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ABSTRACT 
A new algorithm, multiple concurrent recursive least 

squares (MCRLS) is developed for parameter estimation 
in a system having a set of governing equations 
describing its behavior that cannot be manipulated into a 
form allowing (direct) linear regression of the unknown 
parameters. In this algorithm, the single nonlinear 
problem is segmented into two or more separate linear 
problems, thereby enabling the application of existing 
powerful linear regression algorithms such as recursive 
least squares (RLS). The individual linear sub-problems 
contain unknown parameters other than those that are 
identified; said parameters are initially set at their nominal 
values, and are subsequently updated by the other 
concurrently running identification (ID) processes. With 
all sub-problems sharing their results following each 
update, the results rival those of more computationally 
intensive nonlinear optimization algorithms. This 
algorithm was developed to address, and has been tested 
on a spacecraft on-line mass-property ID application. 
Beginning with reasonably accurate initial parameter 
estimates, the approximation error for this spacecraft 
mass-property ID example is negligible as compared to 
errors created by other un-modeled system parameters. 
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1.  Introduction 
1.1  Parameter estimation 

In the field of parameter estimation (within the scope 
of System ID), there is an extensive body of theoretical 
results, along with explicit expressions for optimal 
parameter estimates, for the case where the regression 
function is linearly parameterized in the unknown 
parameters [1]. Unfortunately, when the unknown 
parameters do not appear linearly (for example, 
multiplying one another), the requisite nonlinear 
regression usually requires nonlinear, iterative methods. 

The use of these nonlinear, iterative methods requires 
a significant increase in both development effort 
(algorithmic as well as software) and computational 
complexity (code size, complexity, memory and 
processing requirements). MCRLS addresses these issues 
for a broad class of problems, providing an approach to 

enable nonlinear parameter estimation problems to be 
solved with linear methods. 

The simplification in development and computation 
enabled by the MCRLS approach is perhaps most 
important in that it enables implementation of on-line 
parameter estimation for applications that otherwise 
would not be feasible. 

The MCRLS algorithm’s principal objective is to 
enable the application of very powerful, fast, and compact 
parameter estimation algorithms to a class of problems 
that otherwise require solution with computationally 
intensive, and potentially fragile nonlinear approaches. It 
has been found to provide negligible reduction in 
estimation accuracy in testing on a realistic, important, 
and well-formed example application. 

1.2  Spacecraft mass-property identification example 
Due to the very small disturbance forces and torques 

present on spacecraft on orbit and in free space, their 
mass and thruster properties are important from a control 
and estimation standpoint. Spacecraft mass properties can 
be calibrated with limited accuracy during ground testing, 
and change further once on orbit due to: expulsion of fuel 
mass; reconfiguration (of antennae, solar arrays, etc.); and 
for servicing robotic spacecraft, potentially variable 
payloads. Accurate ID of mass properties has been 
studied extensively, but those methods have not yet been 
implemented and tested on-line on an actual spacecraft, 
possibly due to the computational complexity involved. 

MCRLS was originally developed to address this 
spacecraft mass-property ID problem, in support of the X-
38 v.201 spacecraft development at NASA Johnson Space 
Center, and later extended to the general case. As tested 
on the spacecraft application, MCRLS enables highly 
accurate mass-property ID and is very simple, compact 
and fast. It has been implemented on an experimental 
spacecraft, tested on-board in zero-g aircraft testing, and 
is presently awaiting launch for space-based validation. 

1.3  Related Research 
The use of linear least squares regression for the 

identification of unknown system parameters has been 
used and studied extensively, as by [1] [2]. However, the 
requirement that a regression equation be formed with the 
unknown parameters linearly represented limits its direct 



 Ax b≅  (2) applicability to many important problems, including the 
spacecraft application mentioned here. where  is a vector of (perfect) measurements, ε is a 

vector of measurement noise, 
b

x  contains the parameters 
to be identified, and matrix  contains known variables 
and system parameter values (i.e., there is no uncertainty 
in 

A

A ). The ≅  in the  representation indicates 
that the left and right sides of the equation would be equal 
if noise were not present. The LS ID solution, 

Ax b≅

x̂ , 
minimizes the sum of the squares of the elements of the 
error, ˆAx b− . If the problem at hand can be put into 
regression form, with noise appearing only in the ε term, 
x̂  can be solved directly (i.e., this is a closed-form 
solution, rather than an iterative optimization as might be 
required if the equations can not be put into this form) 
using one of the following equations: 

Ljung and several other authors have developed 
approaches for identification of parameters in non-linear 
systems using methods such as gradient-based 
optimization, neural networks, Wiener-Hammerstein 
models, the GMDH approach, etc [1]. However, these 
methods are significantly more computationally intensive 
than those for linear problems. 

The remaining research items relate specifically to 
spacecraft mass-property ID. In that application, some of 
the unknown parameters multiply each other in the 
governing equations, resulting in a specific type of 
nonlinearity. These references present, for this particular 
application, alternative approaches to the MCRLS 
algorithm, demonstrating the need for such a technology. 

Unweighted, batch algorithm:  ( ) 1
ˆ T Tx A A A b

−
=  (3) Tanygin and Williams developed a least squares (LS) 

based algorithm to identify mass properties for a spinning 
vehicle during coasting maneuvers [3]. Weighted, batch algorithm:  ( ) 1

ˆ T Tx A WA A Wb
−

=  (4) 
Bergmann developed an ID approach using a 

Gaussian second-order filter as presented more generally 
by Gelb [4] [5]. The second order filter resembles an 
extended Kalman filter, but has extra terms to explicitly 
address the second order effects. It makes approximations 
regarding thruster properties, vehicle gyroscopic 
dynamics, and is significantly more complex and 
computationally intensive than MCRLS. 

W is a diagonal weighting matrix. Either of these 
algorithms can be implemented recursively, and the 
weighting matrix, W, can be chosen to weight the data 
according to an exponentially decaying function – as is 
commonly done when implemented recursively [8]. 

In practice, many times the governing equations do 
not immediately fit exactly the form Ax b ε= + , with, 
for example, uncertainty being present in the A  matrix 
and the x  not being immediately linearly separated from 

 and b  as required. Often the basic approach to LS ID 
is to find some governing equations (the physically based 
equations of motion, for example) that contain the 
parameter values to be identified and measurement data. 
Then these equations are manipulated to conform to the 

A

Ax b≅  formulation, possibly requiring approximations 
along the way (dropping higher order terms, for example). 

Wilson and Rock developed an ID method based on 
exponentially weighted RLS using accelerometer and 
angular rate sensors [6]. Driven by the requirements of 
real-time on-line implementation as part of a 
reconfigurable fault-tolerant control system, the problem 
was reformulated to ID the accelerations resulting from 
thruster firings. By combining the mass and thruster 
properties, the regression function was linearized, thereby 
avoiding the present difficulty. 

2. MCRLS 2.2  Simple example and solution 
MCRLS estimation is presented first using a very 

simple example to highlight a typical issue addressed and 
the MCRLS solution approach, and then in general form. 

In some problems, such as the spacecraft example, 
the nonlinear terms are significant and cannot be dropped. 
A simple example that highlights this situation is 
presented by the following scalar governing equation: 2.1  Least squares parameter estimation 

In LS parameter estimation, first used by Gauss in 
1795, unknown parameters are identified using algorithms 
in which measurement data is fit to the underlying 
governing equations such that the identified parameter 
values minimize the squared error (where error is, for 
example, measurement data minus the ideal measurement 
data that would occur with zero noise and using the 
identified parameter values) [7]. 

 1 1 2 2 12 1 2a x a x a x x b+ + ≅  (5) 

where  is the measurement, a , , and a  are 
known values, that vary from measurement to 
measurement, and 

b 1 2a 12

1x  and 2x  are the unknown 
parameters to be identified (all are scalars). This problem 
cannot be put into the form of Equation 2, where the A  
matrix does not contain x . One approach that is feasible 
for a problem of this simplicity is to let The standard form for a linear least squares problem, 

referred to as “regression form,” is given as 

 Ax b ε= +  (1) A = = 1 2 12 1 2 1 2[ ]; [ Ta a a x x x x x  (6) ]
With the equation now in regression form, x̂  could 

be solved readily. However, depending on the noise and 
or, equivalently [2] 



biases present, the third element is unlikely to equal the 
first times the second. The approach of ignoring the third 
element, would be effectively throwing away information. 

Equation 9 describes an arbitrary number of 
arbitrarily sized groups, where the subscripts indicate the 
number for the group of parameters, and the groups can 
be arbitrarily sized. MCRLS would address this problem by accepting the 

fact that it cannot fit directly into linear regression form, 
and breaking it into two parts that will fit directly. 1̂x  is to 

be ID’ed assuming that 2x̂  is perfectly known, and vice 
versa. Equation 5 is re-written as: 

The first line in this equation is used as the regression 
equation in a RLS ID solution of the first vector of 
unknown parameters, 1̂x . This continues for each group 
up to . n

  (7) 1 12 2 1 2

2 12 1 2 1

ˆ ˆ( )
ˆ ˆ( )

a a x x b a x
a a x x b a x
+ = −
+ = −

2

1

ˆ
ˆ

− 



As covered in the related research, the accuracy of 
RLS ID depends on the selection of good values for the 
initial parameter estimates and the estimated covariance 
for the error in those estimates. It is also important to 
weight each subsequent measurement appropriately, first 
according to the estimated covariance of the measurement 
error, and second to exponentially weight the data so that 
newer measurements are considered more important than 
older ones (this is not strictly required, but is commonly 
done to allow the ID to track true changes in system 
parameters, and is a trivial adjustment to the RLS ID 
algorithm to implement). When using MCRLS, careful 
selection of these parameters is even more important, 
since the IDs are dependent on each other. 

or, in matrix form, 

  (8) 1 12 2 1 2 2

2 12 1 2 1 1

ˆ 0
ˆ0

a a x x b a x
a a x x b a x

+    
=    + −    

The first equation in Equation 7 is set up to ID 1x , 

and treats 2x  as if it were a known quantity, substituting 

in the best estimate of 2x , 2x̂ . 1̂x  can now be solved 
directly. The second equation does the converse. RLS ID 
processes for 1̂x  and 2x̂  are initialized with appropriate 
parameter and covariance values, and updated estimates 
are shared with the other ID prior to each RLS update. 

If the uncertainties in the initial estimates are set too 
high, and the measurements are noisy, there is a chance 
that one of the IDs will diverge initially. The dependence 
of the other IDs on this makes it especially important. So 
it may be helpful to perform an outlier check on the 
measurements and prevent this from happening. If the 
estimate error covariances are set properly and the 
measurements are free of outliers, this is not a concern. 

One measure of the ID error introduced by this 
approximation can be made by running a simulation 
where in one case the secondary parameters (e.g., 2x̂  in 
the top equation) are set to their true values, and in a 
second case they are set by the other ID process, and to 
compare the accuracies of the ID results. In many real 
applications, including the spacecraft example, this 
approximation error is insignificant as compared to 
system disturbances and other unknown parameters in the 
system. There are always some additional unmodeled 
effects, and as long as the MCRLS approximation error is 
significantly smaller than the error introduced by ignoring 
these effects, it should be considered a viable option. 

2.4 Additional benefits 
In addition to the principal benefit of enabling the 

approximate solution of a nonlinear problem with linear 
methods, several other benefits are present: 

It is not always clear as to which parameters in a set 
of equations should be treated as known, and which 
should be estimated. One significant benefit of MCRLS is 
that parameters can be added to or removed from the list 
of unknowns without needing to reformulate the entire 
problem. For example, in the spacecraft application, the 
related research examples all treat thruster parameters as 
perfectly known, and the algorithms cannot be updated to 
accommodate a change in this assumption. With MCRLS, 
the additional estimation of thruster strengths, directions, 
and locations can be added incrementally, as required. 

2.3  General algorithm 
This approach can be generalized by dividing the 

vector of unknown parameters, x , is into an arbitrarily 
large number of groups, each containing an arbitrarily 
large number of parameters. The preferred approach is to 
use the minimal number of groups to preserve the 
individual exact linear solutions to the extent possible; 
however, the other extreme is possible, in which each 
parameter has its own single-parameter RLS ID process. 

1 2 1 1 2

2 1 3 2 2 1 3

1 1

ˆ ˆ ˆ ˆ( , , , ) ( , , , )
ˆ ˆ ˆ ˆ ˆ ˆ( , , , , ) ( , , , , )

ˆ ˆ ˆ ˆ( , , , ) ( , , , )

n n

n

n n n n n

A x x x b x x
A x x x x b x x x

A x x x b x x

=
=

=

n  (9) 

As a practical consideration, it is common for the 
unknown parameters in a system to have widely varying 
degrees of uncertainty. For example, in the spacecraft 
example, due to the accuracy of ground-test equipment, 
center of mass is known with better relative accuracy than 
the diagonal terms in the inertia matrix, which are known 
better than the off-diagonal terms. Thruster locations are 
known very well, thruster directions are less certain, and 
for some systems, the thruster magnitude is even less 



certain. The capability of MCRLS ID to accommodate 
these problem characteristics is an important one. 

In many applications, certain measurements are more 
directly related to some parameters than others, and 
MCRLS facilitates the accommodation of this. For 
example, in the spacecraft example, when thrusters are 
fired to produce a pure torque, the resulting rotational 
motion as measured by the gyros is independent of the 
center of mass. Any update to the center of mass ID using 
this data is based on noise rather than physics and should 
be avoided. With the ID already segmented, MCRLS 
facilitates implementation of such physically based 
decisions, although the design of this logic may be 
difficult. 

Another benefit that is especially valuable for 
systems requiring on-line implementation on embedded 
processors where code size may be limited is that the code 
is very small. The RLS implementation consists of a small 
number of lines of code, due to the simplicity of the RLS 
algorithm, and it can be shared by the individual IDs, 
leading to a significant savings in code size, and the time 
and cost for development, testing, and sustaining 
engineering. 

2.5  Extensions 
Although the use of RLS to perform the segmented 

individual IDs has been used, and is clearly well suited to 
the algorithm, other algorithms would be able to fit 
directly into this framework. 

Although well-suited for real-time, on-line 
implementation, MCRLS ID could be applied off-line. 
Repeated cycling of the data in an off-line application has 
the effect of reducing the influence of the initial estimates 
and reducing the interdependence of the individual IDs. 

There may be cases where one or more of the 
unknown parameters changes in a known manner. For 
example, in the spacecraft application the total (vehicle + 
fuel + payload) mass properties are unknown, but the fuel 
location and mass are known. The remaining fuel mass 
may be calculated accurately as a function of time using a 
procedure known as burn-time integration (BTI). In this 
case, the MCRLS ID is designed to ID the difference 
between true and nominal total mass properties, while the 
nominal mass properties are updated using BTI. Even if 
the BTI is not perfectly accurate the ID will partially 
account for that. So the known part of the change is 
incorporated exactly and immediately, and the unknown 
deviation of the parameters from nominal continues to be 
ID’ed. Although this is a very useful augmentation to the 
MCRLS ID, it can be implemented independently. 

2.6  Convergence 
Although no convergence proof has yet been 

developed, empirical evidence from testing suggests that 
with sufficiently accurate initial estimates, ID accuracy 
will be comparable to that obtainable if true rather than 

estimated parameters were used in each ID process (e.g., 
if the 1x  RLS ID process used 2x  rather than 2x̂ ). 

2.7  Optimality 
Whereas the problem formulation and solutions for 

the baseline LS problem (Equations 1-4) are provably 
optimal, the MCRLS results are clearly not optimal in the 
least squares sense. Even with careful estimate-error-
covariance-matrix initialization and measurement 
weighting, MCRLS ID can only approach the 
mathematical optimality of a Kalman Filter or the results 
of a nonlinear optimization.  

However, in virtually all real applications the strict 
requirements of the LS formulation are not met, and any 
algorithmic sub-optimality is only important as compared 
to other sub-optimal effects (un-modeled disturbances or 
dynamics, unknown variations in “known” parameters, 
dropped higher order terms, sensor biases, etc.). 

At some point, additional algorithmic complexity is 
not warranted due to the deviations from the idealized 
problem statement. It is with this rationale that 
uncertainty in the A matrix is conventionally accepted and 
ignored for system ID (e.g., use of past measurements, or 
uncertain model parameters may appear) [1]. 

2.8  Viability 
The viability of MCRLS is clearly not universal. The 

following two approaches test whether the MCRLS is 
viable for a given application. Test 1 determines if the 
MCRLS approximation error is negligible in the presence 
of other un-modeled effects. Test 2 determines how much 
better an optimal nonlinear ID would perform. The 
development of theoretical (as opposed to these empirical 
examples) tests may be possible. 

Test 1: A simulation of the system is developed and 
used to generate a set of data to be used in the ID. In the 
baseline case, the various RLS IDs use estimated values 
for the unknown parameters that are treated as known 
(i.e., normal MCRLS). Then in the second case, each 
individual RLS ID instead uses the true values as used in 
the simulation for these parameters. This eliminates any 
potential coupling and approximation error – since the 
individual RLS IDs are ideal in their linear forms. The 
test is then to see how much greater the ID errors are for 
the first case as compared to the second. For many 
applications, including the spacecraft example to follow, 
the ID error introduced by other un-modeled effects (in 
the simulation, but not in the ID) will be greater than the 
MCRLS approximation error. 

Test 2: The nonlinear governing equations are run 
with parameters set to the MCRLS-ID’ed values, and 
system inputs to calculate the expected measurements. 
The sum-of-squares deviation of these measurements 
from the actual (or simulated) measurements is the error 
metric (prediction error). With the MCRLS-ID'ed 
parameters as a starting point, off-line, a gradient-based 
search (or other nonlinear ID that is not concerned with 



run-time efficiency) is carried out to find the optimal 
parameters, quantifying the potential improvement in the 
cost function. 

3.  Spacecraft Example 
The MCRLS algorithm was developed to address a 

spacecraft system ID problem that is presented in detail in 
[9][10], and summarized here. 

Accurate knowledge of spacecraft center of mass and 
inertia parameters is important for advanced control, 
estimation, and fault detection and isolation (FDI) 
applications that use these values. In addition to the 
difficulty faced in measuring these accurately prior to 
launch, these values may change following launch due to: 
fuel depletion; structural reconfiguration; and variable 
payload. The goal was to ID center of mass (CM) and 
inertia by monitoring the vehicle motions (as measured by 
gyros) in response to thruster firings. The challenge (as 
similarly encountered by the other related research 
examples) is that the governing rotational equation of 
motion, given in Equation 10, contains CM and inertia in 
a way that they cannot be linearly separated. 

 1(( ) ( ))nom kI L D F T Iω ω ω−= × − ×  (10) 
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The issue present even in this greatly simplified 

representation of the problem is that the inertia parameters 
(or in this case, inverse-inertia, 1I − ) multiply the thruster 
location parameters, , which are direct functions of the 
center of mass. The problem is made significantly more 
complex if it is also desired to ID thruster properties, total 
mass, and other system properties. Fortunately, the 
MCRLS algorithm scales to accommodate each additional 
set of parameters without impacting the overall 
complexity. This has been applied successfully in 
simulation to several spacecraft shown here, tested in 
laboratory hardware and in 0-g aircraft simulators, and is 
awaiting launch to the ISS for space-based validation. 

L

4.  Conclusions 
An efficient algorithm, MCRLS, has been presented 

for parameter estimation in a system having a set of 
governing equations describing its behavior that cannot be 
put into regression form with the unknown parameters 

linearly represented. In this algorithm, the vector of 
unknown parameters is segmented into two or more 
groups where each individual group of parameters may be 
isolated linearly by manipulation of said equations. 

Multiple concurrent and independent RLS 
identifications of each said group run, treating other 
unknown parameters appearing in their regression 
equation as if they were known perfectly, and with their 
values provided by RLS estimation from the other groups.  

The primary advantage is that it enables the use of 
fast, compact, efficient linear algorithms to solve 
problems that would otherwise require nonlinear solution 
approaches. MCRLS is presented with application to ID 
of mass and thruster properties for a thruster-controlled 
spacecraft. Other benefits, extensions, optimality 
considerations, and methods for testing its applicability 
are discussed. 
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