially inspired search takes the top n ranking 
hypotheses, and uses them as the parents to the 
offspring of the next generation. The neighborhood 
functions are one of the three basic genetic operators: 
reproduction, crossover, and mutation.  For 
reproduction, a single parent is selected based on its 
ranking and duplicated exactly in the next generation 
based.  For crossover, two parent strategy hypotheses 
are chosen based on their ranking to split and 
recombine at some point k  in their vector to form two 
offspring.  For mutation, each single element of the 
offspring vector is  mutated with a low probability. 

5 Results 
We investigated two different aspects of the 
performance of each candidate generation method: 
ruggedness and directed search.  Each performance 
element helps to quantify the performance of 
neighborhood functions in an unsearchably big 
domain with a large number of local maxima. 

5.1 Ruggedness 
Ruggedness is a measure of the correlation between 
adjacent (or neighborhood) points for a given 
neighborhood function.  In order for local search to be 
effective, adjacent points should be correlated in terms 
of their expected utility.  Without correlation between 
neighborhood points, random search would be just as 
effective as local search on that particular domain (see 
figure 2a).  But if neighborhood points are correlated, 
then local search can use collected samples to learn 
and search gradients, or positive trends, in the search 
space in order to reach maxima. 

One simple way to test the ruggedness of a 
particular neighborhood algorithm in a search space is 
to measure the average change in expected utility of a 
single step in the search space.  For random search, 
adjacent points can be any two points in the search 
space. For genetic search, the difference in utility 
between two adjacent points can be measured by 
calculating the expected utility of the parents relative 
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Figure 1: Strategy optimization with a neighborhood 
search step 



to a single offspring. For local search, two adjacent 

points can be a starting vector and its adapted vector. 
Ruggedness does not entirely determine the 

smoothness of the search space. In the example of a 
rugged graph above, if the height was reduced by two-
thirds, it would appear that the measure of smoothness 
for the rugged, unsearchable graph would be similar to 
the smoothness of the example of the smooth, easily 
searchable graph by the definition above.  The rugged 
graph is still unsearchable, in spite of the proximity of 
neighborhood points, because of the large number of 
local maxima.  The number of local maxima will 
describe the approximate order of how many peaks the 
landscape has, and give us a more accurate estimate of 
how easily the landscape can be searched. 

5.2 Overall Performance 
Given the same starting points, genetic search and 
local search made significant improvements, and 
performed very well compared with the best 

hypothesis found in an equivalent number of random 
samples.  There were two features of the genetic 
search that enable a more robust search for any given 
starting hypothesis (see figure 3a).  First, the 
improvements have a constant upwards slope until the 
plateau.  Unlike the local search method, which made 
most of the improvement in a single search iteration 
(see figure 3b), genetic search had relatively consistent 
improvements in the mean and high scores for each 
generation of hypotheses throughout the entire 
optimization run.  This consistent improvement makes 
genetic search a more useful anytime algorithm, and 
when CPU resources are limited, a small number of 
iterations will most likely be more effective than a few 
steps of local search optimization. 

Second, the mean of each generation is much 
closer to the high score, meaning that the average of 
the entire generation as a whole has improved.  This 
illustrates that the landscape created using genetic 
search is searchable in practice, as siblings from high 
scoring parents are much more tightly clustered 
around a similarly high score than the sibling 
offspring from high scoring parents using local search. 

These preliminary results show the promise of 
using a genetic algorithm for an anytime adaptation 
algorithm.  Further experiments are being produced to 
confirm and expand on this hypothesis. 

6 Related Work 
Evaluating decision-making strategies is a growing 

research topic, although many of the methods 
employed in the related work do not rely on any 
evolutionary-based computational strategies.  Horvitz 
originally described a method for evaluating 
algorithms based on a cost versus quality tradeoff 
[Horvitz 1988].  Russell et al. used dynamic 
programming to rationally select among a set of 
control strategies by estimating utility [Russell et al. 
1993].  The MULTI-TAC system considers all k-wise 
combinations of heuristics for solving a CSP in its 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 2a,b: Graphs show a rough, less 
continuous space versus a smooth, more 
continuous space. The efficacy of local search 
algorithms is correlated with characteristics 
(including smoothness) of the search landscape 
they produce. 
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Table 2: Smoothness property of each search algorithm 
for both domains.  The mean shows the average change 
in expected utility between two steps of the search, 
which is a measure of the smoothness of the step 
function 

Domain Random 
Search 

Local Beam 
Search 

Genetic Search 

Mean Std 
Dev 

Mean Std 
Dev 

Mean Std 
Dev 

Comet 
Lander 

0.0435 0.0293 0.0086 0.0066 0.0134 0.0093 

EO-1 0.0442 0.0466 0.0114 0.0331 0.0145 0.0244 



evaluation which also avoids problems with local 
maxima, but at a large expense to the search [Minton 
1996].  Previous articles describing adaptive problem 
solving have discussed general methods for 
transforming a standard problem solver into an 
adaptive one [Gratch & DeJong 1992, 1996], 
illustrated the application of adaptive problem solving 
to real world scheduling problems [Gratch & DeJong 
1996], and showed how adaptive problem solving can 
be cast as a resource allocation problem [Chien 1999].  
We have expanded on these topics by evaluating 
methods for generating hypotheses from biologically-
inspired algorithms, and using adaptive problem 
solving to evaluate those candidate hypotheses based 
on an efficient estimate of their utility and cost, 
considered separately in the ranking process. 

7 Future Work 
We will continue to perform landscape analysis to 

measure and characterize the epistatis of the search 
space, the number of local maxima, and the average 
distance between local maxima (to test for the “big 
valley” hypothesis).  We are also looking into meta-
level learning techniques such as landscape mapping 
functions and multi-restart techniques in order to 
better evaluate search strategy techniques. 

Alternative directions include determining how to 
adapt the domain model itself as the domain and 
operations shift, designing and maintaining safe 
operations during behavior adaptation, and testing in 
situ behavior adaptation on an autonomous craft. 
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