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iTOUGH2 Theory

• Definitions

• Stochastic Model

• Objective Function

• Minimization Algorithm

• Residual and Error Analysis

TOUGH Short Course

Lawrence Berkeley National Laboratory
Earth Sciences Division
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Calibration Point, Weighted Residual

• A calibration point is a point in space and time at which the 
observed system response zi* and the calculated system response zi

will be compared during model calibration.

• The residual is the difference between the observed and calculated 
system response at calibration point i:

• The weighted residual is the residual weighted by the inverse of the 
assumed measurement error:
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Jacobian Matrix
• The Jacobian J is an m×n matrix holding the 

sensitivity coefficients

• The sensitivity coefficients are the partial 
derivatives of the calculated system response zi at all 
calibration points i, i=1…m, with respect to each of 
the parameters pj, j=1…n
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The Stochastic Model

• Types of errors

• Functional and stochastic model

• Observation covariance matrix Czz

• a priori error variance σ0
2
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Measurement Error, Modeling Error, 
and Residual

• Measurement error

• Modeling error

• Residual

zzed
~*−=

zzem
~−=

zzzzzzeer md −=−−−=−= *)~()~*(

Time

Pr
es

su
re

data point

measurement error
modeling error

calculated
true

residual

*z

z
z~



4

7

Systematic and Random Components
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Functional and Stochastic Models

• Functional Model
– Attempts to capture the systematic, identifiable aspects
– Attempts to mimic the true system state
– Is represented by the governing equations of the forward model

• Stochastic Model
– Describes random, unidentifiable aspects
– Includes:

• A distributional assumption about the final residuals
• Estimate of expected size of residuals (not measurement errors!)

– Is represented by the observation covariance matrix Czz

• If the Functional Model were perfect, Czz would be a 
stochastic description of the measurement errors. 
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Observation Covariance Matrix Czz

• m × m diagonal matrix

• Scales data of different quality

• Scales data of different type

• Weights fitting error

• Summarizes the Stochastic Model
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Stochastic Model Development

Before inversion (a priori):
• Estimate expected distribution of residuals (type of distribution and 

standard deviation).
– Consider which portion of the observed signal shall be explained by the 

functional model.
– Consider measurement errors and also modeling errors.
– Consider only random components.
– Talk to experimentalist/data collector/data analyst!

• Set up observation covariance matrix Czz (or σ0
2 Vzz)

After inversion (a posteriori):
• Test randomness of residuals (look for systematic structure/bias in 

residuals)

• Perform Fisher Model Test (tests a prior error variance σ0
2 against a 

posteriori error variance s0
2).
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Exercise: Determine Czz
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Stochastic Model: Questions

• List types of errors?

• Provide examples of systematic errors?

• Provide examples of random errors?

• How are random errors described?

• What is the purpose of the Stochastic Model?

• Why do we base the Stochastic Model on              
measurement errors?

• What is the value of σ0
2?

• What is the distribution of a sum of many random errors?
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Objective Functions

• Objective Function

• Maximum Likelihood

• Least Squares

• Robust Estimators

14

minimization
algorithm

forward 
model

unknown,
true system 

behavior

calculated
system

response

measured
system

response

measured
parameters

estimated
parameters

stopping
criteria

residual and
error

analysis

maximum
likelihood

theory

objective
function

best
estimates



8

15

Objective Function

• Aggregate measure of misfit between measured 
data and model prediction.

• Scalar, S; function of unknown parameters p.

• To be minimized (minimizing S = improving fit)

• Can be based on maximum likelihood 
considerations.

• Examples of objective functions:
– Least absolute value (L1)
– Least squares (L2)
– MinMax (L∞)
– Others (Cauchy, Andres, Huber, …)

16

Objective Function:
Aggregate Measure of Misfit

• Pressure data from well test.

• Predicted pressures depend on 
parameter log(k).

• Objective function S is aggregate 
measure of misfit.

• S is function of log(k).

• log(k) that minimizes S yields 
best fit.

• p3 is considered best estimate of 
log(k).

• p3 is parameter that most likely 
“produced” the observed pressure 
data. 
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Objective Function for n = 1
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Objective Function for n=2 and n=3
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well-posed

Well- and Ill-Posed Inverse Problems
• Topology of objective function defines inverse problem…

• Data
• Sensitivity

… not the minimization algorithm!

ill-posed
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Properties of Objective Function

• S = S(z(p)) is a nonlinear function in n-dimensional 
parameter space.

• Assumed convex, but may exhibit local minima, 
saddle points, long and narrow valleys, etc.

• Assumed continuous and differentiable, but may be 
discontinuous and numerically unstable.

• Close to quadratic near minimum.
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Maximum Likelihood: General
• Probability density function

• Likelihood function

• Maximum likelihood
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Maximum Likelihood: 
Normal Distribution → Least Squares
• Gaussian probability density function

• Likelihood function

• Maximum likelihood
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Weighted Least Squares

• Weighted least squares: Sum of squared residuals, weighted by 
inverse of observation variance

• If residuals are normally distributed, minimizing the least-squares 
objective function

yields maximum-likelihood estimates.

• Least squares estimation (by definition) minimizes error 
variance.
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Non-Gaussian Residuals

Distribution of 
Residuals

Objective
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Robust Estimators

Robust estimators reduce 
the weight and thus 
impact of large residuals 
(from outliers in the data 
or systematic modeling 
errors) on the estimated 
parameter set.

Water Resour. Res., 34(11), 
2939-2947, November 1998
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“Theoria Cominationis Observationum
Erroribus Minimis Obnoxiae”
Carl Friedrich Gauss (~1820)

The integral ∫xφx.dx, i.e., the mean value of x, indicates the presence or absence of constant error, as well as its 
magnitude. Similarly, the integral ∫xxφx.dx taken from x=-∞ to x=+ ∞ (the mean square of x) seems most appropriate
to  generally define and quantify the uncertainty of the observations. Thus, given two systems of observations which 
differ in their likelihoods, we will say that the one for which the integral ∫xxφx.dx is smaller is the more precise.
Now if someone should object that this convention has been chosen arbitrarily with no compelling necessity, I will 
gladly agree. In fact, the problem has an intrinsic vagueness about it that can only be resolved by a more or less 
arbitrary principle. It is not out of place to compare the estimation of quantity by means of an observation subject to 
larger or smaller errors with a game of chance. Since any error to be feared in an observation is connected with a loss, the 
game in one in which nobody wins and everybody looses. We estimate the outcome of such a game from the probable 
loss: namely, from the sum of the product of the individual losses with their respective probabilities.
It is by no means self-evident how much loss should be assigned to a given observation error. On the contrary, the matter 
depends in some part on our own judgment. Clearly we cannot set the loss equal to the error itself; for if positive errors 
were taken as losses, negative errors would have to represent gains. The size of the loss is better represented by a 
function that is naturally positive. Since the number of such functions is infinite, it would seem that we should choose 
the simplest function having this property. That function is arguably the square, since the principle proposed above 
results from its adoption.
Laplace has also considered the problem in a similar manner, but he adopted the absolute value of the error as his 
measure of loss. Now if I am not mistaken, this convention is no less arbitrary than mine. Should an error of double 
size be considered as tolerable as a single error twice repeated or worse? Is it better to assign only twice as much 
influence to a double error or more? The answers are not self-evident, and the problem cannot be resolved by 
mathematical proofs, but only by an arbitrary decision. Moreover, it cannot be denied that Laplace’s convention 
violates continuity and hence resists analytic treatment, while the results that my convention leads to are distinguished by 
their wonderful simplicity and generality.

(“Theory of the Combination of Observations Least Subject to Errors”, translated from Latin by G.W. Stewart, SIAM, 
1995; emphases added)
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Objective Function: Questions

• Purpose of objective function?

• Properties of objective function?

• Well-posed inverse problem?

• Ill-posed inverse problem?

• Reasons for choosing least-squares?

• Potential problems with least-squares?

• Sketch contours of objective function (n=2) for nonlinear 
model, well-posed inverse problem, noisy data, correlated 
parameters.

28

Minimization Algorithm

• Overview and Classification
– Principles

– Advantages

– Disadvantages

• Gauss-Newton

• Levenberg-Marquardt
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Purpose of Minimization Algorithm

• Find the minimum of the objective function

• Automatically update parameter vector p such the 
the objective function S is reduced.

– Recall: The objective function S is a function of the model output 
z, which is a function of the parameter vector p:
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Properties of Objective Function

REAL
• Non-linear

• Complicated topology

• Many local minima

• Discontinuous

• Unstable

IDEAL
• Quadratic

• Symmetric and convex

• One global minimum

• Continuous

• Stable
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Classification

• Direct Search Methods
– Evaluate objective function many times

• Gradient-Based Methods
– Move along gradient of objective function

• Second-Order Methods
– Evaluate Hessian (or approximation to Hessian) of 

objective function
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Direct Search Methods

• Principle
– Map objective function by evaluating the objective function for 

systematically or randomly selected parameter combinations

• Advantage
– No assumption about topology of objective function.
– Obtain complete picture of parameter sensitivity and well- or ill-posedness

of  inverse problem 

• Disadvantage
– Inefficient

• Examples
– Trial & Error
– Grid Search
– Simplex Algorithm
– Simulated Annealing
– Genetic Algorithm

34

Trial & Error

• Principle
– Update parameters based on expert’s insight into 

system behavior and parameter sensitivities

• Advantage
– Incorporation of “soft” information

– Obtain feel for system behavior and sensitivities 

• Disadvantage
– Subjective

– Tedious/inefficient

– No formal error analysis
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Grid Search

• Principle
– Evaluate objective function “everywhere” in the 

parameter space

• Advantage
– Obtain complete information:

• Local minima
• Sensitivities
• Uncertainties
• Nonuniqueness

• Disadvantage
– Very expensive
– Only practical for up to 3 parameters

36

Simplex Algorithm

• Principle
– Obtain downhill direction from (n-+1)-dimensional 

simplex. Move on by reflection, expansion, and 
contraction of simplex.

• Advantage
– No derivatives

• Disadvantage
– Inefficient

– No formal error analysis
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Simulated Annealing

• Principle
– Perform random steps in parameter step. Accept uphill 

steps with a certain, decreasing probability.

• Advantage
– No derivatives

– Can get out of local minima 

• Disadvantage
– Inefficient

– No formal error analysis
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Gradient-Based Methods

• Principle
– Perform step along gradient direction.

• Advantage
– Robust for sufficiently small step sizes
– There are efficient algorithms for calculating gradients

• Disadvantage
– Inefficient stepping close to minimum

• Examples
– Steepest descent
– Quasi-Newton methods
– Conjugate gradient methods
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Second-Order Methods

• Principle
– Evaluate second derivative of objective function or approximation 

thereof.

• Advantage
– Quadratic convergence rate

• Disadvantage
– Requires second derivatives

– Not always robust

• Examples
– Newton

– Gauss-Newton

– Levenberg-Marquardt

40

Gauss-Newton Method

• Linearize model:

• Substitute into objective function:

• Set derivative of objective function to zero:

• Obtain solution ∆p:
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Gauss-Newton Method

Parameter A
P

ar
am

et
er

 B
p0

∆p0

∆p1

P
ar

am
et

er
 B

Parameter A

p0

∆p0

S

Gauss-Newton
Approximation

of S

42

Gauss-Newton Method

• Gauss-Newton identifies the minimum in a 
single iteration if:
– Model is linear

– Quadratic objective function

• Quadratic convergence rate for weakly 
nonlinear models

• Too large steps for strongly nonlinear 
models
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Levenberg-Marquardt Method

• Modification of Gauss-Newton method for 
strongly nonlinear models.

• Mixes gradient and Gauss-Newton method:
– Performs robust steps along gradient far away from the 

minimum.

– Performs efficient Gauss-Newton steps near the 
minimum.

• Automatically adjust relative weight between 
gradient and Gauss-Newton strategy.

44

Levenberg-Marquardt Method

• Add diagonal matrix D to linear approximation of Hessian:

• If step is successful, move toward Gauss-Newton strategy 
(reduce λ by ν)

• If step unsuccessful, move toward gradient strategy 
(increase λ by ν).
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Levenberg-Marquardt Method
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Levenberg-Marquardt Method

• The Levenberg-Marquardt modification of the 
Gauss-Newton algorithm allows for efficient 
minimization of objective functions from strongly 
nonlinear models.

• If stepping is successful, large Gauss-Newton 
steps are taken.

• Otherwise, small, robust steps along steepest-
descent direction are taken.
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Minimization Algorithm: Questions

• Purpose of minimization algorithm?

• List methods and their advantages and limitations.

• Key criteria for selecting the minimization 
method?

• Sketch:
– Objective function for two parameters, nonlinear model
– Select starting point (initial guess of parameter vector)
– Draw Gauss-Newton approximation
– Perform two Gauss-Newton steps

• Principle of Levenberg-Marquardt method?
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Error Analysis

• Estimated Error Variance s0
2

• Fisher Model Test

• Covariance Matrix of Estimated Parameters Cpp

• Parameter Correlations

• Uncertainty Propagation Analysis
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Why Error Analysis?

• Parameter estimates may be worthless if:

– Model is unlikely match to the data                        
goodness-of-fit, Fisher Model Test

– Estimates are biased by systematic error or outliers in 
the data                                                        
residual analysis

– Estimation uncertainty is large                                 
Cpp, correlation coefficients

– Solution is non-unique or unstable

52

Estimated Error Variance s0
2

• The estimated error variance or a posteriori error 
variance is a measure of goodness-of-fit, 
representing the mean weighted residual:

• If a priori assumptions about residuals (expressed 
through matrix Czz) were reasonable, the ratio           
is close to 1.
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Fisher Model Test

• The ratio            is a random variable following an          
F-distribution:

• Fisher Model Test only meaningful if reliable stochastic 
model available  
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Residual Analysis
• Residuals should be random.

• Trends and patterns in the 
residuals indicate systematic 
errors.

• Try to remove systematic errors
by:
– Refining the functional model.

– Correcting data.

• Top figure indicates systematic 
errors caused by gas leakage.

• Bottom figure shows random 
residuals after gas leakage is 
explicitly modeled.
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Covariance Matrix of Estimated 
Parameters Cpp

• The covariance matrix Cpp is an estimate of the 
uncertainty of the estimated parameters:

• Cpp is an approximation of the actual parameter 
uncertainty; it is based on a normality and linearity 
assumption.
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Statistical Universe of Data Sets
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Simulating Statistical Universe 
of Data Sets

best fit
parameter set
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200 best estimates of porosity and 
initial gas saturation

Cpp gives reasonable estimate of 
uncertainty region

Simulating Estimation Uncertainty

200 realizations of hypothetical 
pressure and flow rate data
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Cpp Visualized
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Covariance Matrix – Correlation Matrix

• Diagonal elements of Cpp contains variances σii
2 of 

estimated parameters.

• Off-diagonal elements are covariances cij between pairs of 
parameters. They can be “normalized” to yield         
correlation coefficients: 

• Cpp is directly proportional to goodness-of-fit (s0
2).

• Cpp is inversely proportional to sensitivity matrix (J).
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Estimation Uncertainty

• Decreases with improvement of fit
– Use good data and good model

• Decreases with increasing sensitivity
– Use sensitive data

• Decreases with decreasing correlations
– Use data that allow for independent determination of 

each parameter
– Avoid overparameterization

• Design tests accordingly!
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Overparameterization

• A match can always be improved by adding more 
parameters to p.

• Adding new parameters increases correlations and thus 
increases estimation uncertainty.

• Check Cpp for large variances, correlation coefficients 
close to –1 or 1, and large condition numbers.

• Add parameters only if the fit can be significantly 
improved without introducing strong parameter 
correlations.

• Avoid overparameterization!



32

63

Correlation Coefficients

• A correlation coefficient of zero indicates that the two 
parameters can be estimated independently.

• A correlation coefficient of –1 or 1 indicates                          
non-uniqueness.

• A negative correlation coefficient indicates that a 
statistically similar match can be obtained by increasing 
one parameter and decreasing the other.

• If correlations exist, the uncertainty in one parameter 
affects the uncertainty in the other parameters.

• Design experiment as to minimize correlations.
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Confidence Region

• The probability that the true parameter set lies 
within the ellipsoidal confidence region region
represented by Cpp is (1-α).

• The true confidence region is bounded by the 
contour line of the objective function at level:

• The confidence region in`creases with decreasing α.
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Overall Correlation

• The conditional standard deviation σ* is the 
estimation uncertainty assuming that all other 
parameters are perfectly known.

• Cpp holds the marginal standard deviations σ.

• The ratio σ/σ* is a measure                                                    
of overall correlation.

• The ratio σ/σ* should be                                                       
close to 1
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Reducing Correlations: Example

0.0030.87-0.87φ

0.872.16-0.99log(b)

-0.87-0.991.67log(k)

φlog(b)log(k)

0.01-0.02-0.12Φ

-0.024e-4-0.52log(b)

-0.12-0.521E-4log(k)

φlog(b)log(k)
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Confidence Region

• The contours of the objective function visualize:

– Confidence region

– Correlation structure

– Appropriateness of linearity assumption

– Appropriateness of normality assumption

– Well-posedness of inverse problem
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Uncertainty Propagation Analysis

• Calculate prediction uncertainty as a result of parameter 
uncertainty.

• Linear analysis (First-Order Second-Moment)
– Fast (n+1 forward runs)

– Easy to report (mean and covariance matrix)

– Based on linearity and normality assumption

• Monte Carlo simulations
– Expensive (many forward runs)

– Difficult to repost 

– Full distribution

– No distributional assumptions
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Linear Error Propagation Analysis   
(First-Order-Second-Moment)

• Assumptions
– Change in model prediction ∆z can be approximated by a linear 

function of the parameter changes ∆p.

– ∆p is (log-)normally distributed.

• Error band is symmetric, representing (log-)normally 
distributed prediction errors.

• May assign certain probability to unphysical system 
behavior. 

T
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Monte Carlo Simulations

• Run many simulations with randomly selected 
parameter combinations drawn from the given 
probability density function.

• Provides full distribution of prediction uncertainty 
(histogram), which can be analyzed statistically.

• Nonlinearities are automatically taken into 
account.

• Results are always physically reasonable.
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Monte Carlo Simulations

72

Comparison FOSM-MC
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Error Analysis: Questions

• The a posteriori error variance s0
2 turns out to be 

significantly greater than the a priori error variance σ0
2.

– What does “significantly” mean?

– What does that result indicate?

• Discuss

• Under which conditions is Cpp a good approximation of the 
actual confidence region?

• How can you reduce estimation uncertainty.
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Error Analysis: Questions

• Czz = σ0
2 Vzz is the a priori observation covariance 

matrix.    

If all elements of Czz were multiplied by a factor 
of 4, how would this affect:

– The value of the objective function S?

– The estimated parameter set p?

– The estimated error variance s0
2?

– The uncertainty of the estimated parameters Cpp?

– The outcome of the Fisher Model Test?
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Error Analysis: Questions

• Discuss “overparameterization”.

• Describe the main differences between FOSM and Monte 
Carlo simulations.

• Assume you have to estimate the (hopefully small) 
probability that the TCE concentration at a drinking water 
well does not exceed a certain level.

– Which uncertainty propagation analysis method would you 
choose?

– Justify your choice.

– Describe the procedure.
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Final Remarks
• Identify and focus on parameters that most strongly affect the model 

predictions.

• Design an experiment that allows you to determine these parameters with 
sufficiently small estimation uncertainty.

• Use inverse modeling to estimate model-related, process-specific, scale-
dependent parameters:

Model + Parameter = Prediction

correct + correct = correct
correct + wrong = wrong
wrong + correct = wrong
wrong + wrong = ? (most likely wrong)
wrong + fitted = best we can get


