Testing Systems That Change

Tim Menzies[‡],
Bojan Cukic[†],
Harhsinder Singh[§]

[‡]NASA/WVU, 100 University Drive, Fairmont, USA [†]Com. Sci. and Electrical Engineering, WVU, [§]Department of Statistics, WVU

tim@menzies.com, cukic@csee.wvu.edu hsingh@stat.wvu.edu

August 22, 2000

Desired:

Actual:

Summary

- √ Testing systems that change not so hard.
- ✓ Indeterminacy not the major influence on testability.
- √ Adaptation followed by rapid re-test= practical
- √ Mutation testing not overly-complicated.
- √ Tim's Law: Often, a small number of random probes will yield as much information as a large number of considered probes.
- × "Test-ability" not just a static property, but...
- √ Can design for better testability.
- $\times \neg \Box (parts = whole)$; utility of formal analysis of parts?
- × Average case analysis only for testing as reachability; not for fault localization/ fault removal of mission-critical systems.

Any working software system

Using the hammer changes the hammer.

Adaptation via machine learning:

Pre-launch behavior ≠ flight behaviour

Indeterminacy

- Same inputs, different days, different outputs.
- Seen in AI and requirements engineering.
- "Indeterminacy is the enemy of reliability" [Levenson, 1995].

Mutation analysis

 Bash the program into another program: can you detect the changes?

IV&V: The Outsiders

- The IV&V Facility:
 - Independent assessment (quick peeks).
 - IV&V (long stares)
- Usually:
 - Process add-on, not process driver.
 - Heavily resource-bound
 - Incomplete specs (the axiom famine).
- Being cost effective is essential:
 - Are stochastic methods cheaper?
- Strangely:
 - Partial heuristic explorations effective.
 - If an exploration terminates, then errors++.
 - Jack's rule: 5 major-ish errors is enough
 - What is the cheapest way to find the 5?

Testing= Hard, Right?

- The above: massive over-estimate, blind to internal structure.
- Tim's law: Often, a small number of random probes will yield as much information as a large number of considered probes

$$Out_i = F_{random}(random(In)_i)$$

For small M and large N, usually,

$$|Out_1 \wedge Out_2 \dots Out_m| \approx |Out_1 \wedge Out_2 \dots Out_n|$$

e.g. Most program mutations give same results.
 [Budd, 1980], [Wong and Mathur, 1995], [Michael, 1997]

BTW: Black Box Probing Must be Over-Estimates

- Easy, but limited, accessibility.
 [Colomb, 1999] [Fenton and Pfleeger, 1997]
- Static analysis results:
 - Programs much simpler than we might think.
 [Harrold et al., 1998].
 - Few pathways within our programs.
 [Bieman and Schultz, 1992]
- Dynamic analysis results:
 - Randomized search quickly finds as much as considered search. [Selman et al., 1992].
 - Exploring all conflicts tells you little more than exploring a few: [Williams and Nayak, 1996] and [Crawford and Baker, 1994] (see below), [Menzies et al., 1999] (see below).

[Crawford and Baker, 1994]

```
for TRIES := 1 to MAX-TRIES
{set all vars to unassigned;
  loop
    {if everything assigned
      then return(assignments);
      pick any var v;
      v := random assignment;
      forwardChain();
      if contradiction exit loop;
    }
} return failure
```

	TABLE full sea		ISAMP: partial, random search		
	%	Time	%	Time	Tries
	Success	(sec)	Success	(sec)	
Α	90	255.4	100	10	7
В	100	104.8	100	13	15
С	70	79.2	100	11	13
D	100	90.6	100	21	45
E	80	66.3	100	19	52
F	100	81.7	100	68	252

HT0

[Menzies and Michael, 1999]

```
X ror Y : -
    maybe \rightarrow (X;Y);(Y;X).
X rand Y : -
                              A of O is New :-
    maybe \rightarrow (X,Y); (Y,X).
                                   a(A,0,Old),
                                   !,
maybe :- 0 is random(2).
                                   Old = New.
                               A of O is New :-
:- ht0(5,[1/sad,1/rich]).
                                   assert(a(A,O,New)).
                               A of O is New :-
ht0(0, _{-}) :-!.
                                   retract(a(A,O,New)),
ht0(N0,G0) :-
                                   fail.
    rememberBestCover,
    retractall(a(_,_,_)),
    sort(G0, G1),
    maplist(prove, G1, G),
    N is NO - 1,
    ht0(N,G).
prove(In/Goal,Out/Goal):-
                               1000
    delta(X),
    (call(Goal)
    -> Out is In + X
    ; Out is In - X).
delta(X) :-
    X is 1 +
       random(10^3)/10^6.
```



```
01 byte a=1;
02 byte b=1;
03 bit f=1;
04
05 active proctype A(){
06
    do
    :: f==1 -> if
07
80
                 ::a==1 -> a=2;
                 ::a==2 -> a=3;
09
10
                 ::a==3 -> f=0;
11
                            a=1;
12
                 fi
13
    od
14 }
15 active proctype B(){
16
    do
    :: f==0 -> if
17
18
                 ::b==1 -> b=2;
19
                 ::b==2 -> b=3;
20
                 ::b==3 -> f=1;
21
                            b=1;
22
                fi
23
    od
24}
```

No-edges: pre-conditions for indeterminacy; e.g. no(X=V1, X=V2): - not(V1 = V2).

Simulation Results

 $V \in 500, 1500, 2500, ...10^6$ $T \in 1, 2, 3, ...10^2$ $in \in 1, 6, 11, ...10^3$ $no_{\mu} \in 0, 1, ...$

What Effects Testability?

Learnt via machine learning: C4.5 [Quinlan, 1986].

(*m*=45, cases=1500, estimated error=37.3%)

Note: when components combined to an aggregate, must re-calc these figures.

Sensitivity Experiments

		Group		
		All	Some	Least
time	time ticks			$\sqrt{}$
j	height			
depth	mean relative height of parents (β)			
orp_{μ}	$\gamma(orp)$ mean			
$andp_{\mu}$	$\gamma(andp)$ mean			
$andf_{\mu}$	mean and node frequency (β)			
$andp_{lpha}$	$\gamma(andp)$ skew			
orp_{lpha}	$\gamma(orp)$ skew			
no_{lpha}	$\gamma(no)$ skew			
no_{μ}	$\gamma(no)$ mean			
in	number of inputs			
v	number of nodes			
is Tree?	0,1			
classes	$1 \dots 10^2$ or $10^2 \dots 10^4$ or			$\sqrt{}$
	$10^4.\dots10^6$ or $10^6\dots\infty$	•	•	·

- 1) Cost of ignoring skews, no, program size, size of inputs < 5%.
- 2) Assessing testability may ignore indeterminacy, size of inputs.
- 3) Assessing testability needs dynamic data (depth).

Conclusions

- √ Testing systems that change not so hard.
- ✓ Indeterminacy not the major influence on testability.
- √ Adaptation followed by rapid re-test= practical
- ✓ Mutation testing not overly-complicated.
- √ Tim's Law: Often, a small number of random probes will yield as much information as a large number of considered probes.
- × "Test-ability" not just a static property, but...
- √ Can design for better testability (ish).
 - On any execution, update stats on $< \#runs, time, j, depth, and f_{\mu}, or p_{\mu}, and p_{\mu} >$.
 - Pass this testing signature to anyone who requests it.
- × Utility of formal analysis of components questionable.
- × Average case analysis only for testing as reachability; not for fault localization/ fault removal of mission-critical systems.

Discussion

- 1. "Would not considered reflection (e.g. over a formal model) be a better strategy than random guessing?"
- 2. "More details on the maths?"
- 3. "For mission critical software, is an average case analysis adequate?"

NAYO Graph Parameters

$$P_{av} = \frac{\sum_{j=0}^{jMax} P[j]}{jMax}$$

$$P[j] = andf[j] * P[j]_{and} + orf[j] * P[j]_{or}$$

$$P[j]_{and} = \prod_{\substack{andp[j] \\ andp[j]}} P[i]$$

$$P[j]_{or} = \left(1 - \prod_{\substack{andp[j] \\ V*T}} (1 - P[i])\right) * \dots$$

$$P[0]_{or} = \frac{in}{V*T}$$

$$P[0]_{and} = 0$$

$$j = height$$

$$i = \beta(depth) * (j-1)$$

$$\mu, \alpha = mean, skew$$

$$andp_{\mu}, andp_{\alpha} = and parents$$

$$orp_{\mu}, orp_{\alpha} = or parents$$

$$no_{\mu}, no_{\alpha} = \frac{no \ edges}{or \ node}$$

$$orp[j], andp[j] = \gamma \left(\alpha, \frac{\mu}{\alpha}\right)$$

$$andf[j] = \beta(andf_{\mu})$$

$$orf[j] = 1 - andf[j]$$

100,000 runs

$$jMax = 100$$
 $V \in 500, 1500, 2500, ...10^6$
 $T \in 1, 2, 3,10^2$
 $in \in 1, 6, 11,10^3$
 $andp_{\alpha}, andp_{\mu},$
 $orp_{\alpha}, no_{\alpha} \in 2, 3, 4,18$
 $orp_{\mu} \in 1, 2, 3, 4,10$
 $no_{\mu} \in 0, 1, 2, 3, 4$
 $depth, andf_{\mu} \in 0.1, 0.2, 0.3, ...0.9$

$$p(x,N) = 1 - ((1-x)^{N})$$

$$N(p,x) = log(1-p)/log(1-x)$$

$$P_{av} = \frac{\sum_{j=0}^{jMax} P[j]}{jMax}$$

$$N_{av} = N(0.99, P_{av})$$

Classification	Threshold	%
fast and cheap	$N_{av} < 10^2$	36
fast and moderately expensive	$N_{av} < 10^4$	19
slow and expensive	$N_{av} < 10^6$	23
impossible	$N_{av} \geq 10^6$	20

Bibliography

Bieman, J. and Schultz, J. (1992). An empirical evaluation (and specification) of the all-du-paths testing criterion. *Software Engineering Journal*, 7(1):43–51.

Budd, T. (1980). *Mutation analysis of programs test data*. PhD thesis, Yale University.

Colomb, R. (1999). Representation of propositional expert systems as partial functions. Artificial Intelligence (to appear). Available from http://www.csee.uq.edu.au/~colomb/PartialFunctions.html.

Crawford, J. and Baker, A. (1994). Experimental results on the application of satisfiability algorithms to scheduling problems. In *AAAI '94*.

Fenton, N. E. and Pfleeger, S. (1997). *Software Metrics: A Rigorous & Practical Approach*. International Thompson Press.

Harrold, M., Jones, J., and Rothermel, G. (1998). Empirical studies of control dependence graph size for c programs. *Empirical Software Engineering*, 3:203–211.

Levenson, N. (1995). Safeware System Safety And Computers. Addison-Wesley.

Menzies, T., Easterbrook, S., Nuseibeh, B., and Waugh, S. (1999). An empirical investigation of multiple viewpoint reasoning in requirements engineering. In *RE '99*. Available from http://research.ivv.nasa.gov/docs/techreports/1999/NASA-IVV-99-009.pdf.

Menzies, T. and Michael, C. (1999). Fewer slices of pie: Optimising mutation testing via abduction. In SEKE '99, June 17-19, Kaiserslautern, Germany. Available from http://research.ivv.nasa.gov/docs/techreports/1999/NASA-IVV-99-007.pdf.

Michael, C. (1997). On the uniformity of error propagation in software. In *Proceedings of the 12th Annual Conference on Computer Assurance (COM-PASS '97) Gaithersburg, MD.*

Quinlan, J. (1986). Induction of decision trees. *Machine Learning*, 1:81–106.

Selman, B., Levesque, H., and Mitchell, D. (1992). A new method for solving hard satisfiability problems. In *AAAI* '92, pages 440–446.

Williams, B. and Nayak, P. (1996). A model-based approach to reactive self-configuring systems. In *Proceedings, AAAI '96*, pages 971–978.

Wong, W. and Mathur, A. (1995). Reducing the cost of mutation testing: An empirical study. *The Journal of Systems and Software*, 31(3):185–196.