Numerical Linear Algebra
 Before the Last Paradigm Shift*

Joseph F. Grcar
Lawrence Berkeley Laboratory jfgrcar@lbl.gov

October 5, 2005
Berkeley
*Thomas Kuhn, The Structure of Scientific Revolutions, The University of Chicago Press, Chicago, 1970. much the same as Gauss left it until World War II." much the same as Gauss left it until World War II."

Size of Numerical ODE Literature

Bibliographies of Hairer, Petzold, Wanner, Werner, et al.

Frobenius norm

matrices

adjustment of observations
survey adjustments
Gaussian elimination
geodesy
matrix factoring

Case Study (all XX Century)

Frobenius norm

$$
\|A\|_{F}
$$

Ferdinand Frobenius 1849-1917

Sitzungsberichte der Koniglich Prußischen Akademie der Wissenschaften zu Berlin, 241-248 (1911)

Let r_{1}, \ldots, r_{n} be the characteristic roots of a matrix of the form

$$
\boldsymbol{R}=\sum r_{i, j} x_{i} \boldsymbol{y}_{j}
$$

I define the Spur

$$
\chi(\boldsymbol{R})=\sum r_{i, i}=\sum r_{i}
$$

and the Spannung

$$
\vartheta(R)=\chi\left(R \bar{R}^{\prime}\right)=\|R\|_{F}^{2}
$$

1911 Frobenius

The Spannung

$$
\vartheta(R)=\|R\|_{F}^{2}
$$

obeys the Schwartz inequality

$$
\sqrt{\vartheta(P-Q)} \leq \sqrt{\vartheta(P)}+\sqrt{\vartheta(Q)}
$$

and also

$$
\vartheta(P Q) \leq \vartheta(P) \vartheta(Q)
$$

Sitzungsberichte der Koniglich Prußischen Akademie der Wissenschaften zu Berlin, 241-248, 654-665 (1911)

Von Neumann was mostly interested in unbounded operators.

John von Neumann

 1903-1957Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Mathematische Annalen, 102:49-131 (1929)

1932 Banach's Banach spaces

Stefan Banach 1892-1945

The norme $|U|$ of a linear operator $U(x)$ is the smallest number M satisfying

$$
|U(x)| \leq M|x|
$$

for all \boldsymbol{x}

Théorie des Opérations linéaires, Warsaw (1932)

1934 Wedderburn

Joseph Wedderburn 1892-1945

Lectures on Matrices, American Mathematical Society, New York (1934)

His extensive bibliography is the source for references to Peano, Schur and the earlier Frobenius paper.

He chose the absolute value

$$
\|\cdot\|=\|\cdot\|_{F}
$$

1937 von Neumann, again

John von Neumann 1903-1957

Let φ be a symmetric gauge function.

For a matrix \boldsymbol{X}, form $\boldsymbol{X} \boldsymbol{X}^{*}$ and its proper values ω_{1}, \ldots, ω_{n}, and define

$$
|X|_{\varphi}=\varphi\left(\omega_{1}^{1 / 2}, \ldots, \omega_{n}^{1 / 2}\right)
$$

Some Matrix-Inequalities and Metrization of Matric-Space, Tomsk Univ. Rev. (1937)

1943 Hotelling

Harold Hotelling

 1895-1973Some New Methods in Matrix Calculation, The Annals of Mathematical Statistics, 14:1-34 (1943)
"The norm of the matrix \boldsymbol{A}

$$
N(A)=\|A\|_{F}
$$

is what Wedderburn defines as the absolute value."

1946 MacDuffee

"Notation for matrices is far from agreed."

Cyrus MacDuffee 1895-1961

1947 von Neumann and Goldstine

von Neumann 1903-1957 and Goldstine 1913 - 2004

Numerical Inverting of Matrices of High Order, Bulletin of the American Mathematical
Society, 53:1021-1099 (1947)
norm

$$
N(A)=\|A\|_{F}
$$

upper bound

$$
|A|=\max _{|x|=1}|A x|=\|A\|_{2}
$$

lower bound

$$
|A|_{\ell}=\min _{|x|=1}|A x|
$$

1948 Turing

Alan Turing
1912-1954
Rounding-off Errors in Matrix Processes, The Quarterly Journal of Mechanics and Applied Mathematics, 1:287-308 (1948)

norm

$$
N(A)=\|A\|_{F}
$$

maximum expansion

$$
B(A)=\|A\|_{2}
$$

maximum coefficient

$$
M(A)=\max _{i, j}\left|a_{i, j}\right|
$$

1953 Householder

Alston Householder 1904-1993
norm

$$
N(A)=\|A\|_{F}
$$

maximum

$$
M(A)=\|A\|_{2}
$$

bound

$$
b(A)=\max _{i, j}\left|a_{i, j}\right|
$$

Principles of Numerical Analysis, McGrawHill, New York (1953)

1956, 1959 Bodewig

E(wald?) Bodewig
norm

$$
N(A)=\|A\|_{F}
$$

maximum expansion or bound

$$
|A|=\|A\|_{2}
$$

maximum coefficient

$$
m(A)=\max _{i, j}\left|a_{i, j}\right|
$$

Matrix Calculus, North-Holland, Amsterdam $(1956,1959)$

1963 Wilkinson

James Wilkinson 1919-1986

Rounding Errors in Algebraic Processes, Prentice Hall, Amsterdam (1963)

Euclidean or Schur norm

$$
\|A\|_{E}=\|A\|_{F}
$$

Question:

Who introduced || || notation?
Possible Answer:
Maybe Bauer or Stoer in the 1960's.

1964 Householder, again

Euclidean length of a matrix

$$
\tau^{1 / 2}\left(A^{H} A\right)=\|A\|_{F}
$$

Alston Householder 1904-1993

The Theory of Matrices in Numerical Analysis, Blaisdell, New York (1964)

1970 Rutishauser

the so-called Schur norm

$$
\|A\|_{2}=\|A\|_{F}
$$

Heinz Rutishauser
1918-1970
Lectures on Numerical Mathematics, Birk-
häuser, Boston (1990), posthumous

1973 Stewart

the Frobenius norm

$$
\|A\|_{F}
$$

Pete Stewart

Introduction to Matrix Computations, Academic Press, New York (1973)

Historical Pitfalls, Illustrated by $\|\cdot\|_{F}$

1. Anachronism:
"Historical description means understanding things as people understood them then."

2. Chronology:

"Chronology is not the same thing as history. History is processed chronological data."

> Kenneth May (1915-1977)
"Historiography: A Perspective for Computer Scientists," in A History of Computing in the 20th Century, edited by Metropolis, Howlett, Rota, 1980.
$\|\cdot\|_{F}$ Chronology

1887 Peano
1909 Schur
1911 Frobenius
used value of $\|\cdot\|_{F}$
used value of $\|\cdot\|_{F}$
Spannung $\vartheta(\cdot)=\|\cdot\|_{F}^{2}$
with sum and product rules
1929 von Neumann Hilbert spaces
1932 Banach
1934 Wedderburn
1937 von Neumann
1943 Hotelling
1946 MacDuffee

Banach space operator | $\cdot \mid$
absolute value $|\cdot|=\|\cdot\|_{F}$
matrix space metrization $|\cdot|_{\varphi}$
$\operatorname{norm} N(\cdot)=\|\cdot\|_{F}$
"notation is far from agreed"
$\|\cdot\|_{F}$ Chronology, continued
1947 von Neumann norm $N(\cdot)=\|\cdot\|_{F}$ and and Goldstine upper bound $|\cdot|=\|\cdot\|_{2}$

1948 Turing
1953 Householder
1954 Givens
1959 Bodewig
1963 Wilkinson
1964 Householder
1970 Rutishauser
1973 Stewart
$N(\cdot), B(\cdot), M(\cdot)$
$N(\cdot), M(\cdot), b(\cdot)$
$N(\cdot)$
$N(\cdot),|\cdot|, m(\cdot)$
Euclidean, Schur norm $\|\cdot\|_{E}$
Euclidean length $\tau^{1 / 2}\left(\cdot{ }^{H} \cdot\right)$
Schur norm $\|\cdot\|_{2}=\|\cdot\|_{F}$

1. Value $\|\cdot\|_{F}$ was used by early matrix researchers, and by Frobenius especially. The real story is how it came to be named after Frobenius.
2. Hotelling deliberately ignored Wedderburn and chose norm $N(\cdot)$; perhaps to avoid Germanisms?
3. Von Neumann and Goldstine knew the proper notation (operator norms existed in functional analysis) but they deferred to Hotelling. Their choice led others to adopt $N(\cdot)$ for many years.
4. Attempt to use Schur norm $\|\cdot\|_{E}$ was supplanted by Frobenius norm $\|\cdot\|_{F}$ in the 1970's.

- Influence of the Inversion Paper can be seen in the number of people who adopted $N(\cdot)$ because von Neumann did.
- Why did von Neumann defer to Hotelling in using this eccentric notation?
". . . as simple as possible, but not simpler."

Matrices

1759 Lagrange

Joseph-Louis
Lagrange
1736-1813

Quadratic form of x_{1}, x_{2}, x_{3}

$$
\begin{aligned}
& f=5 x_{1}^{2}+20 x_{1} x_{2}+19 x_{2}^{2} \\
& +10 x_{1} x_{3}+22 x_{2} x_{3}+6 x_{3}^{2}
\end{aligned}
$$

Substitute

$$
x_{1}=u_{1}-\frac{1}{2}\left(\frac{20}{5} x_{2}+\frac{10}{5} x_{3}\right)
$$

to get
$f=5 u_{1}^{2}-x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}$

1759 Lagrange

Joseph-Louis
Lagrange
1736-1813

Quadratic form is

$$
f=x^{t} A x
$$

where $\boldsymbol{A}=\boldsymbol{U}^{t} \boldsymbol{D} \boldsymbol{U}$. Linear substitution $\boldsymbol{u}=\boldsymbol{U} \boldsymbol{x}$ gives

$$
f=u^{t} D u
$$

Lagrange used the weighted sum of squares to identify local extrema.

J. C. F. Gauss

1777-1855

Studied quadratic forms of 2 and 3 variables.

"It is sufficient to draw this broad field to the attention of geometers*. There is ample material for the exercise of their genius."

* geometer $=$ mathematician

1852-1882 Matrix Algebra

Sylvester 1814-1897

Cayley
1821-1895

Eisenstein
1823-1852

Laguerre
1834-1886

Frobenius 1849-1917

Invented by several people more or less independently to represent the linear substitutions that were used to study quadratic and bilinear forms.
T. Hawkins, "Another look at Cayley and the theory of matrices," Archives Internationales d'Histoire des Sciences, 27(100):82-112 (1977).

1857, 1907 Not Cholesky's Factorization

Toeplitz 1881 - 1940 Jacobi 1804-1851

Toeplitz, "Die Jacobische Transformation der quadratischen Formen von unendlichvielen Veränderlichen," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 101-109 (1907).

Restated Jacobi's result "known to Lagrange and Gauss" using "matrix calculus of Frobenius."

A quadratic form

$$
S=\sum_{i, k=1}^{n} \alpha_{i, k} x_{i} x_{k}
$$

could be expressed as

$$
\begin{aligned}
S^{-1} & =U^{\prime} U \\
\text { or } S & =U^{-1} U^{\prime-1}
\end{aligned}
$$

1857, 1907 Not Cholesky's Factorization

Toeplitz 1881 - 1940 Jacobi 1804-1851

Toeplitz, "Die Jacobische Transformation der quadratischen Formen von unendlichvielen Veränderlichen," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 101-109 (1907).

Restated Jacobi's result "known to Lagrange and Gauss" using "matrix calculus of Frobenius."

A quadratic form

Comprationally formala of Determina
could be expressed as

$$
\begin{aligned}
S^{-1} & =U^{\prime} U \\
\text { or } S & =U^{-1} U^{\prime-1}
\end{aligned}
$$

Linear Algebra Timeline

1850 Iacobi Sylvester

1900

1950
Cayley

Eisenstein
Laguerre
Frobenius
Toeplitz
matrices
"The state of numerical mathematics stayed pretty much the same as Gauss left it until World War II."

\square Lectures on Matrices (Wedderburn)
\square Accuracy and Stability of Numerical Algorithms (Higham)

Technology of XIX and Early XX Century

Adjustment of Observations

Errors of Observation

Adrien-Marie
Legendre
1752-1833

Johann Carl
Friedrich Gauss
1777-1855

Pierre-Simon
Laplace
1749-1827

Adjustment of Observations

Statistical theory showed

$\left.\begin{array}{r}\text { optimal } \\ \text { estimation } \\ \text { problems }\end{array}\right\} \equiv\left\{\begin{array}{l}\text { minimizing } \\ \text { quadratic } \\ \text { functions }\end{array}\right.$

Legendre: la méthode des moindres quarrés
Nouvelle méthodes pour la détermination des orbites des comètes, Paris (1805)

Gauss: developed probabilistic justification Theoria Motus Corporum Coelestium in Sectionibus Conicus Solem Ambientium, Hamburg (1809)

Observations Needing Adjustment

case 1. Over-determined observations

$$
\min _{x}\|b-A x\|_{2}
$$

$$
\text { solved by } \boldsymbol{A}^{t} \boldsymbol{A x}=\boldsymbol{c} \text { with } \boldsymbol{c}=\boldsymbol{A}^{t} \boldsymbol{b}
$$

case 2. Under-determined observations

$$
\begin{gathered}
\min _{A x=b}\|x\|_{2} \\
\text { solved by } \boldsymbol{A} \boldsymbol{A}^{t} \boldsymbol{u}=b \text { where } x=A^{t} u
\end{gathered}
$$

Both resulted in normal equations

Observations Needing Adjustment

case 1. Over-determined observations

$$
\min _{x}\|b-A x\|_{2}
$$

found in Astronomy

case 2. Under-determined observations

$$
\min _{A x=b}\|x\|_{2}
$$

found in Geodesy
Both resulted in normal equations

Aside: Astronomical Calculations

Trophy Calculations:

1. Fitting orbit of Ceres
(over-determined observations) - Gauss
2. Triangulating distance to

Cygni - Bessel
3. ...

Nievergelt, "A tutorial history of least squares with applications to astronomy and geodesy," in Numerical Analysis: Historical

Developments in the 20th Century, edited by Brezinski and Wuytack, North Holland, 2001.

Aside: Astronomical Calculations

Trophy Calculations:

1. Fitting orbit of Ceres
(over-determ: ser-
2. 7 Litule rix Century
distance to Cygni - Bessel
3.

Nievergelt, "A tutorial history of least squares with applications to astronomy and geodesy,"
in Numerical Analysis: Historical Developments in the 20th Century, edited by Brezinski and Wuytack, North Holland, 2001.

Recurring Work:

1. Ephemerides
2. Nautical Almanacs
3. Reducing observations to celestial coordinates

Grier, When Computers Were Human, Princeton, 2005.

Observations Needing Adjustment

case 1. Over-determined observations

the XIXCe
case 2. Under-determined observations

$$
\begin{gathered}
\min _{A x=b}\|x\|_{2} \\
\text { solved by } \boldsymbol{A} \boldsymbol{A}^{t} \boldsymbol{u}=b \text { where } x=A^{t} u
\end{gathered}
$$

Both resulted in normal equations

Technology of XIX and Early XX Century

Survey Adjustments

1880 Surveyor's Triangulation Net

Angle Adjustment Problem Addressed by
case 2. Under-determined observations

$$
\begin{gathered}
\min _{A x=b}\|x\|_{2} \\
\text { solved by } A A^{t} u=b \text { where } x=A^{t} u
\end{gathered}
$$

- Unknowns x were adjustments to all (or most of) the measured angles
- Constraints $A x=b$ called conditions

1. angle conditions (2 kinds)
2. side conditions

1. "Angle Equation" Conditions

$\angle \overline{52}=$ measured angle $\epsilon_{52}=$ adjustment

$$
\begin{aligned}
& \angle \overline{\mathbf{5 2}}+\epsilon_{52} \\
+ & \angle \overline{\mathbf{2 8}}+\epsilon_{28} \\
+ & \angle \overline{\mathbf{2 5}}+\epsilon_{25} \\
+ & \angle \overline{\mathbf{2 0}}+\epsilon_{20} \\
= & 360 \\
& \angle \overline{\mathbf{1 9}}+\epsilon_{19} \\
+ & \angle \overline{\mathbf{2 0}}+\epsilon_{20} \\
+ & \angle \overline{\mathbf{2 1}}+\epsilon_{21}
\end{aligned}
$$

$$
=180
$$

+ correction

2. "Side Equation" Condition (Sine Laws)

$$
\begin{array}{r}
\\
\quad \sin \left(\overline{O A B}+\epsilon_{1}\right) \\
\times \sin \left(\overline{O B C}+\epsilon_{2}\right) \\
\times \sin \left(\overline{O C A}+\epsilon_{3}\right) \\
= \\
\times \sin \left(\overline{O B A}+\epsilon_{4}\right) \\
\times \\
\sin \left(\overline{O C B}+\epsilon_{5}\right) \\
\times \\
\times \sin \left(\overline{O A C}+\epsilon_{6}\right)
\end{array}
$$

$\overline{O A B}=$ measured angle $\epsilon_{1}=$ adjustment

2. Side Equation Condition

$\ln \sin \overline{O A B}+\epsilon_{1} \cot \overline{O A B}+$ $\ln \sin \overline{O B C}+\epsilon_{2} \cot \overline{O B C}+$ $\ln \sin \overline{O C A}+\epsilon_{3} \cot \overline{O C A}$
$\ln \sin \overline{O B A}+\epsilon_{4} \cot \overline{O B A}+$ $\ln \sin \overline{O C B}+\epsilon_{5} \cot \overline{O C B}+$ $\ln \sin \overline{O A C}+\epsilon_{6} \cot \overline{O A C}$

* Equality is only to first order in the angle corrections.

Die Coefficienten der Bedingungsgleichungen

	a	${ }^{6}$	c	d.	e	f
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 0 \\ \cot 5 \\ -\cot 6 \end{gathered}$	$\begin{gathered} 0 \\ \cot 5 \\ -\cot 6 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	1
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{gathered} 0 \\ \cot 8 \\ -\cot 9 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} -\cot 7 \\ 0 \\ \cot 9 \end{gathered}$	$\begin{aligned} & \cot 7 \\ & -\cot _{0} 8 \end{aligned}$	1	
$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	$\begin{gathered} -\cot 10 \\ 0 \\ \cot 12 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \cot 10 \\ -\cot 11 \\ 0 \end{gathered}$	1	
$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{gathered} -\cot 13 \\ 0 \\ 0 t 15 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	
$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$	$\begin{gathered} -\cot 16 \\ 0 \\ \cot 18 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	
$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$	$\begin{gathered} \cot 19 \\ -\cot 20 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	
$\begin{aligned} & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{gathered} \cot 22 \\ -\cot 23 \\ 0 \end{gathered}$	$\begin{gathered} \cot 22 \\ -\cot 23 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	1
$\begin{aligned} & 25 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} -\cot 25 \\ \cot 26 \\ , 0 \\ \hline \end{gathered}$	$\begin{gathered} -\cot 25 \\ 0 \\ 0 \cdot 27 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		-1
$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \cot 28 \\ -\cot 29 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \hline 31 \\ & 32 \\ & 38 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \cot 31 \\ -\cot 32 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \hline 84 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \cot 35 \\ -\cot 36 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$.	

in einem Dreiecksnetze.

Gaussian Elimination

1823, 1828 Gauss

J. C. F. Gauss
 1777-1855

Theoria combinationes observationum erroribus minimis obnoxiae: Pars prior and Supplementum, Göttingen, 1823 and 1828.

case 2.
 Under-determined observations

$\min _{A x=b}\|x\|_{2}$
 $A x=b$

solved by $\boldsymbol{A} \boldsymbol{A}^{t} \boldsymbol{u}=\boldsymbol{b}$
where $x=A^{t} u$.

1823, 1828 Gauss

J. C. F. Gauss

1777-1855
Theoria combinationes observationum erroribus minimis obnoxiae: Pars prior and Supplementum, Göttingen, 1823 and 1828.

Normal equations:

$$
\begin{aligned}
& 0=[a a] x+[a b] y+[a c] z+ \\
& 0=[a b] x+[b b] y+[b c] z+ \\
& 0=[a c] x+[b c] y+[c c] z+ \\
& 0=[a d] x+[b d] y+[c d] z+
\end{aligned}
$$ etc.

Stewart, "Gauss, Statistics, and Gaussian Elimination," in Computing Science and

Statistics: Computationally Intensive Statistical Methods, edited by Sall and Lehman, Fairfax Station, 1994

1823, 1828 Gaussian Elimination

J. C. F. Gauss

1777-1855
Theoria combinationes observationum erroribus minimis obnoxiae: Pars prior and Supplementum, Göttingen, 1823 and 1828.

$$
\begin{aligned}
{[b b, 1]=} & {[b b]-\frac{[a b]^{2}}{[a a]} } \\
{[b c, 1]=} & {[b c]-\frac{[a b][a c]}{[a a]} } \\
& \text { etc. } \\
{[c c, 2]=} & {[c c]-\frac{[a c]^{2}}{[a a]}-\frac{[b c, 1]^{2}}{[b b, 1]} } \\
{[c d, 2]=} & {[c d]-\frac{[a c][a d]}{[a a]}-\ldots }
\end{aligned}
$$ etc.

1915 Dana Bartlett

Dana P. Bartlett
General Principles of the Method of Least
Squares with Applications, third edition,
Boston, 1915.

Normal equations:
$0=[a a] z_{1}+[a b] z_{2}+[a c] z_{3}$
$0=[a b] z_{1}+[b b] z_{2}+[b c] z_{3}$
$0=[a c] z_{1}+[b c] z_{2}+[c c] z_{3}$
$0=[a d] z_{1}+[b d] z_{2}+[c d] z_{3}$
etc.

1915 Dana Bartlett

Dana P. Bartlett

General Principles of the Method of Least Squares with Applications, third edition, Boston, 1915.
$1^{\text {st }}$ reduced normal equations:

$$
\begin{aligned}
& {[b b, 1] z_{2}+[b c, 1] z_{3}+[b d, 1]} \\
& {[b c, 1] z_{2}+[c c, 1] z_{3}+[c d, 1]} \\
& {[b d, 1] z_{2}+[c d, 1] z_{3}+[d d, 1]}
\end{aligned}
$$

where

$$
\begin{aligned}
& {[b b, 1]=[b b]-\frac{[a b][a b]}{[a a]}} \\
& {[b c, 1]=[b c]-\frac{[a b][a c]}{[a a]}}
\end{aligned}
$$

Linear Algebra Timeline

Gauss solved the normal equations

- Gauss invented a notation to organize elimination that was used for 100 years.
- During most of its existence, Gaussian elimination was used to solve normal equations.

Pertinent to the Inversion Paper

- Von Neumann and Goldstine studied the rounding errors of

$$
A^{-1}=A^{t}\left(A A^{t}\right)^{-1}
$$

This essentially was the main use for Gaussian elimination for 150 years.

- Their results stimulated a search for new algorithms (QR, SVD) that eventually replaced the normal equations in 1965.

Big Science, XIX Century Edition

Geodesy

Surveying Continents

Southeast Alaska 1929

1. Surveyors

- gather baseline and angle data

2. Computers (original usage)
(a) form underdetermined angle adjustment eqns
(b) form and solve normal equations
3. Cartographers

- use adjusted triangulations to draw maps

Surveying Continents

1. Surveyors

Old C\&GS Office
with third floor
computing rooms
Washington

- gather baseline and angle data

2. Computers (original usage)
(a) form underdetermined angle adjustment eqns
(b) form and solve normal equations
3. Cartographers

- use adjusted triangulations to draw maps

U. S. Coast and Geodetic Survey (C\&GS)

Oldest American Scientific Agency

Benjamin Peirce 3rd Superintendent (served 1867-74)

Charles Schott
Assistant
in charge of the
Computing Division
(served 1848-99)

Myrrick Doolittle 1830-1911 Computer (served 1873 - ??)

The Numerical Linear Algebra

Doolittle's Example

Doolittle, "Method employed in the solution of normal equations and the adjustment of a triangularization," in Report of the Superintendent of the U. S. Coast and Geodetic Survey (showing the progress of the work during the fiscal year ending with June, 1878), Government Printing Office, 1881.

Selection of Conditions:

- 2 unknowns for each station off the baseline
- What is the rank of the matrix of conditions?
- n as big as 41 or 52 !

Solution of Normal Equations:

- 3-digit hand arithmetic!
- Crelle's 3-digit tables were used for \times and \div

circa 1875 III-Conditioned

Peter Guthrie Tait 1831-1901
"Cosmical Astronomy," Good Words, 19-23 (1875).
"The danger of selecting such condition equations that the solution will be somewhat unstable is difficult to avoid."

Wright and Hayford, "The Adjustment of Observations by the Method of Least Squares with Applications to Geodetic Work," Van Nostrand, New York, 1906.
"The difficulty of determining the sun's distance lies in the measurement of the angles, and in what is called the illconditioned form of triangle."
${ }_{C}^{B}$

Pertinent to the Inversion Paper

- Von Neumann and Goldstine's error bounds were considered unrealistically large when tested on small problems solved by post-WWII technology (10-digit mechanical calculators) ...
- ... but the concerns about Gaussian elimination were based on experience from pre-WWII calculations (3-digit paper and pencil) for which the pessimistic bounds probably were realistic.

Another Story: Regression and Correlation

KARL PEARSON, 1934
Karl Pearson
1857-1936

Statistics replaced geodesy as the main use for linear algebra after WWI

- continental surveys were complete
- data analysis was important for agriculture and government

Karl Pearson led in the computational developments and published Tracts for Computers, essentially the first numerical analysis textbooks

Grier, When Computers Were Human,
Princeton, 2005.

Question: actuaries also used computing; did they use linear algebra?

Linear Algebra Timeline

1750	Pure I	Applied	Compu-
	quadraticl		tational
	quadratic!	Lagrange	
	forms	astronomy	
1800	Gauss I	Gauss	
1850	gacobi Sylvester	geodesy	
	Cayley		
1900	Eisenstein Laguerre	$s q u$	Pearson
	Frobenius	adjustme	gricultu
1950	Toeplitz		

- Von Neumann and Goldstine deferred to Hotelling in matters of numerical linear algebra because, as a leader of the American statistical community, he represented a profession with considerable computing expertise.

The Decomposition Paradigm
Numerical Linear Algebra Algorithms
Correspond to Matrix Factorizations

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}
$$

Who invented the paradigm?

Stewart, "The Decompositional Approach to Matrix Computation," Computing in Science and Engineering, 2(1):50-59 (2000).

1823, 1828 Gaussian Elimination

J. C. F. Gauss 1777-1855

Theoria combinationes observationum erroribus minimis obnoxiae: Pars prior and Supplementum, Göttingen, 1823 and 1828.

$$
\begin{aligned}
{[b b, 1]=} & {[b b]-\frac{[a b]^{2}}{[a a]} } \\
{[b c, 1]=} & {[b c]-\frac{[a b][a c]}{[a a]} } \\
& \text { etc. } \\
{[c c, 2]=} & {[c c]-\frac{[a c]^{2}}{[a a]}-\frac{[b c, 1]^{2}}{[b b, 1]} } \\
{[c d, 2]=} & {[c d]-\frac{[a c][a d]}{[a a]}-\ldots }
\end{aligned}
$$ etc.

Before matrices; no paradigm.

1924 Cholesky Factorization

Andre-Louis
Cholesky
1875-1918 géodésique, 67-77 (1924).

$$
\min _{A x=b}\|x\|_{2}
$$

$A A^{t} u=b$ where $x=A^{t} u$.
Cholesky's insight was that many matrices have the same normal equations. He chose one that was easy to solve.

$$
L L^{t}=A A^{t}
$$

Real breakthrough was the inner product formulas for L.

No matrices in the paper, hence no paradigm.

1907 "Toeplitz" Factorization?

Toeplitz 1881 - 1940 Jacobi 1804-1851

Toeplitz, "Die Jacobische Transformation der quadratischen Formen von unendlichvielen Veränderlichen," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 101-109 (1907).

Restated Jacobi's result "known to Lagrange and Gauss" using "matrix calculus of Frobenius."

A quadratic form

$$
S=\sum_{i, k=1}^{n} \alpha_{i, k} x_{i} x_{k}
$$

could be factored as

$$
\begin{aligned}
S^{-1} & =U^{\prime} U \\
\text { or } S & =U^{-1} U^{\prime-1}
\end{aligned}
$$

but \boldsymbol{U} is given by determinants

1938 "Banachiewicz" Factorization?

Tadeusz
Banachiewicz
1882-1954

Astronomer and polymath who calculated first orbit of Pluto.

Expressed calculations using
"Cracovian" matrix multiplication.
Had a Cholesky-like method.
Inspired Jensen to do the same for Cayleyan matrix multiplication.

Many papers in Academy of Science of Poland were widely cited.

1938 Dwyer Square-Root Factorization?

Paul Dwyer

Dwyer, "A matrix presentation of least squares and correlation theory with matrix justification of improved methods of solution," The Annals of Mathematical Statistics, 5:82-89 (1944).

Michigan statistician.
Developed matrix formulation of least squares, normal equations, and symmetric factorization.

Primary source in the United States for what was later named "Cholesky's algorithm."

Triangular Factoring

Citation Patterns Among Earliest Authors

Dwyer
Duncan and Kenney
Laderman
Banachiewicz
Bodewig
Jensen
Todd (coursework)
Fox, Huskey, Wilkinson
Turing
von Neumann and Goldstine

Pertinent to the Inversion Paper

- All other authors were interested in normal equations.
- Von Neumann and Goldstine were the first to describe factoring of nonsymmetric matrices. They originated the $\boldsymbol{L D U}$ form.

Numerical Linear Algebra
 Before the Last Paradigm Shift*

Joseph F. Grcar
Lawrence Berkeley Laboratory jfgrcar@lbl.gov

October 5, 2005
Berkeley
*Thomas Kuhn, The Structure of Scientific Revolutions, The University of Chicago Press, Chicago, 1970.

