Testing Systems That Change

Tim Menzies¥,
Bojan CukicT,
Harhsinder Singh?

INASA/WVU, 100 University Drive, Fairmont, USA
fCom. Sci. and Electrical Engineering, WVU,
SDepartment of Statistics, WVU

tim@menzies.com,
cukic@csee.wvu.edu
hsingh@stat.wvu.edu

August 22, 2000



PITTMAN,

:
i

Actual:



N N N RN

Summary

Testing systems that change not so hard.
Indeterminacy not the major influence on testability.
Adaptation followed by rapid re-test= practical
Mutation testing not overly-complicated.

Tim’s Law: Often, a small number of random probes will
yield as much information as a large number of considered
probes.

“Test-ability” not just a static property, but...
Can design for better testability.
—-O(parts = whole); utility of formal analysis of parts?

Average case analysis only for testing as reachability; not
for fault localization/ fault removal of mission-critical sys-
tems.



What Systems Change?

Any working software system

e Using the hammer changes the hammer.
Adaptation via machine learning:

e Pre-launch behavior # flight behaviour
Indeterminacy

e Same inputs, different days, different outputs.

e Seen in Al and requirements engineering.

e ’Indeterminacy is the enemy of reliability”
[Levenson, 1995].

Mutation analysis

e Bash the program into another program: can you detect the
changes?



IV&V: The Qutsider s

The IV&V Facility:

Independent assessment (quick peeks).

IV&V (long stares)

Usually:

Process add-on, not process driver.
Heavily resource-bound

Incomplete specs (the axiom famine).

Being cost effective is essential:

Are stochastic methods cheaper?

Strangely:

Partial heuristic explorations effective.
If an exploration terminates, then errors++.
Jack’s rule: 5 major-ish errors is enough

What is the cheapest way to find the 5?



T T T L T T T

. 4603
o
@ 1k
—
o 0.9
= 0.8
= 0.7 |
5 0.6 1 failure in 10 —
> 05 1 failure in 100 ——
= 04 | 1 failure in 1,000 —+—_
8 03 |k 1 failure in 10,000 -=— |
S 02 | 1 failure in 100,000 —— |
a 0'1 1 failure in 1,000,000 -+—

O f s T v M~ R S o NS I L P | L | . .

1 10 100 1000 10000 100000 le+06 le+07 1le+08
# of tests

e The above: massive over-estimate, blind to internal struc-
ture.

e Tim's law: Often, a small humber of random probes will
yield as much information as a large number of considered
probes

Out; = Frandom(random(In);)

For small M and large N, usually,

|Out1 A Outsy ... Outy| = |Outy A Outs . .. Outy)|

e e.g. Most program mutations give same results.
[Budd, 1980],[Wong and Mathur, 1995], [Michael, 1997]



BTW: Black Box Probing
Must be Over-Estimates

e Easy, but limited, accessibility.
[Colomb, 1999] [Fenton and Pfleeger, 1997]

e Static analysis results:

— Programs much simpler than we might think.
[Harrold et al., 1998].

— Few pathways within our programs.
[Bieman and Schultz, 1992]

e Dynamic analysis results:

— Randomized search quickly finds as much as consid-
ered search. [Selman et al., 1992].

— Exploring all conflicts tells you little more than exploring
a few: [Williams and Nayak, 1996] and
[Crawford and Baker, 1994] (see below),
[Menzies et al., 1999] (see below).



SAMP

Crawford and Baker, 1994]

for TRIES := 1 to MAX-TRIES
{set all vars to unassigned,;
loop

{if  everything assigned
then return(assignments);
pick any var v;

v = random assignment;
forwardChain();
if  contradiction exit loop;
}
} return  failure
TABLEAU: [SAMP:
full search partial, random search
% Time % Time | Tries
Success | (sec) | Success | (sec)
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252




HTO
Menzies and Michael, 1999]

maybe ->(X;Y);(Y;X).

Xrand Y :- A of Ois New :-
maybe ->(X,Y);(Y,X). a(A,0,0ld),
!5
maybe :- 0 is random(2). Old = New.
_ A of Ois New :-
.- htO(5,[1/sad,1/rich]). assert(a(A,O,New)).
A of O is New :-
ht0(0,_) -1 retract(a(A,O,New)),
htO(NO,GO) - fail.
rememberBestCover,

retractall(a(_,_,)),
sort(GO, G1),
maplist(prove,G1,G),
Nis NO - 1,
htO(N,G).

10000

T
HT4 o

prove(In/Goal,Out/Goal):-
delta(X),
(call(Goal)
> QOut is In + X
;,  Out is In - X).

HTO
1000 Y=0(x"2) E

100 |

seconds)

Y=runtime (
-
T
\’1 oo
i
L L L

10

0.1

0 3000 6000 12000 15000 18000
ses

delta(X) -
Xis 1 +
random(10°3)/1076.



01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24}

byte a=1,;
byte b=1,;
bit f=1;

active  proctype  A(){

do

.- =1 > |if
ra==l
a==2
a==3
fi

od

}

active  proctype  B(){

do
.- =0 -> if

Too
TRRTIRT

wWN -

fi
od

QO
11l

m —h
1 u
me



No-edges: pre-conditions for indeterminacy;
- not(V1

e.g. no(X=V1,X=V2)

= V2).

j=0

j=1

=2
j=3
=4
=5
=6
=7

j=8

mutationl=true — f=identity

mutation2=true —» f:inverse\
\

or
/

mutation2=true —— f=negate

y 4

™~

= a=f(X) — b<=a —= doThat();

b>a —— doThis();

time=0

time=1

time=2

time=3



(O
ok
)

J
p

N (average) N (average)

N (average)

let+l4

let+6
10,000
100

let+14

let+6
10,000
100

let+14

let+6
10,000
100

1

let+14

let+6
10,000
100

1

Simulation Results

V € 500,1500,2500,..10°

T € 1,2,3,..10°

in € 1,6,11,...10°

no, € 0,1,
N I D 1etld F T T

j=1.10 ® ers j=11.20 - J
= 10,000
— 100

L L L = 1 L L L

0O 25 50 75 100

%

%

0O 25 50 75 100

C j=21.30 /] ;gfv 1‘19:2 C j=41.50 ]
S 10,000 -
£ 100
l l l = 1 T l
0 25 50 75 100 0 25 50 75 100
% %
" j=6L.70 o 1‘1*12‘ j=71.80 ]
& et ~
— > 10,000
" = 108 et
0 25 50 75 100 0 25 50 75 100
% %
" j=81.90 - ] ;gfv 1‘19:2 Cj=91.100 - ]
10,000
/// g 100 ,/.//
] ] =z 1 ] ]

0O 25 50 75 100

%

%

0O 25 50 75 100

10



What Effects Testability?

Learnt via machine learning: C4.5 [Quinlan, 1986].

andfmean=<0.6
\

andfmean>0.6 orpmean>4

N O\
orpmean=<6 orpmean>6 orpmean=<4  depth=<0.6  depth>0.6
— L /N /
andfmean>0.67  andfmean=<0.67  andfmean>0.8  andfmean=<0.8 orpmean=<2  orpmean>2 >30
/ O\

andfmean>0.33 andfmean=<0.4  andfmean=<0.33

—

depth=<0.4  depth>0.75  depth>04  andfmean>04  j=<30

time>29  time=<29

N> 1,00,000
13%

(m=45, cases=1500, estimated error=37.3%)

depth>0.6  depth=<0.6

Note: when components combined to an aggregate, must re-calc
these figures.

11



Sensitivity Experiments

Group
All | Some | Least
time time ticks N N N
j__| height VI v |V
depth mean relative height of parents (5) N N N
orpy | y(orp) mean V.| V v
andp, | v(andp) mean N N N
andf, mean and node frequency (5) N N
andpe, ~v(andp) skew Vv
OTPa ~(orp) skew N
Noq ~v(no) skew N
noy ~v(no) mean Vv
m number of inputs N
v number of nodes N
1sTree? | 0,1 N
classes | 1 ...10%or 102...10%or v vV vV
10%...10°% or 10°... 00
% Estimated error Size of decision tree (# nodes)
50 T T T T 1e+006 F— T T ]
45 - All (13) —+— i All (13) —— ]
20 - Some (6) x| 100000 [ Some (6) x5
Lesst (5) —*%— [ Lesst (5) —o¢— ]
35 } 10000 F 3
30+ - i
25 - . 1000 F 3
20 - - [
15 i 100 | _
10 y 10 | -I
5 - - i ]
O | | | | 1 | | | |
150 1500 15000 150000 150 1500 15000 150000
Samples Samples

1) Cost of ignoring skews, no, program size, size of inputs < 5%.
2) Assessing testability may ignore indeterminacy, size of inputs.
3) Assessing testability needs dynamic data (depth).

12



N N N RN

Conclusions

Testing systems that change not so hard.
Indeterminacy not the major influence on testability.
Adaptation followed by rapid re-test= practical
Mutation testing not overly-complicated.

Tim’s Law: Often, a small number of random probes will
yield as much information as a large number of considered
probes.

“Test-ability” not just a static property, but...

Can design for better testability (ish).

— On any execution, update stats on
< #runs,time, j, depth, andf,, orp,, andp, >.

— Pass this testing signature to anyone who requests it.
Utility of formal analysis of components questionable.

Average case analysis only for testing as reachability; not
for fault localization/ fault removal of mission-critical sys-
tems.

13



Discussion

. “Would not considered reflection (e.g. over a formal model)
be a better strategy than random guessing?”

. “More details on the maths?”

. “For mission critical software, is an average case analysis
adequate?”

14



~— " NAYO Graph Parameter s

Pcw
Ply]

P [.7] and

Plj]or

P[O]or

P[O] and

J

i

M,

andpy, andpq

Orpu, OTPa

MOy, NOq

orp[jl, andplj]

andf[j]
or f[5]

> 15T P
JMax
andf (] * Plland + or F17] * PLilor

andpl[j]

I] P

1

orpl]
1— J] @=PLD | ..
1

mn
VxT
0
height
B(depth) * (j — 1)

mean, skew

and parents

or parents
no edges

or node

7 (@)
B(andf,)
1 — andf[j]

15



100,000 runs

jMax = 100
V € 500,1500,2500,..10°
T € 1,2,3,..10°
in € 1,6,11,...103
andpq, andp,,
orpa,no, € 2,3,4,...18
orp, € 1,2,3,4,...10
no, € 0,1,2,3,4
depth,andf, € 0.1,0.2,0.3,...0.9
p(z,N) = 1—-((1-a)")
N(p,z) = log(1l—p)/log(l—=z)
P, = TPl
jMax
Ns = N(0.99,P,,)
Classification Threshold | %
fast and cheap N, < 102 | 36
fast and moderately expensive | N,, < 10* | 19
slow and expensive Ngw < 10° | 23
impossible Naw > 10° | 20




Bib liograph vy

Bieman, J. and Schultz, J. (1992). An empirical evaluation (and specification)
of the all-du-paths testing criterion. Software Engineering Journal, 7(1):43—
51.

Budd, T. (1980). Mutation analysis of programs test data. PhD thesis, Yale
University.

Colomb, R. (1999). Representation of propositional expert systems as partial
functions. Artificial Intelligence (to appear). Available from http://www.
csee.ug.edu.au/"colomb/PartialFunctions.ht mil.

Crawford, J. and Baker, A. (1994). Experimental results on the application of
satisfiability algorithms to scheduling problems. In AAAI '94.

Fenton, N. E. and Pfleeger, S. (1997). Software Metrics: A Rigorous & Prac-
tical Approach. International Thompson Press.

Harrold, M., Jones, J., and Rothermel, G. (1998). Empirical studies of control
dependence graph size for ¢ programs. Empirical Software Engineering,
3:203-211.

Levenson, N. (1995). Safeware System Safety And Computers. Addison-
Wesley.

Menzies, T., Easterbrook, S., Nuseibeh, B., and Waugh, S. (1999). An em-
pirical investigation of multiple viewpoint reasoning in requirements engineer-
ing. In RE '99. Available from http://research.ivv.nasa.gov/docs/
techreports/1999/NASA- IVV- 99- 009.pdf

Menzies, T. and Michael, C. (1999). Fewer slices of pie: Optimising mutation
testing via abduction. In SEKE '99, June 17-19, Kaiserslautern, Germany.
Available fromht t p: // research. i vv. nasa. gov/ docs/t echreports/
1999/ NASA- | W- 99- 007. pdf .

17



Michael, C. (1997). On the uniformity of error propagation in software. In Pro-
ceedings of the 12th Annual Confererence on Computer Assurance (COM-
PASS '97) Gaithersburg, MD.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1:81-106.

Selman, B., Levesque, H., and Mitchell, D. (1992). A new method for solving
hard satisfiability problems. In AAAI ‘92, pages 440-446.

Williams, B. and Nayak, P. (1996). A model-based approach to reactive self-
configuring systems. In Proceedings, AAAI '96, pages 971-978.

Wong, W. and Mathur, A. (1995). Reducing the cost of mutation testing: An
empirical study. The Journal of Systems and Software, 31(3):185-196.



