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Outline 4

Frobenius norm

matrices

adjustment of observations

survey adjustments

Gaussian elimination

geodesy

matrix factoring



Case Study (all XX Century) 5

Frobenius norm

‖A‖F



1911 Frobenius 6

Ferdinand Frobenius
1849 – 1917

Sitzungsberichte der Koniglich Prußischen
Akademie der Wissenschaften zu Berlin,
241 – 248 (1911)

Let r1, . . . , rn be the charac-
teristic roots of a matrix of the
form

R =
∑

ri,jxiyj

I define the Spur

χ(R) =
∑

ri,i =
∑

ri

and the Spannung

ϑ(R) = χ(R R̄′) = ‖R‖2
F



1911 Frobenius 7

Ferdinand Frobenius
1849 – 1917

Sitzungsberichte der Koniglich Prußischen
Akademie der Wissenschaften zu Berlin,
241 – 248, 654–665 (1911)

The Spannung

ϑ(R) = ‖R‖2
F

obeys the Schwartz inequality
√

ϑ(P−Q) ≤
√

ϑ(P )+
√

ϑ(Q)

and also

ϑ(P Q) ≤ ϑ(P ) ϑ(Q)



1929 von Neumann’s Hilbert spaces 8

John von Neumann
1903 – 1957

Allgemeine Eigenwerttheorie Hermitescher
Funktionaloperatoren, Mathematische An-
nalen, 102:49 –131 (1929)

Von Neumann was mostly
interested in unbounded
operators.



1932 Banach’s Banach spaces 9

Stefan Banach
1892 – 1945

Théorie des Opérations linéaires, Warsaw
(1932)

The norme |U | of a linear
operator U(x) is the smallest
number M satisfying

|U(x)| ≤ M |x|

for all x



1934 Wedderburn 10

Joseph Wedderburn
1892 – 1945

Lectures on Matrices, American Mathemati-
cal Society, New York (1934)

His extensive bibliography is
the source for references to
Peano, Schur and the earlier
Frobenius paper.

He chose the absolute value

· = ‖ · ‖F



1937 von Neumann, again 11

John von Neumann
1903 – 1957

Some Matrix-Inequalities and Metrization of
Matric-Space, Tomsk Univ. Rev. (1937)

Let ϕ be a symmetric gauge
function.

For a matrix X, form XX∗

and its proper values ω1, . . . ,
ωn, and define

|X|ϕ = ϕ(ω1/2
1 , . . . , ω1/2

n )



1943 Hotelling 12

Harold Hotelling
1895 – 1973

Some New Methods in Matrix Calcula-
tion, The Annals of Mathematical Statistics,
14:1–34 (1943)

“The norm of the matrix A

N(A) = ‖A‖F

is what Wedderburn defines
as the absolute value.”



1946 MacDuffee 13

Cyrus MacDuffee
1895 – 1961

The Theory of Matrices, New York (1946)

“Notation for matrices
is far from agreed.”



1947 von Neumann and Goldstine 14

von Neumann 1903 – 1957
and Goldstine 1913 – 2004

Numerical Inverting of Matrices of High Or-
der, Bulletin of the American Mathematical
Society , 53:1021–1099 (1947)

norm

N(A) = ‖A‖F

upper bound

|A| = max
|x|=1

|Ax| = ‖A‖2

lower bound

|A|� = min
|x|=1

|Ax|



1948 Turing 15

Alan Turing
1912 – 1954

Rounding-off Errors in Matrix Processes,
The Quarterly Journal of Mechanics and Ap-
plied Mathematics, 1:287–308 (1948)

norm

N(A) = ‖A‖F

maximum expansion

B(A) = ‖A‖2

maximum coefficient

M(A) = max
i,j

|ai,j|



1953 Householder 16

Alston Householder
1904 – 1993

Principles of Numerical Analysis, McGraw-
Hill, New York (1953)

norm

N(A) = ‖A‖F

maximum

M(A) = ‖A‖2

bound

b(A) = max
i,j

|ai,j|



1956, 1959 Bodewig 17

?
E(wald?) Bodewig

Matrix Calculus, North-Holland, Amsterdam
(1956, 1959)

norm

N(A) = ‖A‖F

maximum expansion or bound

|A| = ‖A‖2

maximum coefficient

m(A) = max
i,j

|ai,j|



1963 Wilkinson 18

James Wilkinson
1919 – 1986

Rounding Errors in Algebraic Processes,
Prentice Hall, Amsterdam (1963)

Euclidean or Schur norm

‖A‖E = ‖A‖F

Question:
Who introduced ‖ · ‖ notation?

Possible Answer:
Maybe Bauer or Stoer in the 1960’s.



1964 Householder, again 19

Alston Householder
1904 – 1993

The Theory of Matrices in Numerical Analy-
sis, Blaisdell, New York (1964)

Euclidean length of a matrix

τ1/2(AHA) = ‖A‖F



1970 Rutishauser 20

Heinz Rutishauser
1918 – 1970

Lectures on Numerical Mathematics, Birk-
häuser, Boston (1990), posthumous

the so-called Schur norm

‖A‖2 = ‖A‖F



1973 Stewart 21

Pete Stewart
Introduction to Matrix Computations, Aca-
demic Press, New York (1973)

the Frobenius norm

‖A‖F



Historical Pitfalls, Illustrated by ‖ · ‖F 22

1. Anachronism:

“Historical description means understanding things

as people understood them then.”

2. Chronology:

“Chronology is not the same thing as history.

History is processed chronological data.”

Kenneth May (1915 – 1977)

“Historiography: A Perspective for Computer Scientists,” in A History of
Computing in the 20th Century , edited by Metropolis, Howlett, Rota, 1980.



‖ · ‖F Chronology 23

1887 Peano used value of ‖ · ‖F

1909 Schur used value of ‖ · ‖F

1911 Frobenius Spannung ϑ(·) = ‖ · ‖2
F

with sum and product rules

1929 von Neumann Hilbert spaces

1932 Banach Banach space operator | · |
1934 Wedderburn absolute value · = ‖ · ‖F

1937 von Neumann matrix space metrization | · |ϕ
1943 Hotelling norm N(·) = ‖ · ‖F

1946 MacDuffee “notation is far from agreed”



‖ · ‖F Chronology, continued 24

1947 von Neumann
and Goldstine

norm N(·) = ‖ · ‖F and
upper bound | · | = ‖ · ‖2

1948 Turing N(·), B(·), M(·)
1953 Householder N(·), M(·), b(·)
1954 Givens N(·)
1959 Bodewig N(·), | · |, m(·)
1963 Wilkinson Euclidean, Schur norm ‖ · ‖E

1964 Householder Euclidean length τ1/2(·H ·)
1970 Rutishauser Schur norm ‖ · ‖2 = ‖ · ‖F

1973 Stewart Frobenius norm ‖ · ‖F



‖ · ‖F History 25

1. Value ‖ · ‖F was used by early matrix researchers,
and by Frobenius especially. The real story is how
it came to be named after Frobenius.

2. Hotelling deliberately ignored Wedderburn and
chose norm N(·); perhaps to avoid Germanisms?

3. Von Neumann and Goldstine knew the proper
notation (operator norms existed in functional
analysis) but they deferred to Hotelling. Their
choice led others to adopt N(·) for many years.

4. Attempt to use Schur norm ‖ · ‖E was supplanted
by Frobenius norm ‖ · ‖F in the 1970’s.



‖ · ‖F Pertinent to the Inversion Paper 26

• Influence of the Inversion Paper can be
seen in the number of people who
adopted N(·) because von Neumann did.

• Why did von Neumann defer to Hotelling
in using this eccentric notation?



”. . . as simple as possible, but not simpler.” 27

Matrices



1759 Lagrange 28

Joseph-Louis
Lagrange
1736 – 1813

Quadratic form of x1, x2, x3

f = 5x2
1 + 20x1x2 + 19x2

2

+ 10x1x3 + 22x2x3 + 6x2
3

Substitute

x1 = u1−1

2

(
20

5
x2 +

10

5
x3

)

to get

f = 5u2
1 − x2

2 + 2x2x3 + x2
3



1759 Lagrange 29

Joseph-Louis
Lagrange
1736 – 1813

Quadratic form is

f = xtAx

where A = U tDU . Linear
substitution u = Ux gives

f = utDu

Lagrange used the weighted
sum of squares to identify
local extrema.



1801 Gauss 30

J. C. F. Gauss
1777 – 1855

Disquisitiones arithmeticae, Leipzig, art. no.
266 (1801)

Studied quadratic forms
of 2 and 3 variables.

“It is sufficient to draw this
broad field to the attention
of geometers.* There is
ample material for the
exercise of their genius.”

* geometer = mathematician



1852 – 1882 Matrix Algebra 31

Sylvester
1814 – 1897

Cayley
1821 – 1895

Eisenstein
1823 – 1852

Laguerre
1834 – 1886

Frobenius
1849 – 1917

Invented by several people more or less independently
to represent the linear substitutions that were used to
study quadratic and bilinear forms.

T. Hawkins, “Another look at Cayley and the theory of matrices,” Archives
Internationales d’Histoire des Sciences, 27(100):82–112 (1977).



1857, 1907 Not Cholesky’s Factorization 32

Toeplitz 1881 – 1940
Jacobi 1804 – 1851

Toeplitz, “Die Jacobische Transformation
der quadratischen Formen von unend-
lichvielen Veränderlichen,” Nachrichten von
der Gesellschaft der Wissenschaften zu
Göttingen, 101–109 (1907).

Restated Jacobi’s result “known
to Lagrange and Gauss” using
“matrix calculus of Frobenius.”

A quadratic form

S =
n∑

i,k=1

αi,kxixk

could be expressed as

S−1 = U ′U

or S = U−1U ′−1



1857, 1907 Not Cholesky’s Factorization 33

Toeplitz 1881 – 1940
Jacobi 1804 – 1851

Toeplitz, “Die Jacobische Transformation
der quadratischen Formen von unend-
lichvielen Veränderlichen,” Nachrichten von
der Gesellschaft der Wissenschaften zu
Göttingen, 101–109 (1907).

Restated Jacobi’s result “known
to Lagrange and Gauss” using
“matrix calculus of Frobenius.”

A quadratic form

S =
n∑

i,k=1

αi,kxixk

could

Compuat
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ly 
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be expressed as

S−1 = U ′U

or S = U−1U ′−1



Linear Algebra Timeline 34

1750

1800

1850

1900

1950

Pure Applied Compu-
tational

Sylvester
Cayley

Eisenstein
Laguerre
Frobenius
Toeplitz

Jacobi

Gauss

Lagrangequadratic
forms

matrices
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Technology of XIX and Early XX Century 36

Adjustment of
Observations



Errors of Observation 37

Adrien-Marie
Legendre
1752 – 1833

Johann Carl
Friedrich Gauss

1777 – 1855

Pierre-Simon
Laplace

1749 – 1827



Adjustment of Observations 38

Statistical theory showed

optimal
estimation
problems




 ≡






minimizing
quadratic
functions

Legendre: la méthode des moindres quarrés
Nouvelle méthodes pour la détermination des
orbites des comètes, Paris (1805)

Gauss: developed probabilistic justification
Theoria Motus Corporum Coelestium in Sectionibus
Conicus Solem Ambientium, Hamburg (1809)



Observations Needing Adjustment 39

case 1. Over-determined observations

min
x

‖b − Ax‖2

solved by AtAx = c with c = Atb

case 2. Under-determined observations

min
Ax = b

‖x‖2

solved by AAtu = b where x = Atu

Both resulted in normal equations



Observations Needing Adjustment 40

case 1. Over-determined observations

min
x

‖b − Ax‖2

found in Astronomy

case 2. Under-determined observations

min
Ax = b

‖x‖2

found in Geodesy

Both resulted in normal equations



Aside: Astronomical Calculations 41

Trophy Calculations:

1. Fitting orbit of Ceres
(over-determined obser-
vations) — Gauss

2. Triangulating distance to
Cygni — Bessel

3. . . .
Nievergelt, “A tutorial history of least squares
with applications to astronomy and geodesy,”

in Numerical Analysis: Historical
Developments in the 20th Century , edited by
Brezinski and Wuytack, North Holland, 2001.



Aside: Astronomical Calculations 42

Trophy Calculations:

1. Fitting orbit of Ceres
(over-determined obser-
vations) — Gauss

2. Triangulating
Little 

Used in

the X
IX Centu

ry

distance to Cygni — Bessel

3. . . .

Recurring Work:

1. Ephemerides

2. Nautical
Almanacs

3. Reducing
observations
to celestial
coordinatesNievergelt, “A tutorial history of least squares

with applications to astronomy and geodesy,”
in Numerical Analysis: Historical

Developments in the 20th Century , edited by
Brezinski and Wuytack, North Holland, 2001.

Grier, When Computers
Were Human, Princeton,
2005.



Observations Needing Adjustment 43

case 1. Over-determined observations

min
x

‖b − Ax‖2Little 
Used in

the X
IX Centu

ry

solved by AtAx = c with c = Atb

case 2. Under-determined observations

min
Ax = b

‖x‖2

solved by AAtu = b where x = Atu

Both resulted in normal equations



Technology of XIX and Early XX Century 44

Survey Adjustments



1880 Surveyor’s Triangulation Net 45



1880 Surveyor’s Triangulation Net 46



1880 Surveyor’s Triangulation Net 47



1880 Surveyor’s Triangulation Net 48



1880 Surveyor’s Triangulation Net 49



1880 Surveyor’s Triangulation Net 50



1880 Surveyor’s Triangulation Net 51



1880 Surveyor’s Triangulation Net 52

Redundant and
Inconsistent Data



Angle Adjustment Problem Addressed by 53

case 2. Under-determined observations

min
Ax = b

‖x‖2

solved by AAtu = b where x = Atu

• Unknowns x were adjustments to all (or
most of) the measured angles

• Constraints Ax = b called conditions

1. angle conditions (2 kinds)

2. side conditions

Constraints were called conditions



1. “Angle Equation” Conditions 54

∠ 52 = measured angle

ε52 = adjustment

∠ 52 + ε52

+ ∠ 28 + ε28

+ ∠ 25 + ε25

+ ∠ 20 + ε20

= 360

∠ 19 + ε19

+ ∠ 20 + ε20

+ ∠ 21 + ε21

= 180

+ correction



2. “Side Equation” Condition (Sine Laws) 55

A

B

C

O

A

B

C

O

sin( OAB + ε1)

× sin( OBC + ε2)

× sin( OCA + ε3)

=

sin( OBA + ε4)

× sin( OCB + ε5)

× sin( OAC + ε6)

OAB = measured angle

ε1 = adjustment



2. Side Equation Condition 56

A

B

C

O

A

B

C

O

ln sin OAB + ε1 cot OAB +

ln sin OBC + ε2 cot OBC +

ln sin OCA + ε3 cot OCA

=∗

ln sin OBA + ε4 cot OBA +

ln sin OCB + ε5 cot OCB +

ln sin OAC + ε6 cot OAC

∗ Equality is only to first order
in the angle corrections.



Die Coefficienten der Bedingungsgleichungen57



58

Gaussian Elimination



1823, 1828 Gauss 59

J. C. F. Gauss
1777 – 1855

Theoria combinationes observationum er-
roribus minimis obnoxiae: Pars prior and
Supplementum, Göttingen, 1823 and 1828.

case 2.
Under-determined
observations

min
Ax = b

‖x‖2

solved by AAtu = b

where x = Atu.



1823, 1828 Gauss 60

J. C. F. Gauss
1777 – 1855

Theoria combinationes observationum er-
roribus minimis obnoxiae: Pars prior and
Supplementum, Göttingen, 1823 and 1828.

Normal equations:

0 = [aa]x + [ab]y + [ac]z +

0 = [ab]x + [bb]y + [bc]z +

0 = [ac]x + [bc]y + [cc]z +

0 = [ad]x + [bd]y + [cd]z +

etc.

Stewart, “Gauss, Statistics, and Gaussian
Elimination,” in Computing Science and

Statistics: Computationally Intensive
Statistical Methods, edited by Sall and

Lehman, Fairfax Station, 1994



1823, 1828 Gaussian Elimination 61

J. C. F. Gauss
1777 – 1855

Theoria combinationes observationum er-
roribus minimis obnoxiae: Pars prior and
Supplementum, Göttingen, 1823 and 1828.

[bb, 1] = [bb] − [ab]2

[aa]

[bc, 1] = [bc] − [ab][ac]

[aa]
etc.

[cc, 2] = [cc] − [ac]2

[aa]
− [bc, 1]2

[bb, 1]

[cd, 2] = [cd] − [ac][ad]

[aa]
− . . .

etc.



1915 Dana Bartlett 62

Dana P. Bartlett
General Principles of the Method of Least
Squares with Applications, third edition,
Boston, 1915.

Normal equations:

0 = [aa]z1 + [ab]z2 + [ac]z3

0 = [ab]z1 + [bb]z2 + [bc]z3

0 = [ac]z1 + [bc]z2 + [cc]z3

0 = [ad]z1 + [bd]z2 + [cd]z3

etc.



1915 Dana Bartlett 63

Dana P. Bartlett
General Principles of the Method of Least
Squares with Applications, third edition,
Boston, 1915.

1st reduced normal equations:

[bb, 1]z2 + [bc, 1]z3 + [bd, 1]

[bc, 1]z2 + [cc, 1]z3 + [cd, 1]

[bd, 1]z2 + [cd, 1]z3 + [dd, 1]

. . .

where

[bb, 1] = [bb] − [ab][ab]

[aa]

[bc, 1] = [bc] − [ab][ac]

[aa]



Linear Algebra Timeline 64

1750

1800

1850

1900

1950

Pure Applied Compu-
tational

Sylvester
Cayley

Eisenstein
Laguerre
Frobenius
Toeplitz

Gauss
Legendre

geodesy

astronomy

Jacobi

Gauss

Lagrange

least
squares

adjustments

quadratic
forms

matrices



Gauss solved the normal equations 65

• Gauss invented a notation to organize
elimination that was used for 100 years.

• During most of its existence, Gaussian
elimination was used to solve normal
equations.



Pertinent to the Inversion Paper 66

• Von Neumann and Goldstine studied the
rounding errors of

A−1 = At(AAt)−1

This essentially was the main use for
Gaussian elimination for 150 years.

• Their results stimulated a search for new
algorithms (QR, SVD) that eventually
replaced the normal equations in 1965.



Big Science, XIX Century Edition 67

Geodesy



Surveying Continents 68

Southeast Alaska
1929

1. Surveyors

• gather baseline and
angle data

2. Computers (original usage)

(a) form underdetermined
angle adjustment eqns

(b) form and solve normal
equations

3. Cartographers

• use adjusted triangu-
lations to draw maps



Surveying Continents 69

US center
for numerical
linear algebra
through WWI

Old C&GS Office
with third floor

computing rooms
Washington

1. Surveyors

• gather baseline and
angle data

2. Computers (original usage)

(a) form underdetermined
angle adjustment eqns

(b) form and solve normal
equations

3. Cartographers

• use adjusted triangu-
lations to draw maps



U. S. Coast and Geodetic Survey (C&GS) 70

Oldest American Scientific Agency

Benjamin Peirce
3rd Superintendent
(served 1867 – 74)

Charles Schott
Assistant

in charge of the
Computing Division
(served 1848 – 99)

Myrrick Doolittle
1830 – 1911

Computer
(served 1873 – ??)



The Numerical Linear Algebra 71

Tobacco Row Spear

Long

Flat
Top

Smith

Doolittle’s Example
Doolittle, “Method employed in the solution
of normal equations and the adjustment of a
triangularization,” in Report of the Superin-
tendent of the U. S. Coast and Geodetic Sur-
vey (showing the progress of the work dur-
ing the fiscal year ending with June, 1878),
Government Printing Office, 1881.

Selection of Conditions:

• 2 unknowns for each
station off the baseline

• What is the rank of the
matrix of conditions?

• n as big as 41 or 52!

Solution of Normal Equations:

• 3-digit hand arithmetic!

• Crelle’s 3-digit tables
were used for × and ÷



circa 1875 Ill-Conditioned 72

Peter Guthrie Tait
1831 – 1901

“Cosmical Astronomy,” Good Words, 19–23
(1875).

“The danger of selecting such
condition equations that the
solution will be somewhat
unstable is difficult to avoid.”

Wright and Hayford, ”The Adjustment of Observations by the
Method of Least Squares with Applications to Geodetic Work,”

Van Nostrand, New York, 1906.

“The difficulty of determining the
sun’s distance lies in the
measurement of the angles,
and in what is called the ill-
conditioned form of triangle.”

a

B

C
A



Pertinent to the Inversion Paper 73

• Von Neumann and Goldstine’s error
bounds were considered unrealistically
large when tested on small problems
solved by post-WWII technology (10-digit
mechanical calculators) . . .

• . . . but the concerns about Gaussian
elimination were based on experience
from pre-WWII calculations (3-digit paper
and pencil) for which the pessimistic
bounds probably were realistic.



Another Story: Regression and Correlation 74

Karl Pearson
1857 – 1936

Statistics replaced geodesy as the
main use for linear algebra after WWI

• continental surveys were complete

• data analysis was important for
agriculture and government

Karl Pearson led in the computational
developments and published Tracts for
Computers, essentially the first
numerical analysis textbooks

Grier, When Computers Were Human,
Princeton, 2005.

Question: actuaries also used computing;
did they use linear algebra?



Linear Algebra Timeline 75

1750

1800

1850

1900

1950

Pure Applied Compu-
tational

Sylvester
Cayley

Eisenstein
Laguerre
Frobenius
Toeplitz

Gauss
Legendre

Pearson

geodesy

astronomy

biometrics
agriculture

Jacobi

Gauss

Lagrange

least
squares

adjustments

correlation
statistics

quadratic
forms

matrices



Pertinent to the Inversion Paper 76

• Von Neumann and Goldstine deferred to
Hotelling in matters of numerical linear
algebra because, as a leader of the
American statistical community, he
represented a profession with
considerable computing expertise.



The Decomposition Paradigm 77

Numerical Linear Algebra Algorithms

Correspond to Matrix Factorizations

A = LU

Who invented the paradigm?

Stewart, “The Decompositional Approach to Matrix Computation,”
Computing in Science and Engineering, 2(1):50–59 (2000).



1823, 1828 Gaussian Elimination 78

J. C. F. Gauss
1777 – 1855

Theoria combinationes observationum er-
roribus minimis obnoxiae: Pars prior and
Supplementum, Göttingen, 1823 and 1828.

[bb, 1] = [bb] − [ab]2

[aa]

[bc, 1] = [bc] − [ab][ac]

[aa]
etc.

[cc, 2] = [cc] − [ac]2

[aa]
− [bc, 1]2

[bb, 1]

[cd, 2] = [cd] − [ac][ad]

[aa]
− . . .

etc.

Before matrices; no paradigm.



1924 Cholesky Factorization 79

Andre-Louis
Cholesky
1875 – 1918

Benoit, “Note sur une méthode . . . ,” Bulletin
géodésique, 67–77 (1924).

min
Ax = b

‖x‖2

AAtu = b where x = Atu.
Cholesky’s insight was that
many matrices have the same
normal equations. He chose
one that was easy to solve.

LLt = AAt

Real breakthrough was the
inner product formulas for L.

No matrices in the paper,
hence no paradigm.



1907 “Toeplitz” Factorization? 80

Toeplitz 1881 – 1940
Jacobi 1804 – 1851

Toeplitz, “Die Jacobische Transformation
der quadratischen Formen von unend-
lichvielen Veränderlichen,” Nachrichten von
der Gesellschaft der Wissenschaften zu
Göttingen, 101–109 (1907).

Restated Jacobi’s result “known
to Lagrange and Gauss” using
“matrix calculus of Frobenius.”

A quadratic form

S =
n∑

i,k=1

αi,kxixk

could be factored as

S−1 = U ′U

or S = U−1U ′−1

but U is given by determinants



1938 “Banachiewicz” Factorization? 81

Tadeusz
Banachiewicz

1882 – 1954

Astronomer and polymath who
calculated first orbit of Pluto.

Expressed calculations using
“Cracovian” matrix multiplication.
Had a Cholesky-like method.

Inspired Jensen to do the same
for Cayleyan matrix multiplication.

Many papers in Academy of
Science of Poland were widely
cited.



1938 Dwyer Square-Root Factorization? 82

Paul Dwyer
Dwyer, “A matrix presentation of least
squares and correlation theory with matrix
justification of improved methods of solu-
tion,” The Annals of Mathematical Statistics,
5:82–89 (1944).

Michigan statistician.

Developed matrix formulation
of least squares, normal
equations, and symmetric
factorization.

Primary source in the United
States for what was later
named “Cholesky’s algorithm.”



Triangular Factoring 83

Citation Patterns Among Earliest Authors

Banachiewicz

Jensen

Dwyer

Todd (coursework)

Bodewig

1940 1950

Turing

Fox, Huskey, Wilkinson

von Neumann and Goldstine

publications

independent origin of
triangular factoring

Laderman

Duncan and Kenney

T. Rubin?



Pertinent to the Inversion Paper 84

• All other authors were interested in
normal equations.

• Von Neumann and Goldstine were the
first to describe factoring of nonsymmetric
matrices. They originated the LDU form.
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