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Abstract

We describe a new method for using time-of-arrival data from an arbitrary num-
ber of sensors to localize a discrete acoustic source—generating a radially symmetric
wavefront. This method predicts the spatial and temporal coordinates of the source
by minimizing the sum of the absolute values of the differences between the squares of
the theoretical and actual times of arrival. Whenever the errors in the data are unbi-
ased and random, the larger the number of sensors, the greater the expected accuracy
of localization. We investigate the properties of our method through its application.
First, we demonstrate the improvement of accuracy with the number of sensors. Then,
for four sensors, we make direct comparison with Time-Difference-Of-Arrival (TDOA)
localizations. We also demonstrate the use of our method for localization of multiple,
cotemporary sources. This method is eminently suited to implementation on sensor
networks with computationally capable nodes.
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1 Introduction

Let there be S nodes at positions vs; s = 1, 2, . . . , S. Each node is equipped with an auditory

sensor. Let there be a discrete sound source at position v and time t. In the ideal, if the

source emits at time t, then the time of arrival at node s, ts = t+ ||vs−v||/c; s = 1, 2, . . . , S;

where c denotes the velocity of sound, taken to be constant; and where ||w|| denotes the

Euclidean distance. The goal is to predict v and t based on the ts’s. Thus, we do not

entertain more sophisticated sensors, such as those capable of determining the direction to

the source [7]. As c is constant, we will subsequently eliminate t’s in favor of d
def
= ct and

ds
def
= cts; s = 1, 2, . . . , S.

Departures from ideality—e.g. measurement errors and dispersion of velocity—occasion

discrepancies between ds −d and ||vs−v||; s = 1, 2, . . . , S. We assume that corrections have

been applied toward systematic errors, and, therefore, that the average of ds − d− ||vs − v||

equals zero (for suitable replications).

Statistics specifies judicious uses of redundant data for mitigating noisiness, and classical

“least-error” methodologies owe their origins to desiderata such as acoustic-source localiza-

tion. Time-Difference-Of-Arrival (TDOA) approaches may accommodate redundant nodes

[4, 11], but these are unlikely to optimize localization. Bayesian methods could also be

employed for acoustic-source localization, but these entail substantial computation for their

automated implementation, and it could be advantageous to explore alternative approaches.

There is, in fact, a natural application of least-square methods to our desideratum [5].

This application, however, “centers” the analysis on a selected node by differencing coordi-

nates (and data) with respect to the node’s, which is untoward, and symmetrized variants

gave us pause. Therefore, we developed a novel criterion and a method for its optimization.

Minimizing the sum of the absolute values of the “errors” was advocated by Laplace [2,

p. ix]. Here, we take such to be the differences between the theoretical and actual times

of arrival. Minimizing the sum of these summands, instead of the sum of the squares of
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the “errors”, has the advantage of better discounting of highly aberrant measurements. For

select desiderata, such as ours, it can be simplest, mathematically, to optimize the sum of the

absolute values of the “errors”—despite having to abide discontinuous derivatives [10]. This

criterion will be seen to yield counterintuitive optimization characteristics—in the to-ing and

fro-ing betwixt the data.

When it suffices to seek a solution in two spatial coordinates, our optimizations employ

only elementary algebraic methods, reminiscent of those used in TDOA calculations. The

increased complexity required for solving problems in three spatial coordinates is noted in

the Appendix.

We apply our least-error methodology in Section 3. Here it is demonstrated, by simu-

lation, how prediction accuracy can improve by increasing the number of nodes. We make

direct comparison with the TDOA method [8]: using four nodes, both with simulated data

and with gunshot data from a live-fire range. We also demonstrate the use of our method

for localization of multiple, cotemporary sources.

Our revisitation of this oft studied objective is motivated by the emergence of distributed-

sensor-network (DSN) based technologies. The nodes of such networks are endowed with

computational capabilities, and they may employ auditory as well as other types of sensors.

DSN’s could advantageously be used, among other things, for discovering and monitoring

mobile agents or weaponry. Our least-error approaches for source localization could be

implemented in a straightforward fashion over the nodes of DSN’s. The details of such

implementations, however, fall outside the scope of this manuscript.

2 Source Localization in Two Spatial Dimensions

In this section we develop methods for source localization in a plane. Let there be given

S nodes with their inferred positions denoted by vs = (xs, ys); s = 1, 2, . . . , S. The model

for the source is a cylindrical wave—emanating from v = (x, y) “at d”. In other words, for
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d′ > d, the locus v′(d′) of the wave is given by d′ − d = ||v′(d′) − v||. The data recorded at

the nodes are the respective ds’s; s = 1, 2, . . . , S, and, from these, one is to obtain v and d.

This problem will be seen to be well posed for 4 ≤ S.

Our measure of the discordance of the data is

Λ(x, y; d)
def
=

S
∑

s=1

ws

∣

∣

∣(x− xs)
2 + (y − ys)

2 − (d− ds)
2
∣

∣

∣ , (1)

where the ws’s, introduced for the sake of generality, are nonzero, real constants. It could be

advantageous, by analogy to the χ2 statistic, for these to equal the reciprocal of the mean

value of the respective summand: |(x− xs)
2 + (y − ys)

2 − (d− ds)
2| (under an appropriate

error model).

It is necessary for the first partial derivatives of Λ to vanish at its global optimum, pro-

vided that they are defined there. Recall that the derivative of |f(x)| equals f ′(x)sgn(f(x));

f(x) 6= 0, with sgn(y) denoting the signum function (taking values −1, 0 and 1 depending

on whether y ∈ IR is less than, equal to or greater than zero, respectively). Therefore, at a

stationary point of (1),

∂Λ

∂x
= 2

S
∑

s=1

ws(x− xs)sgns = 0;

∂Λ

∂y
= 2

S
∑

s=1

ws(y − ys)sgns = 0;

∂Λ

∂d
= −2

S
∑

s=1

ws(d− ds)sgns = 0.

Herein, sgns denotes sgn((x− xs)
2 + (y − ys)

2 − (d− ds)
2); s = 1, 2, . . . , S, and the partial

derivatives of Λ are defined at points where no sgns vanishes. When this restriction is

satisfied, consideration of the second partial derivatives establishes that the stationary point

obtained is always a saddle point: never a minimum. Therefore, at the global minimum

of Λ, one or more sgns must vanish identically and the respective summands of Λ may be
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omitted. It is easy to establish that at least two sgns’s must equal zero at a minimum of Λ.

Cases with two vanishing sgns’s and three vanishing sgns’s are treated separately.

2.1 Two sgns’s zeroed

One must investigate the stationary points of Λ resulting when every pair of sgns’s is zeroed—

as the global minimum must obtain either at one of these or one of the stationary points

described in Section 2.2. Each pair yields constraints upon Λ. Thus, the respective stationary

points may be found using two Lagrange multipliers: λ and µ.

Thus, consider the stationary points of

Λ̃ = Λ + λ((x− x`)
2 + (y − y`)

2 − (d− d`)
2) + µ((x− xm)2 + (y − ym)2 − (d− dm)2). (2)

Here, ` is not equal to m, and, to exhaust this class of stationary points, {`,m} must range

over all unordered pairs of indices from {1, 2, . . . , S}. Thus, given none of the remaining

sgns’s vanish,

∂Λ̃

∂x
= 2

S
∑

s=1

(x− xs)wssgns + 2λ(x− x`) + 2µ(x− xm) = 0;

∂Λ̃

∂y
= 2

S
∑

s=1

(y − ys)wssgns + 2λ(y − y`) + 2µ(y − ym) = 0;

∂Λ̃

∂d
= −2

S
∑

s=1

(d− ds)wssgns − 2λ(d− d`) − 2µ(d− dm) = 0.

This system comprises one linear equation in each unknown: x, y and d. λ and µ will subse-

quently be selected to effect the two constraints sgn` = sgnm = 0. Denote
∑S

s=1
wssgns by

ξ,
∑S

s=1 xswssgns by ξx,
∑S

s=1 yswssgns by ξy and
∑S

s=1 dswssgns by ξd. Then the foregoing

three equations yield, respectively,

5



x =
ξx + λx` + µxm

ξ + λ+ µ
, y =

ξy + λy` + µym

ξ + λ+ µ
and d =

ξd + λd` + µdm

ξ + λ+ µ
.

Furthermore, the two constraints yield two quadratic equations: one in λ and the other in

µ :

(ξx − ξxm + λ(x` − xm))2 + (ξy − ξym + λ(y` − ym))2 = (ξd − ξdm + λ(d` − dm))2; (3)

(ξx − ξx` + µ(xm − x`))
2 + (ξy − ξy` + µ(ym − y`))

2 = (ξd − ξd` + µ(dm − d`))
2. (4)

Note that if ` were interchanged with m and λ were interchanged with µ, then this pair of

equations persists, corroboration for the indexing of these stationary points by the unordered

pairs {`,m}. Using the quadratic formula, it is easily seen that the roots of (3) and (4) share

some key attributes:

λ± = (−bλ ±
√
D)/2a, and

µ± = (−bµ ±
√
D)/2a,

where D denotes the discriminant1, common to the two quadratic equations; where a is the

coefficient of the quadratic term, also common to the two equations; and where bλ and bµ

denote the respective coefficients of the linear terms. Note that a = (x`−xm)2 +(y`−ym)2−

(d` − dm)2; were a to vanish, then there would be only one acceptable λ and µ. If D < 0,

then the Lagrange multipliers would be complex and the corresponding points would not be

stationary points [9, Theorem 2.6].

1D/4 = ((x` − xm)(ξd − ξdm)− (d` − dm)(ξx − ξxm))2 + ((y` − ym)(ξd − ξdm)− (d` − dm)(ξy − ξym))2 −
((x` − xm)(ξy − ξym) − (y` − ym)(ξx − ξxm))2.
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For a stationary point (x, y, d) to be admissible, its indeterminates must be finite. When

the denominator ξ + λ + µ vanishes, it follows that not all of the indeterminates may be

finite. Consider, for example, the respective linear system:

ξx + λx` + µxm = 0
ξy + λy` + µym = 0
ξd + λd` + µdm = 0

(5)

According to the fundamental theorem on overdetermined linear systems [3, Vol. 7, p. 52],

this system will admit a solution (λ, µ) if and only if

Rank







x` xm

y` ym

d` dm





 = Rank







x` xm ξx
y` ym ξy
d` dm ξd





 .

Given the random errors under consideration, the rank of the left-hand matrix will almost

always be smaller than the rank of the right-hand matrix. Assuming these ranks are unequal,

the system (5) has no solution. Therefore, when the denominator ξ+λ+µ vanishes, at least

one of x, y and d will almost always be infinite, and such solutions may be ignored because

they cannot yield a minimum value of Λ.

If additional sgns’s were to vanish at one of the foregoing stationary points, then such

points would be inadmissible (and should be discarded). Appropriate treatment for the case

of three vanishing sgns’s is described next.

2.2 Three sgns’s zeroed (2-d)

Note that, with noisy data, it should almost never be the case that more than three sgns’s

jointly vanish, and it is safe to ignore such eventualities. Here, the use of Lagrange mul-

tipliers leads to a system whose stationary points are not easily found, as will be seen in

the Appendix. Thus, direct elimination is preferable. One may directly solve the quadratic

system:

(x− x`)
2 + (y − y`)

2 = (d− d`)
2; (6)
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(x− xm)2 + (y − ym)2 = (d− dm)2; (7)

(x− xn)2 + (y − yn)2 = (d− dn)
2, (8)

where, `,m and n are distinct elements of {1, 2, . . . , S}. Taking the differences (6) – (7) and

(6) – (8) yields two linear equations in x, y and d. This allows, say, y and d to be expressed

in the following forms:

y = αx+ β; (9)

d = γx+ δ, (10)

where, from application of Cramer’s rule (or otherwise),

α =
x`−xm

d`−dm
− x`−xn

d`−dn

y`−yn

d`−dn
− y`−ym

d`−dm

,

β =
ψm − ψn

y`−yn

d`−dn
− y`−ym

d`−dm

,

γ =
x` − xm

d` − dm

+ α
y` − ym

d` − dm

,

δ = β
y` − ym

d` − dm
+ ψm,

with

ψj =
x2

j − x2

` + y2

j − y2

` + d2

` − d2

j

2(d` − dj)
; j ∈ {m,n}.
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One may substitute the limiting behavior for vanishing denominators. (To write a com-

puter program which yields accurate solutions for all values of the parameters is feasible,

but it would require some care or the capabilities of symbolic programming). Substituting

(9) and (10) into (6) yields a quadratic equation in x :

ax2 + bx + c = 0, (11)

with

a = 1 + α2 − γ2,

b = −2(x` − α(β − y`) + γ(δ − d`)) and

c = x2

` + (β − y`)
2 − (δ − d`)

2.

When there are two real roots of (11) and when S = 3, these solutions may not, in general,

be distinguished, even though only one solution should approximate the source. Therefore,

source localization requires either a different approach or more than three nodes. This could

inspire higher regard for the nervous systems of many creatures, such as bats, endowed with

only two auditory sensors—but adept at echo-location.

2.3 Global minimization of Λ

Global minimization of Λ involves testing all pairs and triples of nodes—by zeroing their

sgns’s. Respective stationary points are generated, and the minimum value of Λ over these

stationary points is its global minimum.

With two zeroed sgns’s one must range over the
(

S
2

)

pairs of indices. For each pair, one

must consider the choices for the nonzero sgns’s: O(2S). For each pair and each choice, the

candidate stationary solutions are generated. These may be admitted if (i) their λ and µ ∈ IR
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and (ii) their sgns’s reproduce the chosen sgns’s. Thus, the computation of the stationary

points for each pair of vanishing sgns’s effectively involves the entire set of nodes.

With three zeroed sgns’s, the solution procedure is more straightforward. One must

range over the
(

S
3

)

triples of indices: O(S3). For each triple, one determines the roots of

(11). Then, using (9) and (10), one may evaluate (1), including additional nodes as desired.

3 Applications of Least-Error Methodology in Two Di-

mensions

3.1 Reduction of the Error with Increasing Numbers of nodes

Consider a square of unit side with vertices (0,0), (0,1), (1,0) and (1,1) and a cylindrical-wave

source at its center, (1/2,1/2), emitting at d = 0. S nodes are independently placed, uni-

formly and randomly, in the square. A random error, uniform on [-.01,.01], is then added to

the exact value of ds, independently; s = 1, 2, . . . , S. Then, (1) is minimized, with all ws’s = 1.

Table 1 contains the average root-mean-square error
〈√

(x− 1/2)2 + (y − 1/2)2 + d2

〉

for

4 ≤ S ≤ 16. Note that the average root-mean-square error is (empirically) roughly pro-

portional to S−1/2 asymptotically. For the aforementioned reasons, we did not implement

sophisticated TDOA procedures designed to use redundant measurements to reduce mea-

surement errors [4, 11].

TABLE 1 HERE

3.2 Comparisons with TDOA

The Time-Difference-Of-Arrival (TDOA) method [1, 4] may be used with two dimensional

data from four nodes (S = 4). We implemented the approach of [8, pp. 4-5]. (In summary,

by effecting the differences with respect to the equation for one node, the four equations

yield three. Two linear equations only involving the two spatial variables may be derived

from these. The value of d follows by averaging over the four equations). Note that this
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approach always yields a unique solution, but that it is not designed for data which contains

various errors.

We next compare the accuracy of TDOA solutions versus those given by the least-

error methodology, applied to one data set simulated as described above. Table 2 contains

some error “percentiles” for the two computations. For example, for the TDOA calcula-

tion, 75% of the time, the root-mean-square error,
〈√

||v − v0||2 + (d− d0)2

〉

, was less than

0.035 whereas the corresponding value for the least-error method was 0.0175. (The nought-

subscripted entities denote the “true values” and the non-subscripted entities the predicted

values). Due to a “heavy tail” in the TDOA results, attributable to occultation, the respec-

tive mean error could not be reliably estimated, even in a large number of trials (106). Table

2 illustrates that TDOA’s typical performance is also inferior to the least-error methodology.

TABLE 2 HERE

We also implemented and tested a prototype TDOA acoustic-source location network.

For this test, six acoustic-sensor nodes were arranged in two groups of three. The system

was fielded at the Los Alamos National Laboratory live-fire range.

Each node contained an acoustic sensor, a microprocessor, a (inexpensive) GPS receiver,

and an RF transceiver for communication. Together, they formed a sensor network capable

of autonomous gunshot location. The on-board GPS receivers provided both a common

timebase for the network and positions for the individual nodes. The dominant error com-

prised by this system derived from inaccuracies in these positions, whose RMS error was

roughly 10 m and which was strongly correlated across nodes.

Each node performed a threshold detection of sound impulses, recording the arrival time

of the sound. The arrival times were then propagated around the network using a flooding-

style communications protocol. The first node to acquire four times of arrival (typically

its own measurement and three others) calculated the sound source position, using the

aforementioned TDOA algorithm.
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The communications traffic from the network (time-of-arrival measurements and calcu-

lated sound locations) was captured by a laptop computer, outfitted with a receiver, and

stored in a log file. Because six measurement nodes were in use, many times it was not clear

which group of four underlay a particular localization. Furthermore, the communications

algorithm incorporated in the TDOA network would typically suppress the transmission of

the fourth time-of-arrival measurement: the one originating at the node that performed the

TDOA calculation. Thus, to compare the TDOA method to our least-error method, we

first identified TDOA localizations which could unambiguously be matched to a set of three

measurements; then, the fourth measurement was reconstructed. The velocity of sound was

taken to equal 343 m/s.

These sets of four unambiguous measurements were then used as input for the least-error

method. Figure 1a shows the results of the autonomous TDOA calculation.

FIGURE IA HERE

Two shots were located correctly by the TDOA system, but this approach predicted that the

majority of the shots occurred 10 m to 30 m South of their true positions. (The full data set

from which this subset was culled exhibits somewhat better performance. The selection of

substandard results was not deliberate but may reflect a bias in the selection of unambiguous

events.) Errors entering into the TDOA calculation may be due to a combination of GPS

position error, individual acoustic threshold settings, and dispersion of velocity.

In Figure 1b, we present the predictions made by the least-error method on the same

data and plotted in an identical fashion.

FIGURE 1B HERE

Almost all (eight of nine) of the gunshots are located to within 3 m by our least-error method.
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3.3 Multiple Sources

Recall that with sinusoidally varying, plane-wave sources, various optimization methods

yield the parameter estimates for all sources based upon measurements at the nodes [6].

With cylindrical-wave “point sources”, i.e. emitting at a single point in space and time, the

challenges are greater, and novel methods are required for parameter estimation.

The least-error approach engenders an elementary means of discerning multiple, cotem-

porary “point sources”, as follows. Were several signals received at the nodes, then one

could perform the least-error analysis for each combination thereof, using one signal from

each node. Thus, if there were ni signals detected at the ith node, then the number of

entailed least-error calculations would be
∏

i ni. The minimum values of Λ obtained pro-

vide discrimination between true and artifactual sources, as it is reasonable to expect that

fictitious combinations will accrue large discordances.

To illustrate these considerations, we modified the simulations of Section 3.1 to include

three sources: at d0 = 0 and at (1/4, 1/4), (1/2, 1/2) and (3/4, 3/4). Noise was added as

above. Only those below-threshold combinations of signals, whose minimum Λ < 0.03, were

retained. (In other settings, different thresholds would be appropriate; this choice pertains

to the noise included in our simulations). The results of our simulations are as follows.

TABLE 3 HERE

For virtually all configurations of the nodes, all three sources are detected (and are

detected from multiple signal combinations). Note that having sources emit at substantially

different d’s would decrease the false positive rates. In Figure 2, the spatial coordinates of

the below-threshold results for S = 8 are depicted.

FIGURE 2 HERE

In practice, “time-slicing”, with overlapping time intervals, could be used to reduce the
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values of ni. The length of the interval would establish “neighborhoods” for nodes collabo-

rating in source localization.

4 Discussion

The examples of Section 3 illustrate the advantageousness of our least-error method over the

simplest, established methods.

A novel aspect of our method is that some of the sgns’s must vanish at the minimum.

When fewer than the maximum number of sgns’s vanish (three and four in two and three

dimensions, respectively), our method has complexity exponential in the number of nodes

whose data are to enter. On the other hand, for the maximum numbers of vanishing sgns’s,

ours is evidently a polynomial algorithm which could readily be distributed over the nodes of

a DSN with computational capabilities. For some applications and for (yet to be determined)

classes of noise, simply ranging over the latter stationary points and accepting the minimum

value of Λ may yield a good or an acceptable approximation to its global minimum. It may

someday prove valuable to develop universal approximations for our solutions, to render our

methods applicable to arbitrarily large numbers of nodes.

One might expect that an important component of the noise in the ds’s will increase with

the Euclidean distance from the source due to dispersion. Using the ws’s to mitigate these

seems desirable, but it would greatly complicate the optimization of Λ because it would make

the ws’s functions of the variables. For some purposes it may suffice to iterate: solving a

sequence of optimizations—each having constant ws’s—based on the inferred v and d from

the previous iteration. Convergence is not necessarily at issue, as even one iteration could

afford greater accuracy than the setting of all ws’s equal to unity.

More sophisticated methods are plainly required for localization of a large number of

cotemporary sources. One might, for instance, effect the desired importance sampling of

the signal combinations by means of the Markov chain Monte Carlo method: transitioning
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between combinations in accordance with the likelihood ratio for the data. A useful ap-

proximation yielding the likelihood of the data might involve the adoption of the inferred

least-error source coordinates.

It remains to be specified how, in real time, a suitable collection of sensing nodes is to be

“activated” and is to identify the optimal triple or quadruple within it. The optimal value

of Λ could indicate the accuracy of a solution, and it could be advantageous for the network

to first report an inaccurate solution and to proceed to refine it further.
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5 Appendix: Source Localization in Three Spatial Di-

mensions

This desideratum is very similar to that treated above, but here one seeks v = (x, y, z) and

d, and one has a spherical-wave source. The global optimum of the respective Λ may occur

with two, three or four sgns’s zeroed. For two sgns’s zeroed, an analysis analogous to that of

Sections 2.1 and 2.3 suffices. For four sgns’s zeroed, by taking differences, one may eliminate

three variables, generating three linear equations. A quadratic equation in the remaining

variable yields two candidate solutions, as described in Section 2.2. As above, the cases with

more than four sgns’s zeroed may safely be neglected. Thus, only the case of zeroing three

sgns’s remains, in order to effect the global minimization of Λ.
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5.1 Three sgns’s zeroed (3-d)

Here, using Lagrange multipliers λ, µ and ν, we seek the stationary points of

Λ̃ = Λ+λ((x−x`)
2+(y−y`)

2+(z−z`)
2−(d−d`)

2)+µ((x−xm)2+(y−ym)2+(z−zm)2−(d−dm)2)

+ν((x− xn)2 + (y − yn)2 + (z − zn)2 − (d− dn)
2). (12)

The indices `,m and n are distinct, and, to exhaust this class of stationary points, {`,m, n}

must range over all unordered triples of indices from {1, 2, . . . , S}. Thus, given none of the

remaining sgns’s vanish, we seek the stationary points as the solutions of the system

∂Λ̃

∂x
= 2

S
∑

s=1

(x− xs)wssgns + 2λ(x− x`) + 2µ(x− xm) + 2ν(x− xn) = 0;

∂Λ̃

∂y
= 2

S
∑

s=1

(y − ys)wssgns + 2λ(y − y`) + 2µ(y − ym) + 2ν(y − yn) = 0;

∂Λ̃

∂z
= 2

S
∑

s=1

(z − zs)wssgns + 2λ(z − z`) + 2µ(z − zm) + 2ν(z − zn) = 0;

∂Λ̃

∂d
= −2

S
∑

s=1

(d− ds)wssgns − 2λ(d− d`) − 2µ(d− dm) − 2ν(d− dn) = 0.

This system comprises one linear equation in each unknown: x, y, z and d. λ, µ and ν will

subsequently be selected to effect the three constraints sgn` = sgnm = sgnn = 0. As above,

denote
∑S

s=1
wssgns by ξ,

∑S
s=1

xswssgns by ξx,
∑S

s=1
yswssgns by ξy,

∑S
s=1

zswssgns by ξz and

∑S
s=1

dswssgns by ξd. Then the foregoing four equations yield, respectively,

x =
ξx + λx` + µxm + νxn

ξ + λ+ µ+ ν
, y =

ξy + λy` + µym + νyn

ξ + λ+ µ+ ν
,

z =
ξz + λz` + µzm + νzn

ξ + λ+ µ+ ν
and d =

ξd + λd` + µdm + νdn

ξ + λ+ µ+ ν
.
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Furthermore, the three constraints yield three quadratic forms: each in a pair of variables.

These are unlikely to be definite, and theory for such systems is rudimentary. Hence, one

might proceed by using the quadratic equation to eliminate two of the three variables, using

the two equations containing, say, λ to eliminate the other two variables, and seeking the

real roots of the remaining equation, yielding an algebraic function of λ.
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Figure Captions

Figure 1a.

TDOA localizations using six nodes (+’s) and four of the times of arrival. Lanes (numbered

squares) correspond to shooters; the lanes used were #’s 2,3,6 and 7. The predicted coordi-

nates for the gunshots for firings from each of these lanes are indicated by respective symbols.

The dimensions of the axes are in meters, and the x axis is oriented East-West, whereas the

y-axis is oriented North-South; these are referenced to an arbitrary origin Northwest of the

plot. Note that the point from lane three at (-6959,-862) is actually the superposition of two

nearly identical predictions for coordinates of two gunshots from lane three.

Figure 1b.

Least-error localizations, using the same nodes and combinations of four times of arrival as

in Figure 1a. The axes are also the same as in Figure 1a.

Figure 2.

The predicted spatial coordinates of the below-threshold least-error solutions, given three

cotemporary sources at d = 0 and (1/4,1/4), (1/2,1/2) and (3/4,3/4).
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S 〈RMS〉
4 .033
5 .012
6 .0091
7 .0079
8 .0072
9 .0067
10 .0063
11 .0060
12 .00577
13 .00556
14 .00539
15 .00521
16 .00507

Table 1: Average Root-Mean-Square Localization Error
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〈RMS〉 25% 50% 75% 95%
TDOA — 0.008 0.014 0.035 0.218
Least-Error 0.033 0.007 0.0099 0.0175 0.075

Table 2: Root-Mean-Square Localization Error Percentiles; S = 4.
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S False Positive Rate
4 0.4
6 0.2
8 0.03

Table 3: The proportions of false positives in the below-threshold results for different numbers
of nodes. False positives were defined as those with the minimum, over all sources (v0; d0)
of ||v − v0||2 + (d− d0)

2 > 0.02.
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