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Summary

Testing systems that change not so hard.
Indeterminacy not the major influence on testability.
Adaptation followed by rapid re-test= practical
Mutation testing not overly-complicated.

Tim’s Law: Often, a small number of random probes will
yield as much information as a large number of considered
probes.

“Test-ability” not just a static property, but...
Can design for better testability.
—-O(parts = whole); utility of formal analysis of parts?

Average case analysis only for testing as reachability; not
for fault localization/ fault removal of mission-critical sys-
tems.



What Systems Change?

Any working software system

e Using the hammer changes the hammer.
Adaptation via machine learning:

e Pre-launch behavior # flight behaviour
Indeterminacy

e Same inputs, different days, different outputs.

e Seen in Al and requirements engineering.

e ’Indeterminacy is the enemy of reliability”
[Levenson, 1995].

Mutation analysis

e Bash the program into another program: can you detect the
changes?



IV&V: The Qutsider s

The IV&V Facility:

Independent assessment (quick peeks).

IV&V (long stares)

Usually:

Process add-on, not process driver.
Heavily resource-bound

Incomplete specs (the axiom famine).

Being cost effective is essential:

Are stochastic methods cheaper?

Strangely:

Partial heuristic explorations effective.
If an exploration terminates, then errors++.
Jack’s rule: 5 major-ish errors is enough

What is the cheapest way to find the 5?
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e The above: massive over-estimate, blind to internal struc-
ture.

e Tim's law: Often, a small humber of random probes will
yield as much information as a large number of considered
probes

Out; = Frandom(random(In);)

For small M and large N, usually,

|Out1 A Outsy ... Outy| = |Outy A Outs . .. Outy)|

e e.g. Most program mutations give same results.
[Budd, 1980],[Wong and Mathur, 1995], [Michael, 1997]



BTW: Black Box Probing
Must be Over-Estimates

e Easy, but limited, accessibility.
[Colomb, 1999] [Fenton and Pfleeger, 1997]

e Static analysis results:

— Programs much simpler than we might think.
[Harrold et al., 1998].

— Few pathways within our programs.
[Bieman and Schultz, 1992]

e Dynamic analysis results:

— Randomized search quickly finds as much as consid-
ered search. [Selman et al., 1992].

— Exploring all conflicts tells you little more than exploring
a few: [Williams and Nayak, 1996] and
[Crawford and Baker, 1994] (see below),
[Menzies et al., 1999] (see below).



SAMP

Crawford and Baker, 1994]

for TRIES := 1 to MAX-TRIES
{set all vars to unassigned,;
loop

{if  everything assigned
then return(assignments);
pick any var v;

v = random assignment;
forwardChain();
if  contradiction exit loop;
}
} return  failure
TABLEAU: [SAMP:
full search partial, random search
% Time % Time | Tries
Success | (sec) | Success | (sec)
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252




HTO
Menzies and Michael, 1999]

maybe ->(X;Y);(Y;X).

Xrand Y :- A of Ois New :-
maybe ->(X,Y);(Y,X). a(A,0,0ld),
!5
maybe :- 0 is random(2). Old = New.
_ A of Ois New :-
.- htO(5,[1/sad,1/rich]). assert(a(A,O,New)).
A of O is New :-
ht0(0,_) -1 retract(a(A,O,New)),
htO(NO,GO) - fail.
rememberBestCover,

retractall(a(_,_,)),
sort(GO, G1),
maplist(prove,G1,G),
Nis NO - 1,
htO(N,G).
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byte a=1,;
byte b=1,;
bit f=1;

active  proctype  A(){

do

.- =1 > |if
ra==l
a==2
a==3
fi

od

}

active  proctype  B(){

do
.- =0 -> if
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No-edges: pre-conditions for indeterminacy;
- not(V1

e.g. no(X=V1,X=V2)

= V2).

j=0

j=1

=2
j=3
=4
=5
=6
=7

j=8

mutationl=true — f=identity

mutation2=true —» f:inverse\
\

or
/

mutation2=true —— f=negate

y 4

™~

= a=f(X) — b<=a —= doThat();

b>a —— doThis();

time=0

time=1

time=2

time=3
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Simulation Results
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What Effects Testability?

Learnt via machine learning: C4.5 [Quinlan, 1986].

andfmean=<0.6
\

andfmean>0.6 orpmean>4

N O\
orpmean=<6 orpmean>6 orpmean=<4  depth=<0.6  depth>0.6
— L /N /
andfmean>0.67  andfmean=<0.67  andfmean>0.8  andfmean=<0.8 orpmean=<2  orpmean>2 >30
/ O\

andfmean>0.33 andfmean=<0.4  andfmean=<0.33

—

depth=<0.4  depth>0.75  depth>04  andfmean>04  j=<30

time>29  time=<29

N> 1,00,000
13%

(m=45, cases=1500, estimated error=37.3%)

depth>0.6  depth=<0.6

Note: when components combined to an aggregate, must re-calc
these figures.
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Sensitivity Experiments

Group
All | Some | Least
time time ticks N N N
j__| height VI v |V
depth mean relative height of parents (5) N N N
orpy | y(orp) mean V.| V v
andp, | v(andp) mean N N N
andf, mean and node frequency (5) N N
andpe, ~v(andp) skew Vv
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Noq ~v(no) skew N
noy ~v(no) mean Vv
m number of inputs N
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1sTree? | 0,1 N
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5 - - i ]
O | | | | 1 | | | |
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Samples Samples

1) Cost of ignoring skews, no, program size, size of inputs < 5%.
2) Assessing testability may ignore indeterminacy, size of inputs.
3) Assessing testability needs dynamic data (depth).
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Conclusions

Testing systems that change not so hard.
Indeterminacy not the major influence on testability.
Adaptation followed by rapid re-test= practical
Mutation testing not overly-complicated.

Tim’s Law: Often, a small number of random probes will
yield as much information as a large number of considered
probes.

“Test-ability” not just a static property, but...

Can design for better testability (ish).

— On any execution, update stats on
< #runs,time, j, depth, andf,, orp,, andp, >.

— Pass this testing signature to anyone who requests it.
Utility of formal analysis of components questionable.

Average case analysis only for testing as reachability; not
for fault localization/ fault removal of mission-critical sys-
tems.
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Discussion

. “Would not considered reflection (e.g. over a formal model)
be a better strategy than random guessing?”

. “More details on the maths?”

. “For mission critical software, is an average case analysis
adequate?”

14
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100,000 runs

jMax = 100
V € 500,1500,2500,..10°
T € 1,2,3,..10°
in € 1,6,11,...103
andpq, andp,,
orpa,no, € 2,3,4,...18
orp, € 1,2,3,4,...10
no, € 0,1,2,3,4
depth,andf, € 0.1,0.2,0.3,...0.9
p(z,N) = 1—-((1-a)")
N(p,z) = log(1l—p)/log(l—=z)
P, = TPl
jMax
Ns = N(0.99,P,,)
Classification Threshold | %
fast and cheap N, < 102 | 36
fast and moderately expensive | N,, < 10* | 19
slow and expensive Ngw < 10° | 23
impossible Naw > 10° | 20
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