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Abstract Because of polyploidy and large genome size,
deletion stocks of bread wheat are an ideal material for
physically allocating ESTs and genes to small chromo-
somal regions for targeted mapping. To enhance the
utility of deletion stocks for chromosome bin mapping,
we characterized a set of 84 deletion lines covering the 21
chromosomes of wheat using 725 microsatellites. We
localized these microsatellite loci to 94 breakpoints in a
homozygous state (88 distal deletions, 6 interstitial), and 5
in a heterozygous state representing 159 deletion bins.
Chromosomes from homoeologous groups 2 and 5 were
the best covered (126 and 125 microsatellites, respective-
ly) while the coverage for group 4 was lower (80
microsatellites). We assigned at least one microsatellite in
up to 92% of the bins (mean 4.97 SSR/bin). Only a few
discrepancies concerning marker order were observed.
The cytogenetic maps revealed small genetic distances
over large physical regions around the centromeres and
large genetic to physical map ratios close to the telo-
meres. As SSRs are the markers of choice for many
genetic and breeding studies, the mapped microsatellite
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loci will be useful not only for deletion stock verifications
but also for allocating associated QTLs to deletion bins
where numerous ESTs that could be potential candidate
genes are currently assigned.

Keywords Microsatellites - Genetic map - Deletion
lines - Comparative mapping

Introduction

Among the Poaceae, the common or bread wheat (7riti-
cum aestivum L.) occupies a unique position due to its
allopolyploidy and large genome size (1C =16,000 Mb
compared to 1C =430 Mb in rice). During the last decade,
wheat reference genetic maps with 300 to over 1,000 loci
were constructed mainly based on RFLP markers and
mapping populations derived from “wide crosses” in-
volving a synthetic and a cultivated wheat (Devos and
Gale 1993; Van Deynze et al. 1995; Nelson et al. 1995a,
1995b, 1995¢; Marino et al. 1996), interspecific 7. spelta
x T. aestivum crosses (Liu and Tsunewaki 1991; Messmer
et al. 1999) and inter-varietal crosses (Cadalen et al. 1997,
Groos et al. 2002). Because RFLP markers exhibited low
levels of polymorphism, especially for D-genome chro-
mosomes (Chao et al. 1989; Kam-Morgan et al. 1989), the
maps were enriched by Simple Sequence Repeats (SSRs
or microsatellites), a class of markers that are co-
dominant, locus-specific and suitable for detecting a
higher level of polymorphism between closely related
wheat varieties (Roder et al. 1995; Plaschke et al. 1995)
opening exciting prospects for marker-assisted selection.
About 400 microsatellite loci randomly distributed
throughout the genome were genetically mapped on the
wheat reference mapping population (Roder et al. 1998a;
Stephenson et al. 1998). Sourdille et al. (2001a) reported
the mapping of 337 microsatellite loci derived from A, B
or D genome diploid ancestors on the whole genome of
wheat using reference and inter-varietal populations. The
isolation and development of microsatellite markers
specifically derived from Aegilops tauschii significantly



improved the D genome coverage of the existing wheat
microsatellite map by 55 (Pestsova et al. 2000) and 100
new loci (Guyomarc’h et al. 2002).

In wheat, the limitations of the large genome size and
lack of polymorphism (Chao et al. 1989) can be overcome
by targeted mapping made possible by the isolation of
more than 400 deletion lines for the 21 chromosomes of
wheat (cv Chinese Spring; Endo 1988; Werner et al.
1992; Gill and Gill 1993; Endo and Gill 1996). This
unique material was used to physically map RFLP probes
onto sub-arm chromosomal regions for homoeologous
group 1 (Kota et al. 1993; Gill et al. 1996a; Tsujimoto et
al. 1999; Ma et al. 2001), 2 (Delaney et al. 1995a), 3
(Delaney et al. 1995b; Ma et al. 2001), 4 (Mickelson-
Young et al. 1995), 5 (Gill et al. 1996b), 6 (Gill et al.
1993a; Weng et al. 2000) and 7 (Werner et al. 1992;
Hohmann et al. 1995a, 1995b). Roder et al. (1998b)
physically mapped a set of microsatellites on chromo-
somes of the homoeologous group 2. Zhang et al. (2000)
saturated the1BS satellite region with AFLP markers. The
deletion mapping strategy has allowed the delineation of
chromosomal regions for some important genes like Phl
on 5BL (Gill et al. 1993b), Vrnl on 5AL (Sarma et al.
1998), Ha on 5DS (Sarma et al. 2000) and Q on 5AL
(Kojima et al. 2000; Faris et al. 2002). More recently, a
subset of deletion lines was used to construct a chromo-
some bin map of wheat for EST loci (http://wheat.pw.
usda.gov/wEST/).

In the present paper, we report on the establishment of
genetic-physical map relationships in wheat using a set of
deletion lines through the anchoring of microsatellites
mapped on two wheat populations (a wheat reference
population with more than 2,000 markers and an inter-
varietal population with 660 markers). A cytogenetic map
was constructed for the 21 chromosomes of wheat.
Several aspects of its applications in genetic and breeding
studies are also presented in this paper.

Materials and methods
Plant material

A set of 84 wheat deletions lines, characterized by terminal
deletions, was used at INRA. The lines were chosen according to
their ease in multiplying and to the presence of heterozygous and
interstitial deletions (Qi et al. 2002). The complete set of 101 lines
was used at Kansas State University. The length of each deletion
bin was measured as a percentage of the chromosome arm missing.
The nomenclature for the characterization of each deletion line was
as follows : chromosome arm-number of the line-percentage of the
arm present. For example line 3AL3-0.42 is the line number 3,
located on the long arm of chromosome 3A and where 42% of the
arm is present. Each bin is then defined as the name of the proximal
line and the percentage of arm present in the next line. For example
bin 7DL2-0.61-0.82 is the bin located between lines 7DL2-0.61 and
7DL3-0.82. Structural description and deletion nomenclature are
given in Endo and Gill (1996) and Qi et al. (2002). For each line,
three to five seeds were sown, each plant being characterized
individually. A set of 19 nulli-tetrasomic (NT) lines and 35
ditelosomic (DT) lines (kindly provided by Dr Steve Reader, John
Innes Centre, United Kingdom) was used for chromosomal and arm
assignment of markers. Plant DNA was extracted from young
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leaves using the CTAB method (Rogers and Bendich 1985). Two
wheat mapping populations were used for the establishment of
genetic-physical map relationships: first, the reference population
of the International Triticeae Mapping Initiative (ITMI map)
derived by single seed descent (Fg) from the cross between W-
7984, a synthetic amphi-hexaploid wheat, and the Mexican variety
Opata 85 from CYMMYT (Van Deynze et al. 1995); second, the
doubled haploid inter-varietal mapping population CtCS derived
from an F1 cross involving the French variety Courtot (Ct) and
Chinese Spring (CS; Cadalen et al. 1997).

Microsatellite analysis:

Different sources of microsatellites were used: either bread wheat
(Xgwm: Roder et al. 1998a, 1998b; Xbarc: Cregan and Song, http://
www.scabusa.org; Xksu: Gill, Li and Singh, unpublished data) or A,
B and D genome diploid donors (Xcfa, Xcfd, Xgpw: Sourdille et al.
2001a; Guyomarc’h et al. 2002). PCR reactions were performed in
a final volume of 20 upl in a PTC-225 MJ Research tetrad
thermocycler as described in Guyomarc’h et al. (2002). The
acrylamide gels were silver-stained following the protocol from
Tixier et al. (1997). In a preliminary step, we identified shared
RFLP and SSR markers between genetic and deletion bin maps
from published data (Van Deynze et al. 1995; Nelson et al. 1995a,
1995b, 1995¢; Marino et al. 1996; Cadalen et al. 1997; Graingenes
database). From 2,552 RFLP mapped loci, 73 shared markers were
recorded between the published ITMI and deletion maps and 38
between the published CtCS and deletion maps. At INRA Cler-
mont-Ferrand, this initial framework cytogenetic map was used to
select 348 microsatellites from genetic maps for deletion bin
mapping. All the deletion breakpoints characterizing a particular
chromosomal arm were analyzed with a set of microsatellites
identifying the same chromosomal arm on the ITMI and CtCS
maps. At Kansas State University, 377 additional microsatellites
were tested on the whole set of deletion lines and mapped into
deletion bins. These two sets of data were used to construct
cytogenetic maps for the seven homoeologous groups of wheat.

Results

Genetic-physical map relationships

The cytogenetic maps for the seven homoeologous groups
are shown in Figs. 1, 2, 3, 4, 5, 6 and 7. A range of 22 to
47 microsatellites per chromosome were shared between
genetic and deletion bin maps. Only a few discrepancies
were observed between genetic and physical maps. Most
of them were observed close to the centromeres where the
density of markers is important, the genetic distances very
short and it is difficult to order the loci accurately. Other
differences could be due to previously undetected inter-
stitial deletions (Qi et al. 2002). Up to 92% of the bins
were characterized by at least one microsatellite marker.
Only some of the short (less than 10% of the chromo-
some-arm length) or some very distal bins lacked as-
signed microsatellite loci. A range of 1 to 16 SSR (mean
4.97 SSR/bin) were assigned to the characterized bins, the
bins with best coverage were located on chromosomes 2B
(C-2BL2-0.36) and 3A (C-3AL3-0.42).
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Homoeologous group 1

Eighty-seven microsatellite loci were tested on the three
homoeologues, 28 on 1A, 37 on 1B and 22 on 1D (Fig. 1).
Chromosomes 1A, 1B and 1D were characterized by 6, 11
and 7 bins, respectively. The markers were non-randomly
distributed on chromosomes 1A and 1D. Clusters were
observed that were interspersed by regions of low marker
density. On chromosome arm 1AS, ten markers physi-
cally mapped in the distal bins 1AS3-0.86-1.00 and
1AS1-0.47-0.86 genetically encompassed the entire arm
(>40 cM). On the contrary, four markers were assigned to
the bin C-1AS1-0.47, of which two markers (Xbarcl48
and Xbarc28) nearly cosegregated with the centromere.
Similarly, on chromosome arm 1DL, eight microsatellite
loci mapped in bin 1DL2-0.41-1.00 covered up to 80 cM
on the ITMI genetic map (Fig. 1). This confirms the low
recombination frequency close to the centromeres com-
pared to the telomeres. No microsatellite was allocated to
three bins in chromosome 1B, two small deletions on the
satellite region of the short arm (1BSsat-0.31 and
1BSsat19-0.31-0.50) and one on the long arm (1BLI1-
0.47-0.69).

Homoeologous group 2

One hundred and twenty-six microsatellite loci were
placed on this homoeologous group, 35 on 2A, 47 on 2B
and 44 on 2D (Fig. 2). Chromosomes 2A, 2B and 2D were
characterized by four, eight and six bins, respectively. An
inversion was noticed on chromosome 2D between ITMI
and CtCS maps: the fragment between locus Xgwm249-
2D and Xcfd56-2D was inverted on the CtCS map
compared to the ITMI and deletion maps. Xgwm249-2D
mapped distally on the CtCS map while this same locus
cosegregated with markers located close to the centro-
mere on the ITMI map. This suggests that a chromosomal
rearrangement was present on chromosome 2D in the F1
between Courtot and Chinese Spring. All the bins were
tagged with markers for this homoeologous group. How-

Fig. 1 Comparison between genetic and physical maps of wheat:
homoeologous group 1. On the left is the Courtot x Chinese Spring
map (Cadalen et al. 1997) and on the right is the ITMI map derived
from the cross between W7984 and Opata (Van Deynze et al.
1995). C-bands on the chromosomes are drawn to scale. The
breakpoints of the various deletions are indicated with arrows.
Anchor markers of the genetic maps are underlined. RFLP markers
are on the left side of the chromosomes and microsatellites are
italicized and placed on the right according to their more likely
position. Dotted lines on the chromosomes indicated genetic
distances >50 cM. Coloured markers were those tested on the
deletion lines and are linked to the corresponding deletion bin.
When it was impossible to discriminate between two or more bins
or when microsatellites were assigned on an entire arm, this was
indicated with a corresponding coloured bar. Approximate position
of the centromeres are indicated with a circle or with a constriction
for C-banded chromosomes. Approximate physical position of the
unassigned microsatellites (in black) is indicated on the right of
each deletion map
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ever, this group bears only 18 bins and was the best
saturated (126 SSRs).

Homoeologous group 3

Ninety-eight microsatellite loci were tested for this group,
32 on 3A, 33 on 3B and 33 on 3D (Fig. 3). Chromosomes
3A, 3B and 3D were characterized by six, eight and six
bins, respectively. Clusters of microsatellites were de-
tected on chromosome arm 3DS where 12 loci mapped in
the distal bin 3DS6-0.55-1.00 while they were genetically
mapped on a fragment length of up to 75 cM. All the bins
were characterized by at least one microsatellite although
on the long arm of chromosome 3D, six loci could not be
attributed to a precise bin. Locus Xgwm456 was found to
cosegregate with the centromere of chromosome 3D.

Homoeologous group 4

Eighty microsatellite loci were tested on the three
homoeologues, 22 on 4A, 29 on 4B and 29 on 4D
(Fig. 4). Chromosomes 4A, 4B and 4D were characterized
by nine, seven and eight bins, respectively. This homoe-
ologous group had the least number of SSR loci. Only 105
SSR loci were mapped on the three chromosomes of this
group compared to 183 mapped SSR loci on homoeol-
ogous group 2 and 187 on group 5. Four bins of this group
were devoid of SSR loci (4AS4-0.63-0.76, 4AL.12-0.43-
0.59, 4BS4-0.37-0.57 and 4DS3-0.67-0.82). Two recom-
bination hot spots were detected on the long arms of
chromosomes 4B and 4D for the CtCS population. The
one on 4BL is probably located distally between loci
XksuHI11-4B and Xcdol312-4B in the bin 4BL5-0.86-
1.00. These two loci were not genetically linked (%
recombination 6>50%). The one on 4DL is located
between Xfba2ll-4D and Xcfd84-4D, two loci which
were found to be genetically independent (6>50%), in the
bin C-4DL9-0.31. It was surprising to detect a recombi-
nation hot spot in a centromeric region where recombi-
nation is reported to be lower compared to the telomeric
regions.

Homoeologous group 5

One hundred and twenty-five microsatellite loci were
detected on the three homoeologous chromosomes, 42 on
5A, 43 on 5B and 40 on 5D. Chromosomes 5A, 5B and
5D were characterized by 9, 11, and 8 bins, respectively.
Only bin 5DS5-0.67-0.78 was not marked by an SSR.
Genetic and physical distance ratios differed depending
on the region of the chromosome. For example, on
chromosome 5A, 40 cM around the centromere repre-
sented 40% of the short arm and nearly 60% of the long
arm. On the contrary, on the long arm of the same
chromosome, nearly 60 cM including the telomeric region
represented only 13% of the chromosome arm. On
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Fig. 3 Comparison between genetic and physical maps of wheat: homoeologous group 3. For details see Fig. 1
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Fig. 4 Comparison between genetic and physical maps of wheat: homoeologous group 4. For details see Fig. 1
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Fig. 5 Comparison between genetic and physical maps of wheat: homoeologous group 5. For details see Fig. 1
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Fig. 6 Comparison between genetic and physical maps of wheat: homoeologous group 6. For details see Fig. 1



Xhared2

Xbarc82

Xbarcl173

XbarcM 181

Xewiml]2

Xowm3o2

Xewm295, Xewm635
XNepwl 142, Xgwmdd
Xbarc2 14, Xbarc126
Xbarclsd, XedmI30

46, Xcfdos
Xefilld, Xbarcl033
Xbarcl25, Xgwmi2]

Xepw8014, Xgpwd 129
Xgwmd28, Ngpwiid

Xcfa2040, Xgwm3 7

I'TMI DELETION MAP
CTCS Xown Xgpw2107 Xegpw2i07, Xgpw2297
XedoS4§ i o | Xepw2297 mi /
WAL QAR gy ivisominssisnnsmnisissssssssiissshiinsn -
Xfhal? | ;
m ] - Xefd 242, Xewmof)
L Xcfall 74, Xbarcl025
Xfbal9 H i Xbarcll34, Xbarcl03
-t Xbare222
XMb222 f i Xewmon Xefa2028, X 260
[ i e Xefa228, Xewm26
Xibh366 Xcfa2056 :.r';.r:_, L a}; Xewm666, Xbarc1005
Alfazts
—— Xcfido Xihb264 H i Xwme83
Xwmcl82} 21202 Xgwm2ah
—— Xcfa2lll) Xpsp3050 Xodinss B )
XksuAS H
Xfha354 -
B Xefull23 Xfba69
- Xpsp3094 —— Xgwm2 76
- Xcfal0I9 Xbb145 H i Xepwllo0 4
 er— ms7 g ? > i
Xfha3so U Xefu2293 | Xfbada | Xgwms73 | : Xefa2123, Xefa225
: ., Xefa2040 il Xgpwl 100
L = Xcfa2257 |X“mc”6 Xgwm276
CHROMOSOME 7A
DELETION MAP
ITMI
Xgwm369 | Xgwm337
CTCS Aihadl | | Xefa2i06 Xewmd 00 Xgpwl054
———— Xbed310 Xegpwl054 | Xbarcl76 Xbarc231
DOLL] ok HS—————. { 14| K {1 Xewm573 | Xgwml6 Xewmd6
P Xgwmdt
XksuDI8 4:  Xefd74 Xwgs14 Xepwl100'| Xewm297 © 7851 —p Xgwm297, Xgpwl 164
Xiba32 H Xedob86 Xeowill3 Xgpwllod Xbarc63, Xgwmd 00
b= Xwmcl82 AR o | Xgwmd3 Xewmd3, Xewm293
Xwg514 H e Xgwm302
ﬁﬁ i Xgwml3l Xahc310 Xewm274
—_— Xpsp3033
Xpsri29 H
Xpsp2153
XksuD2 o Xwmcl66 Niartas x‘f}ﬂu Kgwmbsd
L Xpsp 3081 AW Xewmbidd
_— aptal XksuD2 Xefa2040 | Npwmsss | TBL-2
ADSr - Xfhh67 "
p—— Xbare20 TBL-T—p Xgwm3ii3
% ol Xgwml46
Accod’3 CiL Xepwlldd ysr129
Xhsuad B XksuF18 Xgwmbll | Xewm577 Aprr] Xgpwl 100, Xgpwill3
— Xenll Xwme276  TRL-10 Nevwm13l, Xowmid6
Xepwlods Xgwml3l, Xgwml-
L7 Xgpwl 144, Xgwm377
Xpsr121  Xgwm6ll, Xgpwl045
CHROMOSOME 7B
DELETION MAP
CTCS ITMI
Xpsr160 - .
Npsri03 Xfiwm? Xba Xgdms6, '\"“}fh’”‘m Xpsri(3
: Xwp$i4 H XgwmlI46, Xgwm6335 | Xenl6 7]]5—5—’ Xwesdd
H+— Xefdd! i Xmwg710 H W Xegpwlld2 XksuAl :
e Xefi3l Xefdon Xiwm293. Xbarcl3 e
e Xgwml93, Xbarel 54 in ofid
Siare i TDS-S Xefd41, Xefd6s
Xra2 ||} Xbarel26, Xgem35o s 31, Nefids!
ik Mt Xenomdd
e Xefil2] R )
Xksual H ARl Xyimetal - o ! :
H-— Xefdd46 Xhed 707 - Xefull 74 Xgwmi2] c- Xgwm3is0
H-— mi11-2 Xgdm84, \barc 20
e g Xedo?78H | Nowni i Xomedd o
":—"—\ Lt oo Xcfil6s Xgdmd6, Xgdm67 P00 XweTl9
]- e Xcfu2099 Xabel7s || | Xbarel72, Xbarc12l 5000 ;
XksuE9 H Xpsp3133 AMDel2 ; AZPWIIE 1 IDL-5—P
H XmwedTs Xgwm428, Xeall Xefd25
5 i ALNWET /9 B Xgdm150, Xbarci3  “pp 00"
Xfha204 _— Xmazod Ll | Fome Newmis  barclll
) L’“"ﬂ 4
 Newm3? TDL-2—Pp
Xewmd7 v 2040 .
Xpspi003 '\ e
: TDL-3—P

CHROMOSOME 7D

Xefi69, Xbarclll
Xbarc97, Xbare33
Xbarcl046
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chromosome 5D, the bin C-5DL1-0.60 represented 60%
of the long arm. This region included loci Xcfd40 and
Xgwm583 (Fig. 5) which were found to be genetically
independent (6>50%) on the CtCS map suggesting the
occurrence of a recombination hot spot in this cross in bin
C-5DL1-0.60.

Homoeologous group 6

Ninety-eight microsatellite loci were located on the three
homoeologues, 28 on 6A, 29 on 6B and 41 on 6D (Fig. 6).
Chromosomes 6A, 6B and 6D were characterized by 6, 6
and 10 bins, respectively. No microsatellites were phys-
ically mapped in the bin C-6AL4-0.55. However, some of
the Xbarc loci that could not be assigned precisely in this
region (in grey) could be located in this bin. Seven loci
covering 50 cM were assigned to bin 6DS6-0.99-1.00
confirming high rates of recombination in the telomeric
regions. On the contrary, eight loci mapping in a cluster
close to the centromere on chromosome 6B were all
assigned to bin C-6BS5-0.76 covering half of the short
arm of this chromosome, confirming low rates of recom-
bination in the proximal regions.

Homoeologous group 7

One hundred and eleven microsatellite loci were placed
on this homoeologous group, 39 on 7A, 35 on 7B and 37
on 7D (Fig. 7). Chromosomes 7A, 7B and 7D were
characterized by ten, six and seven bins, respectively.
Three bins were without SSR markers (7AL18-0.90-1.00,
7BL7-0.48-0.78 and 7DL2-0.61-0.82). Two recombina-
tion hot spots were detected on chromosome 7D for the
CtCS population, one on the short arm between loci
Xcfd31-7D and Xcfd21-7D located proximal to the cen-
tromere in bin C-7DS5-0.36 but found to be genetically
independent (6>50%), the other between XksuFE9-7D and
Xfba204-7D located either in bin 7DL5-0.30-0.61 or bin
7DL2-0.61-0.82.

Distribution of microsatellites and recombination

The microsatellite loci were found to be relatively evenly
distributed along the chromosome length. We detected
21% of the SSR loci in the distal bins covering 20% of the
physical length of the genome, and 36% of the proximal
loci in the proximal bins covering 41% of the physical
length. However, in some cases and using the centromere
as reference, more loci appeared to be located in the distal
regions as compared to the proximal. As an example, on
the long arm of chromosome 5D (Fig. 5) and according to
the ITMI genetic map, 29 out of the 79 microsatellite loci
(37%) of the whole chromosome presumably mapped to
the distal region that encompassed only 24% of the arm
(bin 5DL5-0.76-1.00). On the contrary, only one locus
was located in bins 5DS1-0.63-0.67 and 5DS5-0.67-0.78

on the short arm of this same chromosome. This may be
explained by the fact that these two bins covered only
15% of the length of the short arm. Concerning recom-
bination, as expected, we found huge discrepancies
between telomeric and centromeric regions: 44% of the
genetic linkage map (1,722/3,876 cM) was located in only
the distal 20% of the physical length of the genome (ratio
genetic %/physical % =2.20). On the contrary, 13.7% of
the map (530/3,876 cM) was located in the proximal 41%
of the genome (ratio 0.33). However, some differences
were observed: in the distal bins 5DS2-0.78-1.00 and
7AS1-0.89-1.00 the genetic/physical ratios were only 1.09
and 1.08, respectively, indicating a low recombination
frequency while in the proximal bins C2DS1-0.33 and
C6AS1-0.35, the ratios were 1.33 and 1.63, respectively,
suggesting higher recombination frequencies than expect-
ed.

Discussion

Genetic-physical relationships

It has been demonstrated that microsatellites are powerful
molecular markers in wheat because of their high degree
of polymorphism (Roder et al. 1998a, Stephenson et al.
1998) and also because of their high locus specificity
compared to RFLP markers (Sourdille et al. 2001b,
Guyomarc’h et al. 2002). Thus, they constitute a major
tool for establishing genetic/physical relationships. Here,
we used 725 microsatellites in order to identify shared
markers between genetic and physical maps of bread
wheat. This is very important because establishing such
relationships is a prerequisite to positional cloning of
important agronomical genes. Consistent with previous
reports (Dvorak and Chen 1984; Werner et al. 1992; Gill
et al. 1996a, 1996b; Kota et al. 1993), we found uneven
distribution of recombination. Recombination hot spots
are more frequent close to the telomeres than the
centromeres. This is presumably because recombination
occurs close to or even within the genes (for a review see
Schnable et al. 1998), and as gene-rich regions are more
numerous near the telomeres, more recombination occurs
in these regions. Also, the gene-rich regions are expected
to be highly decondensed which makes them more
accessible to recombination factors compared to proximal
heterochromatic regions containing highly repetitive se-
quences (Faris et al. 2000). However, unexpected results
were observed. Nelson et al. (1995¢) constructed a genetic
map of chromosome 5D that was ~180 cM in length. The
CtCS map was made of two blocks representing only
~120-cM length, separated by a recombination hot spot.
The most proximal markers of each block, Xcfd40 and
Xgwm494, are theoretically separated by around 40 cM.
They thus should have been genetically linked. This hot
spot occurred in a proximal region where recombination
is not supposed to be so frequently observed. On the
contrary, in the distal bin 5DS2-0.78-1.00 located on the
same chromosome, the genetic/physical ratio was only



1.09 which was two times less than expected, indicating a
low recombination frequency in this region. In yeast,
intragenic recombination frequencies were shown to be
associated with specific short DNA sequences required
for recombination hot spot activities (Smith 1994). The
activity of these sequences depends on binding-specific
transcription factors and/or to chromatin structure that
allow hypersensitivity to nucleases (Fox et al. 1997,
Mizuno et al. 1997). Occurrence of abnormal hot spots or
lack of recombination may results from a dysfunction of
one of these transcription factors or from a modification
of the chromatin structure in these regions. Higher
resolution mapping or eventually partial sequencing of
these regions will provide definite answers.

Distribution of microsatellites

We used 725 microsatellite loci located on the seven
homoeologous groups. This is less than the 1,951 loci
described by Qi et al. (2002) but microsatellite loci have
the advantage of being chromosome-specific. Deletion
mapping in wheat only requires polymorphism between
genomes. However, using RFLP probes, it is still possible
that some loci cannot be identified because of lack of
intergenomic polymorphism. One way to remedy this
problem would be to use alternate restriction enzymes but
this is time consuming and expensive. Moreover, some
probes frequently detect more than one fragment mapping
in the same deletion bin. In these cases, it is difficult to
determine if each fragment corresponds to a locus or if
such a pattern is due to the presence of a restriction site
within the locus. All of these problems can be avoided
since microsatellites generally give only one amplifica-
tion product which can be easily attributed to only one
bin. In addition, these markers are easy to automate and a
lot of data can be produced rapidly. Only four microsatel-
lite loci were detected in bins C-4AS1-0.20 and C-
4AL12-0.43 from chromosome 4A, surrounding the
centromere, while at least eight were genetically mapped
in its neighbourhood. This suggests that genetic mapping
only gives an indication of the relative position of the
markers with each other. Frequently, markers genetically
located close to the centromeres are not physically linked.
This is probably due to the lack of recombination in these
regions (see later). However, we cannot exclude the
possibilities that only few microsatellites are located in
the centromeric region or that SSRs located close to
centromeres exhibit only a very low level or even no
polymorphism.

Microsatellites are also known to evolve faster than
coding sequences depending on the type of motif (Elle-
gren et al. 1995), the structure of the alleles (Brinkmann
et al. 1998) or the number of repeats (Wierdl et al. 1997;
Kruglyak et al. 1998; Schlotterer et al. 1998). On the
contrary, coding sequences are less prone to mutations
since the latter frequently may lead to a loss of function.
This emphasises the need for extracting microsatellites
from different genomic regions that may be under
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different selective forces. Traditionally, SSRs are isolated
from genomic clones produced using various pre- or post-
cloning procedures to create enriched libraries. However,
significant efforts have recently been placed on generat-
ing substantial EST databases for plant species including
wheat (GrainGenes). Even if only 8-9% of the ESTs are
bearing a microsatellite (Gandon et al. 2002) and even if
only 25% are giving polymorphic products (Gandon et al.
2002; Eujayl et al. 2002) EST-SSRs and genomic SSRs
will constitute a tool of choice to study the variation of
polymorphism between coding and non-coding regions,
and between telomeric and centromeric regions. Such
analyses will also enhance the value of EST-SSRs in
marker-assisted selection, comparative genetic analysis
and for exploiting wheat genetic resources by providing a
more direct estimate of functional diversity.

Deletion mapping is a powerful technique for con-
structing a cytogenetically based physical map of the
wheat chromosomes. Further physical and genetic map-
ping will result in integration of cytogenetic and linkage
data into a unique correlated map of the entire wheat
genome including breaking points, RFLP and microsatel-
lite loci, ESTs and also the BAC clones that are now
under development (B. Chalhoub, personal communica-
tion). The identification of molecularly tagged chromo-
some regions will open the possibility of molecular
cloning of numerous agronomically useful genes that
were previously intractable to classical molecular analy-
sis.
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