John von Neumann's

Analysis of Gaussian Elimination
and the Invention of Modern Computing

Joseph F. Grcar
Lawrence Berkeley National Laboratory jfgrcar@lbl.gov

Outline

History of Gaussian Elimination
Invention of Electronic Computers
The Matrix Inversion Paper
Conclusion

Errors of Observation

Adrien-Marie
Legendre
1752 - 1833

Johann Carl
Friedrich Gauss
1777 - 1855

Pierre-Simon
Laplace
1749-1827

Statistical Theory of Best Estimation

optimal \quad (minimizing
estimation $\} \equiv\{$ quadratic problems forms

Legendre: la méthode des moindres quarrés
Nouvelle méthodes pour la détermination des orbites des comètes, Paris (1805)

Gauss: developed probabilistic justification
Theoria Motus Corporum Coelestium in Sectionibus
Conicus Solem Ambientium, Hamburg (1809)

Observations Needing Adjustment

case 1. Over-determined observations

$$
\min _{x}\|b-A x\|_{2}
$$

solved by $A^{t} A x=c$ with $c=A^{t} b$
case 2. Under-determined observations

$$
\begin{gathered}
\min _{A x=b}\|x\|_{2} \\
\text { solved by } \boldsymbol{A} \boldsymbol{A}^{t} \boldsymbol{u}=b \text { where } \boldsymbol{x}=\boldsymbol{A}^{t} \boldsymbol{u}
\end{gathered}
$$

Both solved by normal equations

Observations Needing Adjustment

case 1. Over-determined observations
Little Used in
the XIX Century
solved by $A^{t} A x=c$ with $c=A^{t} b$
case 2. Under-determined observations

$$
\min _{A x=b}\|x\|_{2}
$$

solved by $\boldsymbol{A A}^{t} u=b$ where $\boldsymbol{x}=\boldsymbol{A}^{t} \boldsymbol{u}$
Both solved by normal equations

1880 Surveyor's Triangulation Net

1880 Surveyor's Triangulation Net

1880 Surveyor's Triangulation Net

Geodetic Angle Adjustment

- Unknown adjustments, \boldsymbol{x}, to the angles
- case 2. Under-determined observations

$$
\min _{A x=b}\|x\|_{2}
$$

solved by $\boldsymbol{A} \boldsymbol{A}^{t} \boldsymbol{u}=\boldsymbol{b}$ where $\boldsymbol{x}=\boldsymbol{A}^{t} \boldsymbol{u}$

- Constraints, $\boldsymbol{A x}=\boldsymbol{b}$, called conditions

1. angle conditions
2. side conditions

Die Coefficienten der Bedingungsgleichungen

	a	${ }^{6}$	c	d.	e	f
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 0 \\ \cot 5 \\ -\cot 6 \end{gathered}$	$\begin{gathered} 0 \\ \cot 5 \\ -\cot 6 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	1
$\begin{aligned} & 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \cot 8 \\ -\cot 9 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} -\cot 7 \\ 0 \\ \cot 9 \end{gathered}$	$-\cot _{0}^{\cot } \mathbf{7}$	1	
$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	$\begin{gathered} -\cot 10 \\ 0 \\ \cot 12 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \cot 10 \\ -\cot 11 \\ 0 \end{gathered}$	1	
$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{gathered} -\cot 13 \\ 0 \\ \cot 15 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	
$\begin{aligned} & \hline 16 \\ & 17 \\ & 18 \\ & \hline \end{aligned}$	$\begin{gathered} -\cot 16 \\ 0 \\ \cot 18 \end{gathered}$	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	
$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$	$\begin{gathered} \cot 19 \\ -\quad \cot 20 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	
$\begin{aligned} & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{gathered} \cot 22 \\ -\cot 23 \\ 0 \end{gathered}$	$\begin{gathered} \cot 22 \\ -\cot 23 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	1
$\begin{aligned} & 25 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -\cot 25 \\ & \cot 26 \\ & , 0 \end{aligned}$	$\begin{gathered} -\cot 25 \\ 0 \\ \cot ^{2} 27 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		-1
$\begin{aligned} & 28 \\ & 29 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \cot 23 \\ -\cot 29 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
$\begin{aligned} & 31 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \cot 31 \\ -\cot 32 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \hline 34 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \cot 35 \\ -\cot 36 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$,	

in einem Dreiecksnetze.

1823, 1828 Gauss

J. C. F. Gauss 1777-1855

Theoria combinationes observationum erroribus minimis obnoxiae: Pars prior and Supplementum, Göttingen, 1823 and 1828.

Normal equations:

$$
\begin{aligned}
0 & =[a a] x+[a b] y+[a c] z+ \\
0 & =[a b] x+[b b] y+[b c] z+ \\
0 & =[a c] x+[b c] y+[c c] z+ \\
0 & =[a d] x+[b d] y+[c d] z+ \\
& \text { etc. }
\end{aligned}
$$

Stewart, "Gauss, Statistics, and Gaussian Elimination," in Computing Science and Statistics: Computationally Intensive Statistical Methods, edited by Sall and Lehman, Fairfax Station, 1994

1823, 1828 Gaussian Elimination

J. C. F. Gauss 1777-1855

Theoria combinationes observationum erroribus minimis obnoxiae: Pars prior and Supplementum, Göttingen, 1823 and 1828.

$$
\begin{aligned}
& {[b b, 1]=[b b]-\frac{[a b]^{2}}{[a a]}} \\
& {[b c, 1]=[b c]-\frac{[a b][a c]}{[a a]}}
\end{aligned}
$$ etc.

$$
\begin{aligned}
& {[c c, 2]=[c c]-\frac{[a c]^{2}}{[a a]}-\frac{[b c, 1]^{2}}{[b b, 1]}} \\
& {[c d, 2]=[c d]-\frac{[a c][a d]}{[a a]}-\ldots}
\end{aligned}
$$ etc.

90 Years Later — MIT Prof. Dana Bartlett

Dana P. Bartlett
General Principles of the Method of Least Squares with Applications, third edition, Boston, 1915.
$1^{\text {st }}$ reduced normal equations:

$$
\begin{aligned}
& {[b b, 1] z_{2}+[b c, 1] z_{3}+[b d, 1]} \\
& {[b c, 1] z_{2}+[c c, 1] z_{3}+[c d, 1]} \\
& {[b d, 1] z_{2}+[c d, 1] z_{3}+[d d, 1]}
\end{aligned}
$$

where

$$
\begin{aligned}
& {[b b, 1]=[b b]-\frac{[a b][a b]}{[a a]}} \\
& {[b c, 1]=[b c]-\frac{[a b][a c]}{[a a]}}
\end{aligned}
$$

Gaussian Elimination Summary

Liu Hui
≈ 260

al-Khwarizmi

Gauss
≈ 1820

- Gauss invented a notation to organize elimination that was used for 100 years.
- During most of its existence, Gaussian elimination was:

1. described without matrices, and 2. used to solve normal equations.

$19-20^{\text {th }}$ Century Continental Surveys

Surveyor

Southeast Alaska 1929

1. Surveyors

- gather baseline and angle data

2. Computers (original usage)
(a) form underdetermined angle adjustment eqns
(b) form and solve normal equations
3. Cartographers

- use adjusted triangulations to draw maps

$19-20^{\text {th }}$ Century Continental Surveys

1. Surveyors

US center

for numerical linear algebra through WWI

Old C\&GS Office with third floor computing rooms

Washington

- gather baseline and angle data

2. Computers (original usage)
(a) form underdetermined angle adjustment eqns
(b) form and solve normal equations
3. Cartographers

- use adjusted triangulations to draw maps

U. S. Coast and Geodetic Survey (C\&GS)

Oldest American Scientific Agency

Benjamin Peirce 3rd Superintendent (served 1867-74)

Charles Schott Assistant Super. in charge of the
Computing Division (served 1848-99)

Myrrick Doolittle 1830-1911 Computer (served 1873 - ??)

After WWI — Statistics

KARL PEARSON, 1934
Karl Pearson 1857-1936

Statistics replaced geodesy as the main use for linear algebra

- continental surveys done
- data analysis important for agriculture and government

Karl Pearson

- led early computational developments
- Tracts for Computers

Grier, When Computers Were Human,
Princeton, 2005.

Calculators and Card Equipment in the 1920's

Computing room at the U. S. Department of Agriculture

History of Gaussian Elimination

Invention of Electronic Computers

The Matrix Inversion Paper
Conclusion

Analog: MIT Differential Analyzers, 1931+

Analog: Manchester Differential Analyzer

Scan EAmerican Institute of Physics

"Rockefeller" Differential Analyzer, 1942

Digital Mechanical: Harvard-IBM Mark I, 194A

Electro-Mechanical: IBM SSEC, 1948

Electro-Mechanical: Harvard Mark II, 1947

Electro-Mechanical: Harvard Mark II, 1947

Leading Technologies and Technologists

Analog
 Electro-Mechanical Digital

MIT \& NDRC

Vannevar Bush

$$
1890-1974
$$

Harvard
IBM

Howard Aiken 1900-1973

T. J. Watson Sr. 1907-1980

University of
 Pennsylvania

John Presper
Eckert
1919-1995

US Army
Lieutenant

Herman Heine
Goldstine
$1913-2004$

University of
 Pennsylvania

John William
Mauchly
1907-1980

All-Electronic: Moore School ENIAC, 1946

Start of the Computer Age

"First Draft of a Report on the EDVAC"
Mimeographed distribution, June 1945

Herman Goldstine 1913-2004

John von Neumann 1903-1957

Moore School Lectures, Summer 1946

"Mauchly and Eckert had promised the machine in 18 months. . . . no matter when you asked them when would the machine be ready it was always in 18 months. They started calling that the von Neumann constant."

Smithsonian Oral History Interview,
1973

Ida Rhodes 1900-1986

$1^{\text {st }}$ Computer: Manchester "Baby," June 19486

$2^{\text {nd }}$ Computer: Cambridge EDSAC, May 1949

IAS Computer, 1951

They Gave Away the Plans

The First Open Source Computer

Clones of the IAS Computer 1952-7

- Contracted
- Unofficial

\square Articles and Books \square Unpublished Reports
Secret Restricted Data
1945 First Draft Report on the EDVAC
1946 On the Principles of Large Scale Computing Machines
1946 Preliminary Discussion of the Logical Design of an Electronic Computing Instrument I. 1
1947 Planning and Coding of Problems for an Electronic Computing Instrument II. 1
1948 Planning and Coding of Problems for an Electronic Computing Instrument II. 2

Speed and Memory of Early Computers

". . . approximation mathematics will have to change very radically to use computers effectively - and to get into the position of being able to build still faster ones."
letter to Maxwell Newman, 1946

John von Neumann 1903-1957
". . . numerical analysis that would affect the design of computers and be responsive to the use of the powerful machines that, we were always confident, would one day come."

Annals of the History of Computing, 1982

> Mina Rees $1902-1997$

Director, Mathematics Branch, Office of Naval Research, 1946-1953

Outline

History of Gaussian Elimination
Invention of Electronic Computers
The Matrix Inversion Paper
Conclusion
"The state of numerical mathematics stayed pretty much the same as Gauss left it until World War II."

\square Lectures on Matrices (Wedderburn)
\square Accuracy and Stability of Numerical Algorithms (Higham)

What Was the Proper Use of Computers?
"Should machines be used to generate tables of mathematical functions, or should they be used to solve problems directly in numerical form? There is a considerable difference of opinion ..."

Moore School Lectures, 1946

George Stibitz 1904-1995

Small Bounds on Error Estimates

On the Accumulation of Errors in Numerical Integration on the ENIAC

 Rejected by Mathematical Tables and Other Aids to Computation

Hans Rademacher 1892-1969
$\mathcal{O}\left(4^{n}\right)$ Errors in Gaussian Elimination?

Some New Methods in Matrix Calculation

The Annals of Mathematical Statistics 14(1):1-34, March 1943

Harold Hotelling 1895-1973
$1^{\text {st }}$ Modern Paper in Numerical Analysis
Numerical Inverting of Matrices of High Order Bulletin of the American Mathematical Society 53(11):1021-1099, November 1947

1. Introduced academic mathematicians to the idea of analyzing numerical algorithms.
2. Analysis was relevant because delays in building computers made experiments impossible.
3. The subject was topical because of prejudice that mechanized calculations might be error prone.

PDE's Were the Real Interest

Manhattan Project, Meteorology, Standard Oil . . .

Manhattan Project, Meteorology, Standard Oil . . .

\boldsymbol{A}^{-1} Was Not on the Critical Path

von Neumann knew elimination was irrelevant:

problem	size solved in 1960
$\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$	100
PDEs	20,000

Venues of his matrix papers reflect his priorities:

1. "Some Matrix-Inequalities and Metrization of Matrix-Space," Tomsk. Univ. Rev., 1:286-300, 1937
2. "Numerical Inverting of Matrices of High Order," Bull. Amer. Math. Soc., 53:1021-1099, 1947
$1^{\text {st }}$ Modern Paper in Numerical Analysis
Numerical Inverting of Matrices of High Order Bulletin of the American Mathematical Society 53(11):1021-1099, November 1947
3. Introduced academic mathematicians to the idea of analyzing numerical algorithms.
4. Analysis was relevant because delays in building computers made experiments impossible.
5. The subject was topical because of prejudice that mechanized calculations might be error prone.
6. Gaussian elimination was a convenient example otherwise unimportant to von Neumann.
"Get numerical analysis off to a good start"

Chapters of the Inversion Paper

1. Identified mathematical stability as a theme to unify the treatment of errors:
(A) Theory
(B) Measurement
(C) Discretization
(D) Rounding
2. Introduced the CFL condition.
3. Originated formal models of machine arithmetic:

$$
\operatorname{comp}(\bar{x} \bullet \bar{y})=\operatorname{round}(\bar{x} \bullet \bar{y})
$$

4. Suggested mixing single and double precision.
5. Systematically described the use of matrix norms
"Get numerical analysis off to a good start"
6. Introduced the matrix lower bound.
7. Interpreted Gaussian elimination as triangular factoring, and discovered the $\underline{\boldsymbol{L D U}}$ form.
8. First instance of the decomposition paradigm.
9. Discovered that SPD matrices have small "a priori" error bounds for factoring and inverting - the only significant matrices for which this is true.
10. Discovered the matrix condition number in error bounds for matrix inverting SPD matrices.

The Matrix Condition Number, ℓ
von Neumann to Goldstine from Bermuda, January 11, 1947
2 have found a quite simpleway to make the elimination method work.
My results are these:
Cowider a matrix A of
order n, and with

$$
\begin{aligned}
& l=\left(\frac{\text { largest proper value of } A^{*} A}{\text { smallest hrozer value of } A^{*} A}\right)^{\frac{1}{2}} \\
& =\frac{\operatorname{Max}_{\nmid 1=1}|A f|}{\operatorname{Mim}_{\mid f 1=1}|A f|}
\end{aligned}
$$

Then if A is definite, the
From the Herman Heine Goldstine Collection, American Philosophical Society.
"Get numerical analysis off to a good start"
11. Discovered that the condition number squared bounds the errors of the normal equations.
12. Inspired Alan Turing to invent the name condition number for measures of mathematical stability.
13. Introduced the concept of backward error.
14. Inspired Wallace Givens to invent backward error analysis.
15. Proposed "backward error vs measurement error" accuracy criterion rediscovered by Oettli \& Prager.
"Get numerical analysis off to a good start"
16. Used stochastic linear algebra to estimate the size of matrices that could be inverted accurately.
$B=\operatorname{comp}\left[\bar{A}^{t}\left(\bar{A} \bar{A}^{t}\right)^{-1}\right], \quad \ell=\|A\|_{2}\left\|A^{-1}\right\|_{2}$

$$
\|\bar{A} B-I\|_{2} \leq \mathcal{O}\left(\ell^{2} n^{2} \beta^{-s}\right)
$$

Bargmann asserted, and Edelman proved: if \boldsymbol{A} has entries from a standard normal distribution, then the distribution for ℓ / \boldsymbol{n} quickly approaches a limit for large \boldsymbol{n} that peaks near 1.71.

$$
\operatorname{Pr}[\ell / n \leq 10]=0.80
$$

"Get numerical analysis off to a good start"
16. Used stochastic linear algebra to estimate the size of matrices that could be inverted accurately.

So 80% of the time the error bound is

$$
\|\bar{A} B-I\|_{2} \leq \mathcal{O}(1) 10^{2} n^{4} \beta^{-s}
$$

For $\beta=2, s=40$, and $\mathcal{O}(1)=14.24$, bound $\leq 1 \Longleftrightarrow n \leq 131$

There was an 80% chance that the IAS computer could invert, with some accuracy, any randomly chosen matrix of order up to 131.

Outline

History of Gaussian Elimination
Invention of Electronic Computers
The Matrix Inversion Paper
Conclusion

von Neumann and Goldstine's Contributions

1. Computers for computational science.

* They built the IAS computer.

2. Independent research unencumbered by commercial interests or government secrecy. * They gave away the plans.
3. Mathematicians engaged in research about how computers can be used and improved. * They wrote the inversion paper.

Began DOE applied math program, 1956

Established the contract research program for mathematics and computer science at the AEC

John Pasta
1918-1981

John von Neumann 1903-1957

National Medal of Science

"For fundamental contributions to the development of the digital computer, computer programming and numerical analysis."

John von Neumann's

Analysis of Gaussian Elimination
and the Invention of Modern Computing

Joseph F. Grcar
Lawrence Berkeley National Laboratory jfgrcar@lbl.gov

Extra Slides

Linear Algebra Timeline

Iowa State University

John Vincent Atanasoff 1903-1995

Clifford
Edward Berry 1918-1963

Atanasoff-Berry
Calculator 1942

Decomposition Paradigm

$1^{\text {st }}$ Papers Interpreting Gaussian Elimination as Triangular Factoring

Main Theorems of the Inversion Paper

	any A	SPD A				
	Gaussian elimination reordering $\begin{array}{r} A=L D U \\ \text { unique } L, D, U \end{array}$	Gaussian elimination symmetric reordering $\begin{array}{r} \left\\|\bar{A}-\bar{U}^{t} \bar{D} \bar{U}\right\\|_{2} \\ \leq \mathcal{O}\left(n^{2} \beta^{-s}\right) \end{array}$				
	"normal equations" $\begin{aligned} A^{-1}= & A^{t}\left(A A^{t}\right)^{-1} \\ & \left\\|\bar{A} \bar{W} 2^{q}-I\right\\|_{2} \\ & \leq \mathcal{O}\left(\ell^{2} n^{2} \beta^{-s}\right) \end{aligned}$	product of inverses $\begin{aligned} & A^{-1}= U^{-1} D^{-1} U^{-t} \\ &\left\\|\bar{A} \bar{W} 2^{q}-I\right\\|_{2} \\ & \leq \mathcal{O}\left(\ell n^{2} \beta^{-s}\right) \end{aligned}$				

fixed point arithmetic of s digits in base β $\ell=$ "figure of merit" or matrix condition number of \bar{A}

Matrix Condition Numbers

date source		name	value								
$\begin{aligned} & 1942 \\ & 1947 \end{aligned}$	Lonseth	measure of sensitivity	$\begin{aligned} & \sum_{i, j}\left\|\operatorname{cofactor}_{i, j}(A) / \operatorname{det}(A)\right\| \\ & =\sum_{i, j}\left\|\left(A^{-1}\right)_{i, j}\right\| \end{aligned}$								
1947	von Neu- mann and Goldstine	figure of merit, ℓ	$\begin{aligned} & \\|A\\|_{2} /\\|A\\|_{\ell} \\ & =\sigma_{\max }(A) / \sigma_{\min }(A) \\ & =\\|A\\|_{2}\left\\|A^{-1}\right\\|_{2} \end{aligned}$								
1948	Turing	N-condition nmbr	$\\|A\\|_{F}\left\\|A^{-1}\right\\|_{F} / n$								
		M-condition nmbr	$n \max _{i, j}\left\|A_{i, j}\right\| \max _{i, j}\left\|A_{i, j}^{-1}\right\|$								
1949	Todd	\boldsymbol{P}-condition nmbr	$\max \|\boldsymbol{\lambda}(\boldsymbol{A})\| / \min \|\boldsymbol{\lambda}(\boldsymbol{A})\|$								

John Todd began calling vN\&G's value the condition number in 1958, but \boldsymbol{P} - can be found until 1962.
"Those who cannot remember the past are condemned to repeat it."

George Sanatayana
REPORT TO THE PRESIDENT
Computational Science:
Ensuring
America's Competitiveness
President's Information Technology
Advisory Committee

