

March 2007

Introduction

The Plant Materials Program generates a tremendous amount of data each and every year. Statistics is a great TOOL to help you make sense of your data. This User's Guide is built in the spirit of helping you use statistics effectively.

Statistics is daunting to some because it has a jargon all of its own. This User’s Guide restates much of the "statistics jargon" in terms that Plant Materials scientists can better understand. Call out boxes, colored lettering, and circles are used to point out critical jargon and explain what these numbers, codes, and values really mean.

The User's Guide is not meant to be a substitute for the manual. The User's Guide focuses on information that is most useful to you, a plant scientist.

Statistix 8 is a commercial software package. It was chosen by a team of Plant Materials scientists based upon a number of factors. Ease of use and ability to import data from spreadsheets are two of the factors that weighed in heavily during the selection process.

Statistix 8 provides you with almost all of the statistical analysis techniques that the Plant Materials Program will ever use. If you require more robust, very highly specialized data analysis, there are other software programs available. However, as statistical complexity increases-so does the opportunity to misinterpret your data. Always consult with a qualified statistician before you embark on a study that generates complex data sets and equally complex statistical results.

Members of the Plant Materials Statistics Committee included: Paul Salon, Plant Materials Specialist, Syracuse, New York; Joel Douglas, Plant Materials Specialist, Central National Technology Support Center, Fort Worth, Texas; Ramona Garner, Manager, Tucson Plant Materials Center, Tucson, Arizona; Jim Stevens, Manager, East Texas Plant Materials Center, Nacogdoches, Texas; Mike Owsley, Manager, Jimmy Carter Plant Materials Center, Americus, Georgia; John Englert, Manager, National Plant Materials Center, Beltsville, Maryland; Mark Stannard, Team Leader, Pullman Plant Materials Center, Pullman, Washington.

Conventions

Menu items and button names are referred to in boldface:

Data, Insert, Variables
 OK

Names of dialog boxes are boldface and italicized:
Insert Variables
Item names within a dialog box are italicized and include: list and drop down list, text box and text area, radio button, and check box:

Variables list
Text to be typed are within "quotes", but the quotes should not be typed:
"rep"
A Note: is not a step but a further explanation of a step or a caution of what to avoid.
An Example uses sample information to show what you can type in or what your result could look like.

Text indented in line with the steps describes the results you will see.
Figures are (usually) screen shots of what you will see on the screen; they are numbered according to their chapter.

Tables are marked discussions of output; they are numbered according to their chapter.

STATISTIX 8 USER's MANUAL

Chapter 1: Data Entry and File Management 1
I. Entering Data into Statistix 8 1
A. Keyboard Data Entry 1
B. Entering Alphanumeric Data in Variable Name Columns. 3
C. Renaming Variables 4
D. Inserting Additional Cases into Statistix 8 Spreadsheet 5
II. Moving Data from Microsoft Excel Spreadsheet into Statistix 8 Spreadsheet 6
III. File Management 7
Chapter 2: Descriptive Statistics 10
I. Tables 10
II. Graphs 14
A. Scatter Plot 15
B. Histogram 17
C. Normal Probability Plot and Normality Test 18
Chapter 3: Analysis of Variance 21
I. Randomized Complete Block Design 21
A. Analyzing the 1995 Switchgrass Cultivar Data 21
B. Results and Interpretation of the Analyses 24
C. Saving the Analysis of Variance Table. 26
D. Performing Mean Separation Test on Switchgrass Cultivars 27
E. Saving the Mean Separation Test Results 28
F. General Interpretations and Presentation of Results. 28
H. Presentation of Results with letters and LSD value 30
I. Analyzing all of the Dataset 30
J. Including Year as a Variable 32
K. Interpretation of the Analysis 33
M. Interpreting the Interaction 35
N. Graphing the Interaction Effect 35
II. Completely Randomized Design 36
A. Analyzing Basin Wildrye Seed Germination Trial 36
B. Results and Interpretation of the Analyses 37
C. Performing Mean Separation Test on Basin Wildrye Populations 39
D. General Interpretations 40
III. Split Plot Design (Without Interaction Effect) 41
A. Analyzing Clipping Frquency of Eastern Gamagrass Cultivars 41
B. Results and Interpretation of the Analyses 43
C. Performing Mean Separation Test on Clipping and Cultivars 44
IV. Split Plot Design (With Interaction Effect) 46
A. Analyzing Clipping Frequency in Eastern Gamagrass Cultivars 46
B. Results and Interpretation of the Analyses 48
C. Comparing Means of Clipping *Cultivar Interaction 49
Chapter 4: Regression Analysis 52
I. Linear Regression 52
A. Eastern Gamagrass Nitrogen Rate Trial 52
B. Interpreting the Regression Analyses. 54
C. Model Defined 55
D. Application and Presentation of Regression Equation 55
II. Quadratic Regression 56
A. Eastern Gamagrass Nitrogen Rate Trial 56
B. Regression Analysis (Quadratic) and Transformations 56
C. Quadratic Regression 59
D. Interpretation of the Regression Analysis 61
E. Model Defined 62
F. Application and Presentation of Regression Equation. 62
Chapter 5: Missing Data 64
I. Missing Data 64
A. Description 64
B. Results and Interpretation of the Analyses 65
Chapter 6: Data Transformations 67
I. Introduction 67
II. Tukey's One Degree of Freedom Test of Non-additivity 67
A. Description 67
B. Results and Interpretation of the Analyses 68
III. Transforming the Data Using Logarithmic 69
A. Transformation 69
B. Results and Interpretation of the Analyses 70
C. Presenting the Results. 71
Chapter 7: Other Model Statements 73
I. Other Model Statements 73
Chapter 8: Converting MSTAT-C Files to Statistix Files 75
I. Converting MSTAT-C Files to Statistix 8 Files 75

Chapter 1: Data Entry and File Management

I. Entering Data into Statistix 8

A. Keyboard Data Entry

When you first run Statistix 8, an empty, untitled spreadsheet is displayed with the main menu bar appearing above it (Fig. 1-1). The main menu, or spreadsheet menu, is visible whenever the spreadsheet dialog box is the active dialog box. When you place your cursor on an item in the main menu, a drop down list of items appears, each of which is a submenu. These submenus offer a variety of data management and statistical procedure options.

Figure 1-1

Figure 1-2

To create variables in the columns of the spreadsheet:

1. From the main menu, select Data, Insert, Variables (Fig. 1-2)
2. In the Insert Variables dialog box, in the New Variable Names list, enter the names of the variables, using a comma to separate the variable names (Fig. 1-3).

Example: "rep, cultivar, location, cover1, cover2, cover3, biomass"
response variables: biomass, cover1, cover2, cover3
treatment variables: cultivar, location

Note: A variable name is one to nine characters in length, must begin with a letter, and can only consist of letters, digits and the underscore character. You should assign meaningful variable names to describe the variables of interest. You cannot use such words as CASE, M, PI and RANDOM because these words have been reserved for other tasks.

3. Click OK.

Figure 1-3

Figure 1-4

The variable names appear in separate columns followed by the letter " M " below the variable name (Fig. 1-4).

Note: The letter "M" represents missing data. Since no data has been entered in the spreadsheet then there will be "missing data" until data is added. Statistix 8 requires that cases be added to the spreadsheet so you can enter data.
"Cases" are the total number of observations in the experiment. For example, if you have 2 cultivars of hairy vetch replicated 4 times at 3 test locations then you would enter 24 cases into the spreadsheet ($2 \times 4 \times 3=24$). They are represented by the rows.

To add cases (rows) to the spreadsheet:

1. From the main menu, select Data, Insert, Cases (Fig. 1-5).
2. In the Insert Cases dialog box, enter the number " 1 " in the First New Case Number text box to represent the first case (Fig. 1-6).
3. Enter the additional number of cases to achieve your total number of cases in the Number of Cases to Insert text box. (total - first new = number-of-cases-to-insert).

Note: The number of cases to insert is determined by: (Total number of cases - First new case number $=$ Number of cases to insert). So for a total of 25 cases, $(25-1=24)$:
enter "1" in the First New Case Number text box enter " 24 " in the Number of Cases to Inser" text box

4. Click OK.

Once variable names have been entered and the proper number of cases identified, begin populating the Statistix 8 spreadsheet with numerical values representing treatment variables.

Examples: cultivar $=1,2$, etc; location $=1,2,3,4$, etc.
(Fig. 1-7 and 1-8)
Note: If you prefer to use accession numbers, use only the last four digits rather than the NRCS 9 million number when entering data into the Statistix 8 spreadsheet.

Figure 1-5

Figure 1-7

Figure 1-8

B. Entering Alphanumeric Data in Variable Name Columns

There are situations where alphanumeric data such as a cultivar name (e.g. 'Haskell', 'Shelter’, 'Plateau') or location of study (e.g. PMC, Tribune, Altus) is preferred rather than designating a numerical value for the variable names (e.g. $1=$ Haskell, $2=$ Shelter).

The string (s) data type is used to enter alphanumeric data in the variable column(s) in a Statistix 8 spreadsheet.

To enter alphanumeric data:

1. From the main menu, select Data, Insert, Variables (Fig. 1-2).
2. In the Insert Variables dialog box, in the New Variable Names list (Fig. 1-3), type the variable name, followed by parentheses containing: the letter " s " (without quotes) followed by a number representing the maximum character length for the column, and end-parentheses.

Examples: cultivar (s7), Haskell (s7)
(Fig. 1-9 and 1-10)

Note: Review the list of variable names to ensure that you are assigning the appropriate character length to the column. Remember the maximum length for a column variable name is 9 characters.

Figure 1-9

Figure 1-10

C. Renaming Variables

There are situations after data entry where you may want to rename variables to better reflect what data is being collected. For example, rather than "cover1", "cover2", and "cover3" you may want to change them to "canopy1", "canopy2" and "canopy3". To make this change:

1. From the main menu, select Data, Rename Variables.
2. In the Rename Variables dialog box, where you see the old variable name in the Old Name column, type the new variable name in the New Name column (Fig.1-11).

Example:

Old Name	New Name
cover1	canopy1
cover2	canopy2
cover3	canopy3

3. Click OK.

The new names will have replaced the old names and will appear in the spreadsheet (Fig. 1-12).

Figure 1-12

Figure 1-11

D. Inserting Additional Cases into Statistix 8 Spreadsheet

Statistix 8 allows the user to insert more cases into an existing Statistix 8 spreadsheet. For example, you wish to insert 5 additional cases into an existing Statistix 8 spreadsheet which currently has 25 cases.

To add new cases:

1. From main menu, select Data, Insert Cases.
2. In the Insert Cases dialog box, First New Case Number text box, enter "26" to specify that the new case will be the $26^{\text {th }}$ case, given that 25 cases already exist. In the Number of New Cases to Insert text box, type in the number " 5 " to add the additional 5 cases to the data set to total 30 cases (Fig. 1-13).

If you view the spreadsheet, you will see that there are now a total of 30 rows available for data input.

3. Click OK.

Once the new cases have been added, you can begin populating the data set (Fig. 1-14).

Figure 1-13

Figure 1-14

II. Moving Data from Microsoft Excel Spreadsheet into Statistix 8 Spreadsheet

If you prefer to copy data from an Excel spreadsheet into a Statistix 8 spreadsheet for analysis, use the following steps.

1. Open the Excel spreadsheet containing the data.
2. In Excel, click in the upper-left hand corner where the beige row meets the beige column of the spreadsheet. The entire spreadsheet dataset will be highlighted.

This will highlight the entire spreadsheet (Fig.1-15).
3. From the Excel main menu, select Edit, Copy.
4. Open a Statistix 8 spreadsheet, and click inside the upper left hand corner cell of the spreadsheet to select it.
5. From the Statistix 8 main menu, select Edit, Paste.

The data set will be pasted in the Statistix 8 spreadsheet (Fig.1-16).
Note: The maximum number of letters in the variable names is 9 ; thus only "replicati" appear in the column.

Figure 1-15

Ein Statistix									
Eile Edit Data Statistics Preferences Window Help									
누율 Untitled									
		replicati	cultivar	location	cover1	cover2	cover3	biomass	
-	1		1 comm	PMC	65	95	100	3063	
	2		2 comm	PMC	75	93	100	4456	
	3		3 comm	PMC	63	98	100	5786	
	4		4 comm	PMC	55	95	100	5836	
	5		1 americus	PMC	48	98	100	4556	
	6		2 americus	PMC	78	98	100	3244	
	7		3 americus	PMC	85	100	100	5162	
$\\|$	8		4 americus	PMC	55	98	100	3534	
	9		1 comm	delta	55	100	100	6300	
	10		2 comm	delta	43	90	90	6028	
	11		3 comm	delta	43	100	100	5120	
	12		4 comm	delta	20	95	100	3640	
	13		1 americus	delta	63	85	90	4440	
-	14		2 americus	delta	75	100	100	6135	
	15		3 americus	delta	48	90	100	3639	
-	16		4 americus	delta	65	100	100	4819	
	17		1 comm	prairie	23	63	95	2000	
	18		2 comm	prairie	33	38	95	3851	
-	19		3 comm	prairie	20	65	75	1773	
	20		4 comm	prairie	20	53	90	2207	
-	21		1 americus	prairie	38	68	100	4400	
	22		2 americus	prairie	33	63	95	2058	
	23		3 americus	prairie	25	60	100	3854	
	24		4 americus	prairie	20	73	90	1945	

Figure 1-16

III. File Management

In this example, we will name the file "hairy vetch" which will be saved in a default folder named "Statistix".

To save a Statistix 8 file:

1. From the main menu, select File, Save As.
2. Within the Save As dialog box, navigate to the folder you want to save the file into using the arrow to the right of the Save in drop down list box. Select the drive and folder your subfolder is located within. Double-click to enter subfolders until the desired folder is reached. Double-click the desired folder to open it.
3. In the Save As dialog box, enter the name of the file in the File name text box. In this case, the we entered filename "hairy vetch.sx"
4. Click the Save button.

Note: The filename will be given the ".sx" extension, which designates it as a Statistix 8 file. Inn this case the filename appears as hairy vetch.sx (Fig.17).

You may want to save your data sets and analyses in specific folders other than the Statistix folder. For example, you may want to maintain all of your data sets on cover crops in a folder named "cover crop evaluations" or in folders titled after your study plan.

Figure 1-17

Figure 1-18

To create a new folder, one way is to:

1. After selecting File, Save As from the main menu, place the cursor inside the Save As dialog box and right click on the mouse.
2. From the shortcut menu, select New, Folder (Fig. 1-18).

A folder icon will appear in the directory you are viewing, with the words "New Folder" highlighted.
3. Type the name of the folder and it will replace the words "New Folder." For this example, we named the new folder "cover crop evaluations" (Fig.1-19).
4. You can now save the file "hairy vetch.sx" into the "cover crop evaluation" folder (Fig. 1-20).

Figure 1-19

Figure 1-20

You can move a saved file from the "Statistix" folder into a subfolder by dragging:

1. After having saved the file, select File, Save As from the main menu.
2. Within the Save As dialog box, navigate to the folder that contains your file, using the arrow to the right of the Save in drop down list box. Select the drive and folder your subfolder is located within. Double-click to enter subfolders until the desired folder is reached.
3. Double-click the desired folder to open it.
4. Highlight the file.
5. At the same time, keep the left mouse button held down and drag the file into the chosen subfolder.

The file will have been moved to the new subfolder.

You can also move a saved file into another folder by cutting/copying and pasting:

1. After having saved the file, select File, Save As from the main menu.
2. Within the Save As dialog box, navigate to the folder that contains your file, using the arrow to the right of the Save in drop down list box. Select the drive and folder your subfolder is located within. Double-click to enter subfolders until the desired folder is reached.
3. Double-click the desired folder to open it.
4. Highlight the file.
5. Right-click the mouse so that a shortcut menu appears, and select Cut or Copy from the shortcut menu.
6. Navigate to the folder you want to place the file in using the arrow to the right of the "Save in" list box as in step \#2.
7. Click on the right mouse button so that a shortcut menu appears, and select Paste from the shortcut menu to paste the file into the new folder.

Chapter 2: Descriptive Statistics

Descriptive statistics such as mean, maximum/minimum, standard deviation, and standard error are popular analyses used to reduce the set of measurements to a few summary measures that provide a rough picture of the original measurements. One of the simplest yet most powerful ways of summarizing data is by means of tables and graphs.

Statistix 8 provides the user with many different descriptive statistics options. In this example we will focus on a few of the descriptive statistics commonly used in exploratory data analyses.

I. Tables

Figure 2-1

Figure 2-2

For this example, we will use subjective ratings for percent stand ("Stand"), plant vigor ("Vigor"), disease resistance ("Disresist") and seed production ("Seed") collected on 13 accessions of plains bristlegrass planted in a randomized complete block design with 3 replications (Fig. 2-1).

Note: Use only the last four digits of an accession number rather than the NRCS 9 million number when entering data into Statistix 8 spreadsheet.

To analyze the data:

1. From the main menu, select Statistics, Summary Statistics, Descriptive Statistics (Fig. 2-2).
2. In the Descriptive Statistics dialog box (Fig. 2-3), move the variables "Stand", "Vigor", "Disresist", and "Seed" from the Variables list in the left column to the Descriptive Variables list one at a time by highlighting the variables and clicking on the right-arrow button to the left of the Descriptive Variables list.

Note: Each variable is moved one at a time from the Variables list to the Descriptive Variables list.
3. Move the variable "Acc" from the Variables list in the left column to the Grouping Variable list by highlighting the variable and clicking on the right-arrow button to the left of the Grouping Variable list. (Fig. 2-4).

Figure 2-3

Figure 2-4

Notice in the "Statistics to Report" grouping in the Descriptive Statistics dialog box that options "N", "Mean", "SD", and "Min/max" have been selected by default (Fig. 4-4). These defaults represent:
$\mathrm{N}=$ number of observations
Mean = mean of the sum of measurements divided by the total number of measurements
$\mathrm{SD}=$ standard deviation. SD is a measure of variability and is defined as the positive square root of the variances.
$\operatorname{Min} / \max =$ minimum and maximum measurement
To add or remove a descriptive statistic:

1. Move appropriate variables from the Variables list into the Descriptive Variables or Grouping Variable lists by highlighting the variable clicking on the right-arrow button to the left of the new variable list.
2. Enter the appropriate confidence interval in the C.I. Percent Coverage text box, which is set to 95 by default.
3. Select only the tests you desire in the Statistics to Report group.
4. Click OK.

The results of the analysis on the 13 accessions are presented below (Table 2-1).

Table 2-1

Descriptive Statistics for Acc = 1261

Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	5.0000	2.0000	3.0000	7.0000
Seed	3	7.3333	1.5275	6.0000	9.0000
Stand	3	99.333	1.1547	98.000	100.00
Vigor	3	6.3333	0.5774	6.0000	7.0000

Descriptive Statistics for Acc = 2275

Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	5.3333	2.3094	4.0000	8.0000
Seed	3	4.6667	0.5774	4.0000	5.0000
Stand	3	76.667	18.009	56.000	89.000
Vigor	3	6.0000	1.7321	4.0000	7.0000

Descriptive Statistics for Acc = 4356

Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	6.3333	2.0817	4.0000	8.0000
Seed	3	6.0000	1.0000	5.0000	7.0000
Stand	3	96.667	5.7735	90.000	100.00
Vigor	3	5.0000	1.0000	4.0000	6.0000

Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	5.3333	1.1547	4.0000	6.0000
Seed	3	5.0000	1.0000	4.0000	6.0000
Stand	3	100.00	0.0000	100.00	100.00
Vigor	3	4.3333	0.5774	4.0000	5.0000
Descriptive Statistics for Acc $=4365$					
Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	6.3333	1.5275	5.0000	8.0000
Seed	3	6.3333	1.1547	5.0000	7.0000
Stand	3	82.667	6.8069	75.000	88.000
Vigor	3	6.6667	1.5275	5.0000	8.0000
Descriptive Statistics for Acc = 4366					
Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	7.0000	1.0000	6.0000	8.0000
Seed	3	5.3333	0.5774	5.0000	6.0000
Stand	3	96.000	5.2915	90.000	100.00
Vigor	3	6.3333	1.1547	5.0000	7.0000

Descriptive Statistics					
	for Acc $=4376$				
Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	6.0000	0.0000	6.0000	6.0000
Seed	3	6.0000	2.0000	4.0000	8.0000
Stand	3	100.00	0.0000	100.00	100.00
Vigor	3	6.3333	2.3094	5.0000	9.0000

Descriptive Statistics for Acc = 4386

Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	5.3333	1.5275	4.0000	7.0000
Seed	3	5.0000	1.7321	3.0000	6.0000
Stand	3	97.000	3.6056	93.000	100.00
Vigor	3	6.6667	0.5774	6.0000	7.0000

Descriptive Statistics for Acc = 4405

Variable	N	Mean	SD	Minimum	Maximum
Disresist	3	5.0000	1.0000	4.0000	6.0000
Seed	3	5.3333	1.1547	4.0000	6.0000
Stand	3	53.333	13.204	39.000	65.000
Vigor	3	5.6667	0.5774	5.0000	6.0000

II. Graphs

A scatter plots, normality plots and histogram are among the most popular and useful graphics for presentation of data. They allow the user to see the features of the data in a glance.

Statistix 8 can display data in a scatter plot, histogram or normal probability plot and test for normality using Shapiro-Wilk normality test.

For our examples, we will use the plain bristlegrass dataset. For graphing ease and interpretation of the scatter plot the accession numbers were assigned with a different numbering system (e.g. 4405 $=1 ; 4366=2,4356=3$); thus, a new variable was created and inserted into the original dataset using the insert new variable procedure.

To enter a new variable:

1. From the main menu, select Data, Insert, Variables.
2. Enter "acc2" into the Insert Variables dialog box, in the New Variable Names text box.

3. Click OK.

The new variable "acc2" is added to the list of variables in the dataset (Fig. 2-5).

A. Scatter Plot

To construct a scatter plot of the variable "acc2" against the variable "Seed":

1. From the main menu, select Statistics, Summary Statistics, Scatter Plot (Fig. 2-6).
2. In the Scatter Plot dialog box (Fig. 2-7), move the variable "acc2" from the Variables list in the left column to the X-Axis Variables list by highlighting the variable and clicking the right-arrow button to the left of the X-Axis Variables list (Fig. 2-8).
3. Move the variable "Seed" from the Variables list in the left column to the Y-Axis Variables list in the middle column by highlighting the variable and clicking the rightarrow button to the left of the Y-Axis Variables list.

4. Click OK.

Statistix 8 produces a scatter plot of the data (Fig. 2-9).

Figure 2-5
Figure 2-6

Figure 2-7

Figure 2-8

Figure 2-9
In reviewing the scatter plot, it appears that most of the accessions produced seed production rating of 5 and 6 . Some accessions had above and below average seed ratings on some plots which may warrant further investigation, if deem necessary, to determine the possible cause(s).

B. Histogram

To construct a histogram of the variable "Seed":

1. From the main menu, select, Statistics, Summary Statistics, Histogram (Fig. 2-10).
2. In the Histogram dialog box (Fig. 2-11), move the variable "Seed" from the Variables list to the Histogram Variables list by highlighting the variable and clicking the right-arrow button to the left of the Histogram Variables list (Fig. 2-12).
3. Check the Display Normal Curve check box to superimpose a normal curve over the bars of the histogram.
4. Click OK.

Statistix 8 produces a histogram of the "Seed" data (Fig. 2-13).

Figure 2-10

Figure 2-11

Figure 2-13

The histogram of the seed variable did not show abnormal distribution of the data. Extreme deviations beyond the normal curve would be of concern but small deviations would not be problematic.

C. Normal Probability Plot and Normality Test

A normality plot is an excellent tool to test the assumption that the data you are working with is normality distributed. The normality probability plot, plots the data against the corresponding rankits. When the plotted data are drawn from a normal population, the points appear to fall on a straight line. The Shapiro-Wilk Test, which examines whether the data conforms to a normal distribution, appears at the bottom of the graph.

For this example, we will apply the normal probability plot to data collected from a seeding rate trial of Florida paspalum (Fig. 2-14).

He Statistix - [H:StatistixdexamplekETseed.sx]					
Wifle Edit Data Statistics Preferences window Help 					
		Rep	Seedrate	Pitsit2	
	1	1	4	2.3	
	2	1	6	3.6	
	3	1	8	5.6	
-	4	1	10	2.8	
	5	1	12	1.2	
	6	2	4	1.3	
	7	2	6	3	
	8	2	8	3.5	
	9	2	10	2.7	
	10	2	12	1.5	
	11	3	4	0.4	
	12	3	6	2.4	
	13	3	8	2.8	
	14	3	10	2.8	
	15	3	12	2.5	
*					

Figure 2-14

Figure 2-15

To construct a normal probability plot:

1. From the main menu, select Statistics, Randomness/Probability Plot, Normal Probability Plot (Fig.2-15).
2. In the Normal Probability Plot dialog box (Fig. 2-16), move the variable "Pltsft2" from the Variables list to the Plot Variable list by highlighting the variable and clicking the right-arrow button to the left of the Plot Variable list (Fig. 2-17).
3. Click OK.

Statistix 8 produces a normal probability plot, which includes a Shapiro-Wilks Test (Fig. 2-18).

The results of the normal probability plot suggest that the data conforms to a normal distribution based on the apparent straightness of the line. Furthermore, since the Shapiro-Wilk test for the W statistic (underlined in red) is approaching 1 (0.9330) for normally distributed data and the P value of 0.3026 is greater than $p=0.05$, then we conclude that the data meets the assumption of normality.

There are cases when data may not be normally distributed. When this occurs, one may need to increase sample size, transform data or analyze the data using non-parametric statistical analyses.

Figure 2-16

Figure 2-17

Figure 2-18

Chapter 3: Analysis of Variance

I. Randomized Complete Block Design

You have been collecting yield data on 5 switchgrass cultivars that were planted in a randomized complete block design with four replications. Two harvests were made in 1995 ("Yield1" and "Yield2") and 1996, respectively. The two harvests were summed ("Yield1"+"Yield2") for the season total yield in 1995 and 1996 ("Total"). Data was entered into the Statistix 8 spreadsheet (Fig. 3-1). You wish to analyze the yield data to determine if there are any statistically significant differences between cultivars at the 5% level of probability, or $p=0.05$.

A. Analyzing the 1995 Switchgrass Cultivar Data

In your first data analyses you want to analyze the 1995 cultivar yields ("Yield1", "Yield2" and "Total"). Since the 1996 data is included in the dataset you will need to disregard or omit the data in cases 21-40 so they will not be included in the analyses.

To omit data:

1. Click on the empty beige cell to the left of the cell marked with the fist case number that you want to delete. In this example, we selected the beige cell to the left of case " 21 ".

A triangle will appear in the beige cell to the left of the case number, and the entire row for the case will be highlighted.
2. Click on the left mouse button and hold, and drag the blue highlighted area to the row with the last case that you want to omit. In this example, drag to the row for case " 40 ."

The rows for cases 21 through 40 will be highlighted.
3. From the main menu, select Edit, Omit Highlighted Cases (Fig. 3-2).

Cases 21-40 will fade to a gray tint indicating that they have been omitted from the dataset and will not be included in the analyses.

Statistix
Eile Edit Data Statistics Preferences Window Help

Hat C:IStatistixlexamplelswgtest95-96.sx

		Rep	Year	Cultivar	Yield1	Yield2	Total
,	1	1	1995	Alamo	4935	6360	11295
	2	1	1995	Blackwell	2494	3372	5866
	3	1	1995	Shelter	4148	5606	9754
	4	1	1995	Kanlow	5154	3564	8718
	5	1	1995	Dacotah	3956	3183	7139
	6	2	1995	Alamo	4123	5116	9239
	7	2	1995	Dacotah	2795	2917	5712
	8	2	1995	Kanlow	4482	2228	6710
	9	2	1995	Blackwell	3122	4092	7214
	10	2	1995	Shelter	4805	4618	9423
	11	3	1995	Alamo	6172	5306	11478
	12	3	1995	Dacotah	4237	2635	6872
	13	3	1995	Blackwell	2723	3879	6602
	14	3	1995	Shelter	4906	5836	10742
	15	3	1995	Kanlow	4980	3605	8585
	16	4	1995	Shelter	5367	5256	10623
	17	4	1995	Alamo	4908	6102	11010
	18	4	1995	Dacotah	3365	2176	5541
	19	4	1995	Kanlow	5010	2710	7720
	20	4	1995	Blackwell	3655	3973	7628
	21	1	1996	Alamo	3590	3507	7097
	22	1	1996	Blackwell	3697	2721	6418
	23	1	1996	Shelter	3714	4369	8083
	24	1	1996	Kanlow	2648	5391	8039
	25	1	1996	Dacotah	3873	4213	8086
	26	2	1996	Alamo	3076	4304	7380
	27	2	1996	Dacotah	3521	3058	6579
	28	2	1996	Kanlow	3313	4760	8073
	29	2	1996	Blackwell	5585	3337	8922
	30	2	1996	Shelter	4685	5012	9697
	31	3	1996	Alamo	3631	6365	9996
	32	3	1996	Dacotah	2772	4468	7240
	33	3	1996	Blackwell	4971	2955	7926
	34	3	1996	Shelter	3582	5116	8698
	35	3	1996	Kanlow	2861	6263	9124
	36	4	1996	Shelter	4006	5584	9590
	37	4	1996	Alamo	3566	7306	10872
	38	4	1996	Dacotah	2407	3614	6021
	39	4	1996	Kanlow	2224	5235	7459
	40	4	1996	Blackwell	4508	3867	8375
*							

Figure 3-1

Figure 3-3

Statistix

Eile	Edit Data Statistics Preferences Window Help							
[品 Cut鼠 Copy			$\mathrm{Ctrl}+\mathrm{X}$	-			
				Ctrlc				
	(${ }_{\text {B }}^{\text {Pa }}$	Paste		Ctrit g		96.sx		
		Select All	Ct	Ctrla	ultivar	Yield1	Yield2	Total
		Omit Highlighte	ted Cases			4935	6360	11295
		Restore Highlig	lighted Case	ases	ell	2494	3372	5886
	3	1	1995	1995 Shelter		4148	5606	9754
	4	1	1995	1995 Kanlow		5154	3564	8718
	5	1		1995 Dacotah		3956	3183	7139
	6	2	1995	1995 Alamo		4123	5116	9239
	7	2	1995	1995 Dacotah		2795	2917	5712
	8	2	1995	1995 Kanlow		4482	2228	6710
	9	2	1995	1995 Blackwell		3122	4092	7214
	10	2	1995	1995 Shelter		4805	4618	9423
	11	3	1995	1995 Alamo		6172	5306	11478
	12	3	1995	1995 Dacotah		4237	2635	6872
	13	3	1995	1995 Blackwell		2723	3879	6602
	14	3	1995	1995 Shelter		4906	5836	10742
	15	3	1995	1995 Kanlow		4980	3605	8585
	16	4	1995	1995 Shelter		5367	5256	10623
	17	4	1995	1995 Alamo		4908	6102	11010
	18	4	1995	1995 Dacotah		3365	2176	5541
	19	4	1995	1995 Kanlow		5010	2710	7720
	20	4	1995	1995 Blackwell		3655	3973	7628
\downarrow	21	1	1998	1996 Alamo		3590	3507	7097
	22	1	1996	1996 Elackwel		3697	2721	6418
	23	1		1996 Sheller		3714	4369	8083
	24	1	1996	1996 Karlow		2648	5391	8039
	25	1	1996	1996 Dacotah		3873	4213	8086
	26	2	1996	1996 Alamo		3076	4304	7380
	27	2	1996	1996 Dacotah		3521	3058	6579
	28	2	1996	1996 Kanlow		3313	4760	8073
	29	2	1996	1996 Blackwel		5585	3337	8922
	30	2	1996	1996 Sheller		4685	5012	9697
	31	3	1996	1996 Alamo		3631	6365	9996
	32	3	1996	1996 Dacotah		2772	4468	7240
	33	3	1996	1996 Elackwel		4971	2955	7926
	34	3	1996	1996 Sheller		3582	5116	8698
	35	,	1996	1996 Karlow		2861	6263	9124
	36	4	1996	1996 Sheller		4006	5584	9590

Figure 3-2

Figure 3-4

To analyze the 1995 data, which consists of cases 1-20:

1. From the main menu, select Statistics, Linear Models, Analysis of Variance, Randomized Complete Block AOV (Fig. 3-3).
2. In the Randomized Complete Block AOV dialog box, move the variables you want to designate as dependent variables from the Variables list in the left column to the Dependent Variables list in the right column by highlighting the variables (in this example, "Yield1", "Yield2", and "Total") and clicking on the right-arrow button to the left of the Dependent Variables list (Fig. 3-4).
3. Move the variables you want to designate as block variables (in this example, "rep") from the "Variables" list in the left column to the Block Variable list in the right column by highlighting the variable and clicking on the right-arrow button to the left of the Block Variable list.
4. Move the variables you want to designate as treatment variables (in this example, "cultivar") from the Variables list in the left column to the Treatment Variable list in the right column by highlighting the variable and clicking on the right-arrow button to the left of the Treatment Variable list (Fig. 3-5).
5. Click OK.
6. To return to the data set, from the main menu, select File, Close.

Figure 3-5

B. Results and Interpretation of the Analyses

The following statistical analysis (Table 3-1) was performed by Statistix 8 on the 1995 data. Rather than discuss all of the numbers generated in the analysis of variance table, we will focus on numbers of greatest interest to the user for Yield 1. Numbers have been highlighted in red followed by an interpretation of the number and its significance to the user.

Table 3-1

Yield1

Grand Mean 4266.9

The grand mean was determined by adding the means of Yield1 for cultivars and dividing the total by 5 (5 cultivars).

The coefficient of variation (CV) indicates the degree of precision with which the treatments are compared and is a good indicator of reliability of the experiment. It expresses the experimental error as a percentage. The lower the CV value the greater the reliability of the experiment. CV values vary depending on crop grown, type of experiment and measurements.

| Tukey's 1 | Degree of | Freedom Test | for | Nonadditivity | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| Nonadditivity | 1 | 174979 | 174979 | 0.57 | 0.4649 |
| Remainder | 11 | 3357715 | 305247 | | |

Statistix 8 conducts a Tukey's One Degree of Freedom Test for Nonadditivity for a Randomized Complete Block (RCB) analysis of variance. This test is useful when the experimental design only permits an additive model to be fitted to the data and you suspect that interaction is present. In this example, there is no suggestion of nonadditivity ($\mathrm{p}=0.4649$). If the P value is less than 0.05 then nonadditivity may be present and you should consider transforming the data in an effort to remove it.

Relative Efficiency, RCB 1.11
The purpose of using a RCB design is to reduce the error mean square. The relative efficiency indicates the magnitude to which blocking succeeded in reducing experimental error. In this example, the relative efficiency of using the RCB design over the completely randomized design is 1.11 which is $\sim 11 \%$ increase in precision.

CULTIVAR	Mean	
Alamo	5034.5	Mean Yield1 for each cultivar was determined by adding the yields of each cultivar by replication and dividing the total by 4 (replications).
Blackwell	2998.5	
Dacotah	3588.2	
Kanlow	4906.5	
Shelter	4806.5	
Observation	s per Mean	4
Standard Er	rror of a Mean	271.29
Std Error	(Diff of 2 Means)	$) 383.66$

Yield2 (only the interpretation of the \mathbf{P} value is provided for Yield 2)

Source	DF	SS	MS	F	P	Since P value of 0.0000 is
REP	3	1087597	362532			less than $\mathrm{p}=0.05$ then it has
CULTIVAR	4	$2.897 \mathrm{E}+07$	7242894	28.33	0.0000	been determined that there is
Error	12	3067458	255622		(0.000	statistical difference between
Total	19	$3.313 \mathrm{E}+07$				switchgrass cultivars for
Grand Mean	4126	.7 CV 12				Yield2.

| Tukey's 1 | Degree of | Freedom Test | for | Nonadditivity | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| Nonadditivity | 1 | 56135 | 56135 | 0.21 | 0.6595 |
| Remainder | 11 | 3011324 | 273757 | | |

Relative Efficiency, RCB 1.04
Means of YIELD2 for CULTIVAR

CULTIVAR	Mean
Alamo	5721.0
Blackwell	3829.0
Dacotah	2727.8
Kanlow	3026.8
Shelter	5329.0

Observations per Mean 4
Standard Error of a Mean 252.80
Std Error (Diff of 2 Means) 357.51

Total Yield (only the interpretation of the P value for total yield is provided)

| Tukey's 1 | Degree of | Freedom Test | for Nonadditivity | | |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| Nonadditivity | 1 | 1072457 | 1072457 | 2.07 | 0.1785 |
| Remainder | 11 | 5711106 | 519191 | | |

Relative Efficiency, RCB 1.18
Means of TOTAL for CULTIVAR
CULTIVAR Mean
Alamo 10756
Blackwell 6828
Dacotah 6316
Kanlow 7933
Shelter 10136
Observations per Mean 4
Standard Error of a Mean 375.93
Std Error (Diff of 2 Means) 531.65

C. Saving the Analysis of Variance Table

To save the analysis of variance table for future reference, follow the procedure outlined in "File Management" in Chapter 1, Section III, except Statistix 8 will save as Rich Text Files. Thus, the filename will be given an ".rtf "extension.

To retrieve the analysis:

1. From the main menu, select to click on File, View Text File.
2. In the Open dialog box, navigate to the folder where the file was saved, and highlight the filename. Click Open.

To copy the file contents and paste them into an MS-Word document:

1. Highlight the text in the file you want to copy. Click on the right mouse button and select Copy from the shortcut menu.
2. Open an MS-Word document, click inside the document, and click on the right mouse button and select Paste from the shortcut menu.

D. Performing Mean Separation Test on Switchgrass Cultivars

In our example, we determined that there were significant differences between cultivars for "Yield1", "Yield 2", and season "Total" yield based on the analysis of variance, which was performed at the 5% level of probability. Now, we want to know which cultivars are significantly different. For our example, we will perform a mean separation test on the cultivars for "Yield1" only (Fig. 3-6).

1. From the main menu, select Results, Multiple Comparison, All-Pairwise Comparison

 (Fig. 3-7).2. In the All-pairwise Comparison dialog box, select the comparison method of your choice from the Comparison Method group (Fig. 3-8). In this example, we select the $L S D$ radio button to conduct the least significance difference (LSD) test.
3. Keep the default alpha level, which is 0.05 in the Alpha text box, or enter 0.01 or 0.10 .
4. In the Report Format group, keep the default selection Homogenous groups.

Note: The homogenous groups format will give the means followed by letters (A, B, C, etc) which makes it easier to interpret whether the means are similar or different.

5. Click OK.

Statistix 8 performs a means separation test using the LSD test at the 5% level of probability (Fig. 3-9).
6. To return to the data set, from the main menu, select File, Close.

Figure 3-6

Figure 3-7
\#mtatistix
\#mtatistix
Eile Edit Results Window Help
Eile Edit Results Window Help
园回星
园回星
目 Randomized Complete Block AOV - AOV Table
Statistix 8.0 swgtest95－96，1／18／2006，12：40：11 PM
Randomized complete block AOV Table for yIELD1 cut 1 yield
Source

Source
Nonadditivi
Remainder
Alpha 0.05
Means of YIE
Report Format
－Homogeneous groups
Triangular matrix
Ula
Alamo
Blackwell
Dacotah
Kanlow
Observations per Mean
Std Error（Diff of 271.29

Figure 3－8

Figure 3－9

E．Saving the Mean Separation Test Results

To save the mean separation test for future reference follow the procedure outlined in Chapter 1－III File Management．

To retrieve the analysis or to copy the file contents and paste them into an MS－Word document， follow the procedure outlined in＂Saving the Analysis of Variance Table＂in Chapter 3－I－C Saving the Analysis of Variance Table．

F．General Interpretations and Presentation of Results

Table 3－2

Yield1

LSD All－Pairwise Comparisons Test of Yield1 for CULTIVAR

CULTIVAR	Mean	Homogeneous Groups
Alamo	5034.5	A
Kanlow	4906.5	A
Shelter	4806.5	A
Dacotah	3588.3	B
Blackwell	2998.5	B
		0.05
Alpha		Standard Error for Comparison 383.66
Critical T Value 2.179	Critical Value for Comparison 835.93	
Error term used：REP＊CULTIVAR，12 DF		
There are 2 groups（A and B）in which the means are not significantly different		
from one another．		

Interpretation: In the first cutting, we found that Alamo, Kanlow, and Shelter switchgrass cultivars produced significantly higher ($\mathrm{P}<0.05$) yields than Dacotah or Blackwell.

Yield2

```
LSD All-Pairwise Comparisons Test of Yield2 for CULTIVAR
CULTIVAR Mean Homogeneous Groups
Alamo 5721.0 A
Shelter 5329.0 A
Blackwell 3829.0 B
Kanlow 3026.8 C
Dacotah 2727.8 C
Alpha 0.05 Standard Error for Comparison 357.51
Critical T Value 2.179 Critical Value for Comparison 778.94
Error term used: REP*CULTIVAR, 12 DF
```

Interpretation: In the second cutting, Alamo and Shelter were the highest yielding cultivars. Their yields were significantly higher ($\mathrm{P}<0.05$) than the other cultivars in the trial.

Total Yield

```
LSD All-Pairwise Comparisons Test of Total for CULTIVAR
CULTIVAR Mean Homogeneous Groups
Alamo 10756 A
Shelter 10136 A
Kanlow 7933 B
Blackwell 6828 BC
Dacotah 6316 C
Alpha 0.05 Standard Error for Comparison 531.65
Critical T Value 2.179 Critical Value for Comparison 1158.4
Error term used: REP*CULTIVAR, 12 DF
```

Interpretation: Season total yield of Alamo was higher than Shelter but the yield difference was not significant ($\mathrm{P}<0.05$). However, Alamo and Shelter produced significantly ($\mathrm{P}<0.05$) higher season total yield than Kanlow, Blackwell and Dacotah.

G. Using an LSD Value for Comparing Significant Means

Some users may prefer to use an LSD value for comparison of significant means rather than letters when presenting results in data tables (Fig. 3-10 and 3-11). See Gomez and Gomez (1984) for calculating LSD values.

H. Presentation of Results with letters and LSD value

Comparison of switchgrass cultivars using letters to denote differences in cultivars for yield.

Cultivar	Harvest		
	Yield 1	Yield 2	Season Total
	--------------------lb/acre---------------------		
Alamo	5035 a*	5721 a	10756 a
Shelter	4907 a	5329 a	10136 a
Kanlow	4807 a	3027 b	7933 b
Blackwell	2999 b	3829 c	6828 bc
Dacotah	3588 b	2728 c	6316 c
Mean	4267	4127	8394

Figure 3-10

* Means within column followed by the same letters are not significantly different as determined by least significant difference test at $\mathrm{P}<0.05$.

Comparison of switchgrass cultivars using LSD value to determine yield differences between cultivars.

	Harvest		
Cultivar	Yield 1	Yield 2	Season Total
	$-------------l b /$ acre-------------------		
Alamo	5035	5721	10756
Shelter	4907	5329	10136
Kanlow	4807	3027	7933
Blackwell	2999	3829	6828
Dacotah	3588	2728	6316
Mean	4267	4127	8394
LSD $(0.05)^{*}$	836	779	1158

Figure 3-11
Least significant difference at $\mathrm{P}<0.05$.
Note: Two treatment means are determined to be significantly different at a prescribed level of significance if their difference is greater than the LSD value; other wise they are not significant. For example, the difference between season total yield of Alamo (10 756 lb /acre) compared to Kanlow ($7933 \mathrm{lb} /$ acre) is $2823 \mathrm{lb} /$ acre, which is greater than the computed LSD value of 1158 (lb/acre); thus, there is differences in yields between Alamo and Kanlow.

To analyze the 1996 switchgrass cultivar data, follow the procedure as the 1995 analysis.

I. Analyzing all of the Dataset

At the beginning of this example, you may remember that we were only interested in analyzing cultivar yields ("Yield1", "Yield2" and "Total") for 1995. Because the 1996 data was included in the original dataset we "omitted" the data in cases 21-40 so they would not be included in the
analyses (Fig. 3-2 in Chapter 3-I-A Analyzing the 1995 Switchgrass Cultivar Data). Notice that the omitted cases have a gray tint (Fig. 3-12). Now, we want to include the entire dataset in the final analysis.

To restore the 1996 data, or cases 21 to 40:

1. Click on the beige cell to the left of the cell marked with the case number. In this example, we selected the beige cell to the left of " 21 ".

A triangle will appear in the beige cell to the left of the case number. The entire row for the case will be highlighted.
2. Click on the left mouse button and hold, and drag the blue highlighted area to the row with the last case that you want to omit. In this example, drag to the row for case " 40 ."

The rows for cases 21 through 40 will be highlighted.
3. From the main menu, select Edit, Restore Highlighted Cases (Fig. 3-13).

Cases 21-40 will return to normal number tint indicating that they have been restored and can be included in the analyses (Fig. 3-14).

Figure 3-12

Figure 3-13

EStatistix - [C:IStatistixlexampleISWGIswgtest95-96.sx]							
Wilat Eile Edit Data Statistics Ereferences window Help							
		Rep	Year	Cultivar	Yield 1	Yield2	Total
-	1	1	1995	Alamo	4935	6360	11295
	2	1	1995	Blackwell	2494	3372	5866
	3	1	1995	Shelter	4148	5606	9754
	4	1	1995	Kanlow	5154	3564	8718
	5	1	1995	Dacotah	3956	3183	7139
	6	2	1995	Alamo	4123	5116	9239
	7	2	1995	Dacotah	2795	2917	5712
	8	2	1995	Kanlow	4482	2228	6710
	9	2	1995	Blackwell	3122	4092	7214
-	10	2	1995	Shelter	4805	4618	9423
	11	3	1995	Alamo	6172	5306	11478
	12	3	1995	Dacotah	4237	2635	6872
	13	3	1995	Blackwell	2723	3879	6602
	14	3	1995	Sheller	4906	5836	10742
-	15	3	1995	Kanlow	4980	3605	8585
	16	4	1995	Sheller	5367	5256	10623
	17	4	1995	Alamo	4908	6102	11010
	18	4	1995	Dacotah	3365	2176	5541
-	19	4	1995	Kanlow	5010	2710	7720
	20	4	1995	Blackwell	3655	3973	7628
	21	1	1996	Alamo	3590	3507	7097
7	22	1	1996	Blackwell	3697	2721	6418
	23	1	1996	Shelter	3714	4369	8083
7	24	1	1996	Kanlow	2648	5391	8039
	25	1	1996	Dacotah	3873	4213	8086
	26	2	1996	Alamo	3076	4304	7380
	27	2	1996	Dacotah	3521	3058	6579
	28	2	1996	Kanlow	3313	4760	8073
	29	2	1996	Blackwell	5585	3337	8922
	30	2	1996	Shelter	4685	5012	9697
	31	3	1996	Alamo	3631	6365	9996
	32	3	1996	Dacotah	2772	4468	7240
	33	3	1996	Blackwell	4971	2955	7926
	34	,	1996	Shelter	3582	5116	8698
	35	3	1996	Kanlow	2861	6263	9124
7	36	4	1996	Shelter	4006	5584	9590
	37	+	1996	Alamo	3566	7306	10872
	38	4	1996	Dacotah	2407	3614	6021
	39	4	1996	Kanlow	2224	5235	7459
	40	4	1996	Blackwell	4508	3867	8375

Figure 3-14

Figure 3-15

J. Including Year as a Variable

The variable "Year" can be included in the overall analyses if year (1995 or 1996) may have an effect on switchgrass cultivar yield; 1995 was considered a wet year and 1996 a dry year. Statistix 8 allows the user to write math statements or models to analyze datasets containing multiple variables. In this case, we are interested in knowing if there is a significant "Year*Cultivar" interaction effect in "Total" yield, which may give insight on which cultivar(s) performed the best under wet or dry conditions.

To perform the analyses to determine the "Year*Cultivar" interaction effect in "Total" yield:

1. From the main menu, select Statistics, Linear Models, Analysis of Variance, General AOV/AOCV (Fig. 3-15).
2. In the General AOV/AOCV dialog box (Fig. 3-16), move the variables you want to designate as dependent variables from the Variables list in the left column to the Dependent Variables list in the right column by highlighting the variable and clicking on the right-arrow button to the left of the Dependent Variables list. In this example, we selected the variable "Total".
3. In the AOV/Model Statemen" text area, enter the statistical statement.

Example: "Rep Year Cultivar Year*Cultivar" without quotes (Fig. 3-17).
Note: The statement "Rep Year Cultivar Year*Cultivar" tells Statistix 8 to perform an analysis of variance using the variables "Rep", "Year", "Cultivar", with the "Year* Cultivar" interaction effect as the sources of variation.

4. Click OK.

Statistix 8 will compute the error term for the model. The results of the analysis of variance (Table $3-3$) is discussed below.

Note: Other model statements for general analysis of variance can be found in Chapter 7.

Figure 3-16

Figure 3-17

K. Interpretation of the Analysis

Table 3-3

Analysis of Variance Table for TOTAL

Source	DF	SS	MS	F	P
REP	3	4418919	1472973	1.53	0.2294
YEAR	1	440160	440160	0.46	0.5047
CULTIVAR	4	$6.016 \mathrm{E}+07$	$1.504 \mathrm{E}+07$	15.62	0.0000
YEAR*CULTIVAR	4	$1.277 \mathrm{E}+07$	3193780	3.32	0.0247
Error	27	$2.600 \mathrm{E}+07$	962859		
Total	39	$1.037 \mathrm{E}+08$			

Interpretation: The analysis of variance determined that there were no significant differences in years ($\mathrm{p}=0.5047$) but there were differences in cultivars ($\mathrm{p}=0.0000$). Because there was a significant "Year*Cultivar" interaction effect ($\mathrm{p}=0.0247$) we will ignore the cultivar differences and focus only on the interaction (Table 3-3).

Figure 3-18

Figure 3-19

L. Comparing Means of "Year*Cultivar" Interaction

Statistix 8 can perform an All-Pairwise Comparison Test on the simple effects means of the "Year*Cultivar" interaction effect, which may help to explain the interaction.

1. Once the result of the analysis of variance table is in the active dialog box, from the main menu, select Results, Multiple Comparison, All-Pairwise Comparison (Fig. 3-18).
2. In the All-pairwise Comparison dialog box, highlight "Year*Cultivar" from the Terms in Model list in the left column, then press the right-arrow button to move it to the Terms Selected for Mean Comparison list in the right column(Fig. 3-19).
3. In the All-pairwise Comparison dialog box, select the preferred method in the Comparison Method group. In this example, we selected LSD.
4. Keep the default alpha level, which is 0.05 , in the Alpha text box or enter 0.01 or 01.0 .
5. In the Report Format group, keep the default section Homogeneous groups.
6. Once the information is in place, click on OK.

Note: The homogenous groups format will give the means followed by letters (A, B, C, etc) which makes it easier to interpret whether the means are similar or different and may aid in the explanation of the analysis.

Statistix 8 will perform a mean comparison test on the simple effect means (Table 3-4).

Table 3-4

```
LSD All-Pairwise Comparisons Test of Total for YEAR*CULTIVAR
YEAR CULTIVAR Mean Homogeneous Groups
1995 Alamo 10756 A
1995 Shelter 10136 AB
1996 Shelter 9017 BC
1996 Alamo 8836 BC
1996 Kanlow 8174 CD
1995 Kanlow 7933 CD
1996 Blackwell 7910 CD
1 9 9 6 \text { Dacotah } 6 9 8 2 \text { DE}
1995 Blackwell 6828 DE
1 9 9 5 \text { Dacotah 6316 E}
Alpha 0.05 Standard Error for Comparison 693.85
Critical T Value 2.052 Critical Value for Comparison 1423.7
Error term used: REP*YEAR*CULTIVAR, 27 DF
There are 5 groups (A, B, etc.) in which the means
are not significantly different from one another.
```


M. Interpreting the Interaction

Earlier in the example, we stated that 1995 was a wet year and 1996 was a dry year. Because of the differences in moisture conditions we wanted to determine how the switchgrass cultivars would perform. Obviously, with the "Year*Cultivar" interaction there is indication that one or more of the cultivars responded to the different moisture conditions in 1995 and 1996.

Notice that Statistix 8 ranks the performance of the cultivars based on high to low yields. Shelter, Kanlow, Blackwell and Dacotah performed similarly under both moisture regimes. Alamo experienced the greatest yield loss ($1,920 \mathrm{lb} /$ acre) when moisture became limited in 1996, and appears to have caused the significant "Year*Cultivar" interaction effect. Results suggest Alamo may require supplemental water to maximize yields in a dry year.

N. Graphing the Interaction Effect

Some may prefer to graph the simple effect means in order to have a better understanding of what may be causing the interaction. A graph of the "Year*Cultivar" interaction effect is illustrated in Fig. 3-20.

Figure 3-20

II. Completely Randomized Design

A. Analyzing Basin Wildrye Seed Germination Trial

Statistix 8 can analyze data from a completely randomized design using a one-way analysis of variance or by the completely randomized design analysis of variance model built into the program.

For this example, we will use germination data from four populations of basin wildrye replicated 10 times and arranged in a completely randomized design by randomly rotating the Petri dishes inside the germinator on a daily basis.

To determine if there are significant differences in the basin wildrye populations and identify the one(s) with superior germination:

1. Enter data into a Statistix 8 spreadsheet (Fig. 3-21).
2. From the main menu, select Statistics, Linear Models, Analysis of Variance, Completely Randomized Design (Fig. 3-22).
3. In the Completely Randomized Design AOV dialog box (Fig. 3-23), move the chosen variable from the Variables list in the left column to the Dependent Variables list in the right column by highlighting the variable name ("Germ" in this example) and clicking on the right-arrow button to the left of the Dependent Variables list.
4. Move the chosen variable from the Variables list in the left column to the Treatment Variable list in the right column by highlighting the variable ("BWPOP" in this example) and clicking the right-arrow button to the left of the Treatment Variable list (Fig. 3-24)
5. Click OK

Statistix 8 performs the data analyses (Fig. 3-25).
6. To return to the data set, from the main menu, select File, Close.

B. Results and Interpretation of the Analyses

Statistix 8 performed the following Analysis of Variance for a completely randomized design. Rather than discuss all of the numbers generated in the analysis of variance, we will focus on numbers of greatest interest. Numbers have been highlighted in red followed by an interpretation of the number and its significance to the user (Table 3-5).

Figure 3-21

Figure 3-22

Chapter 3: Analysis of Variance

Figure 3-23

Completely Randomized AOV X

Figure 3-24
4Statistix - [Completely Randomized AOV - AOV Table]
目 Eile Edit Results window Help

Statistix 8.0
Completely Randomized AOV for Germ

Source	DF	SS	MS	F	P
BWPOP	3	24198.7	8066.23	324	0.0000
Error	36	895.2	24.87		
Total	39	25093.9			

Grand Mean 68.450 CV 7.29

| Bartlett's Test of Equal Variances | 0.70 | 3 | 0.8730 |
| :--- | ---: | ---: | ---: | ---: |

Cochran's Q 0.3088
Largest Var / Smallest Var 1.6221
Component of variance for between groups 804.137
Effective cell size 10.0
BHPOP Mean
185.600
264.600
393.600
430.000
Observations per Mean 10
Standard Error of a Mean 1.5769
Std Error (Diff of 2 Means) 2.2301
basin wildrye, $1 / 26 / 2006,1: 36: 24$ PM

Figure 3-25

Table 3-5
Completely Randomized AOV for Germ

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| BWPOP | 3 | 24198.7 | 8066.23 | 324 | 0.0000 |
| Error | 36 | 895.2 | 24.87 | | |
| Total | 39 | 25093.9 | | | |

Grand Mean $68.450 \quad$ CV $7.29 \quad$ Chi-Sq	DF		germinat	
Bartlett's Test of Equal Variances	0.70	3	0.8730	
Cochran's Q		0.3088		
Largest Var/Smallest Var	1.6221			

Component of variance for between groups 804.137
Effective cell size 10.0
Since P value of 0.0000 is less than $p=0.05$ then it has been determined that there are statistical differences between basin wildrye population for germination.
\(\left.\begin{array}{rr|l}BWPOP \& Mean

1 \& 85.600

2 \& 64.600

3 \& 93.600

4 \& 30.000\end{array}\right\} \quad\)\begin{tabular}{l}
Mean germination for each population of basin

which assumes within group
wariances are the same.

wildrye was determined by adding the germination of
each population by replication and dividing the total
by 4 (replications).

\hline
\end{tabular}

C. Performing Mean Separation Test on Basin Wildrye Populations

In this example, we determined that there were significant differences between basin wildrye populations for germination based on the analysis of variance which was performed at the 5\% level of probability.

To determine which basin wildrye germination means are significant:

1. From the main menu, select Results, Multiple Comparison, All-Pairwise Comparison (Fig. 3-26).
2. In the All-Pairwise Comparison dialog box (Fig. 3-27), select the LSD (least significance difference test) option from the Comparison Method group.
3. Keep the default alpha level, which is 0.05 , in the Alpha text box, or enter 0.01 or 0.10 .
4. In the Report Format group, keep the default selection Homogenous groups.

Note: The homogenous groups format will give the means followed by letters (A, B, C, etc) which makes it easier to interpret whether the means are similar or different and may aid in the explanation of the analysis.

5. Click OK.

Statistix 8 performs a means separation test using the LSD test at the 5% level of probability (Fig. 3-28).
6. To return to the data set, from the main menu, select File, Close.

Chapter 3: Analysis of Variance

Figure 3-26

Figure 3-27

```
#4tatistix - [Completely Randomized AOV - All-pairwise Comparisons]
# Eile Edit Results W,Window Help
```



```
Statistix 8.0
                                    basin wildrye, 1/25/2006, 4:06:15 PM
LSD All-Pairwise Comparisons Test of Germ by BHPOP
BWPOP Mean Homogeneous Groups
    93.600 A
    85.600 B
    64.600 C
    30.000 D
Alpha Standard Error for Comparison 2.2301
Critical T Value 2.028 Critical Value for Comparison 4.5228
All 4 means are significantly different from one another.
```

Figure 3-28

D. General Interpretations

Table 3-6

LSD All-Pairwise Comparisons Test of Germ by BWPOP

BWPOP	Mean	Homogeneous Groups
3	93.600	A
1	85.600	B
2	64.600	C
4	30.000	D

Alpha	0.05	Standard Error for Comparison	2.2301
Critical T Value 2.028	Critical Value for Comparison	4.5228	

All 4 means are significantly different from one another.

Interpretation: The analysis of variance determined that statistical differences exist in basin wildrye populations for germination characteristics. Using the LSD test, we found that population 3 had significantly higher germination ($\mathrm{P}<0.05$) rate than the other populations.

III. Split Plot Design (Without Interaction Effect)

A. Analyzing Clipping Frequency of Eastern Gamagrass Cultivars

The split plot design is often used in agricultural research when two or more treatments are applied in factorial combinations. Statistix 8 has the capability to perform an analysis of variance from data collected from studies arranged as a split plot design.

For this example, we will evaluate the effects of clipping frequency on yield of eastern gamagrass cultivars. Clipping frequency of 30,45 , and 60 days were assigned to the main plot and cultivars of Highlander, Jackson, Medina, and San Marcos to the subplots. The total yield by clipping frequency and cultivar was entered into Statistix 8 spreadsheet (Fig. 3-29).

To analyze the data:

1. From the main menu, select Statistics, Linear Models, Analysis of Variance, Split-Plot Design (Fig. 3-30).
2. In the Split Plot Design AOV dialog box (Fig. 3-31), move the variable "Yld" from the Variables list in the left column the to the Dependent Variables list in the right column by highlighting "Yld" and clicking on the right-arrow button to the left of Dependent Variables list.
3. Move the variable "Rep" from the Variables list in the left column to the Replication Variable list in the right column by highlighting "Rep" and clicking on the right-arrow button to the left of the Replication Variable list.
4. Move the variable "Clipping" from the Variables list in the left column to the MainPlot Factor list in the right column by highlighting "Clipping" and clicking on the rightarrow button to the left of the Main-Plot Factor list.
5. Move the variable "Cultivars" from the Variables list in the left column to the Subplot Factor list in the right column by highlighting "Cultivars" and clicking on the rightarrow button to the left of the Subplot Factor list (Fig. 3-32).

Note: For a greater degree of precision for Factor B than for Factor A, assign B to the subplot and Factor A to the main-plot. In our example, we are more interested in the cultivars than the clipping frequency so cultivars were assigned to the subplot and clipping frequency to main-plot.

6. Click OK.

Statistix 8 performs the data analyses.
7. To return to the data set, from the main menu, select File, Close.

Figure 3-29

Figure 3-31

Figure 3-30

Figure 3-32

B. Results and Interpretation of the Analyses

The following statistical analysis was performed by Statistix 8 (Fig. 3-33). Rather than discuss all of the numbers generated in the analysis of variance, we will focus on numbers of greatest interest to the user. Interested numbers have been highlighted in red followed by an interpretation of the number and its significance to the user (Table 3-7).

二Statistix - [Split-Plot AOV - AOV Table]					
三 Eile Edit Results Window Help					
Statistix 8.0			gamagrass, 1/26/2006,		1:28:59 PM
Analysis of Variance Table for YLD					
Source	DF	SS	MS	F	\mathbf{P}
REP	2	310673	155336		
CLIPPING	2	1. $198 \mathrm{E}+08$	$5.993 \mathrm{E}+07$	1422.26	0.0000
Error REP*CLIPPING	4	168547	42136.9		
CULTIVARS	3	4487571	1495857	8.00	0.0013
CLIPPING*CULTIVARS	6	1736472	289412	1.55	0.2194
Error REP*CLIPPING*CULTIVARS	18	3365891	186994		
Total	35	$1.299 \mathrm{E}+08$			
Grand Mean 8872.9					
CV(REP*CLIPPING) 2.31					
CV (REP*CLIPPING*CULTIVARS) 4.87					

Figure 3-33

Table 3-7

Note: Notice that the analysis of variance for a split plot uses two error terms, one for testing factor A and one for testing factor B.

C. Performing Mean Separation Test on Clipping and Cultivars

In this example, we determined that there were significant differences in clipping frequency and cultivars for yield based on the analysis of variance which was performed at the 5% level of probability.

To determine which clipping frequency and cultivars are significantly different:

1. From the main menu, select Results, Multiple Comparison, All-Pairwise Comparison (Fig. 3-34).
2. In the All-pairwise Comparison dialog box (Fig. 3-35), highlight "Clipping" and "Cultivars" in the Terms in Model list in the left column, and click on the rightarrow button to the left of the Terms Selected for Mean Comparison list in the right column (Fig. 3-36).
3. From the Comparison Method group, select $L S D$ (least significance difference test).
4. Keep the default alpha level, which is 0.05 , in the Alpha text box, or enter 0.01 or 0.10 .
5. In the Report Format group, keep the default Homogeneous groups.

Note: The homogenous groups format will give the means followed by letters (A, B, C, etc) which makes it easier to interpret whether the means are similar or different and may aid in the explanation of the analysis.

6. Click OK.

Statistix 8 performs a means separation test on "Clipping" and "Cultivars" using the LSD test at the 5\% level of probability (Fig. 3-37, Table 3-8).
7. To return to the data set, from the main menu, select File, Close.

Figure 3-34

Figure 3-35

Figure 3-36

Figure 3-37

D. General Interpretations

Table 3-8

LSD All-Pairwise Comparisons Test of Yld for CLIPPING

LSD All-Pairwise Comparisons Test of Yld for CULTIVARS

CULTIVARS	Mean	Homogeneous Groups			
Highlander	9409.2	A			
Jackson	8965.3	B			
San Marcos	8608.0	BC			
Medina	8509.2	C			
		0.05	Standard Error for Comparison	203.85	
Alpha		Critical Value for Comparison	$\mathbf{4 2 8 . 2 7}$		
Critical T Value	2.101				
Error term used: REP*CLIPPING*CULTIVARS, 18 DF					

IV. Split Plot Design (With Interaction Effect)

A. Analyzing Clipping Frequency in Eastern Gamagrass Cultivars

Anytime two or more factors are included in an experiment interaction between factors may occur. Experiments designed with two factors are conducted in anticipation of finding a significant interaction effect between factors; thus, providing a better understanding of how changing the level of one factor affects the change in another factor in the experiment.

For our example, we will use another clipping frequency and eastern gamagrass cultivar dataset (Fig. 3-38). To analyze the data:

1. From the main menu, select Statistics, Linear Models, Analysis of Variance, Split-Plot Design (Fig. 3-39).
2. In the Split Plot Design AOV dialog box (Fig. 3-40), move the variable "Yld" from the Variables list in the left column to the Dependent Variables list in the right column by highlighting "Yld" and clicking on the right-arrow button to the left of the Dependent Variables list.
3. Move the variable "Rep" from the Variables list in the left column to the Replication Variable list in right column by highlighting "Rep" and clicking on the right-arrow button to the left of the Replication Variable list.
4. Move the variable "Clipping" from the Variables list in the left column to the MainPlot Factor list in the right column by highlighting "Clipping" and clicking on the rightarrow button to the left of the Main-Plot Factor list.
5. Move the variable "Cultivars" from the Variables list in the left column to the Subplot Factor list in the right column by highlighting "Cultivars" and clicking on the rightarrow button to the left of the Subplot Factor list (Fig. 3-41).
6. Click OK.

Statistix 8 performs the data analyses.
7. To return to the data set, from the main menu, select File, Close.

Chapter 3: Analysis of Variance

Figure 3-38

2Statistix - [C:IStatistixlexamplelgamagrass.sx]
橧 File Edit Data statistics Preferences Window Hep

	Summary Statistics One, Two, Mult-Sample Tests					
	Lnear Models			Correations (Pearson)... Partial Correlations... Variance-Covariance... Linear Regression... Best Subset Regressions... Stepwise Linear Regression... Logistic Regression... Stepwise Logistic Regression.... Poisson Regression... Iwo Stage Least Squares... Eigenvalues - Principal Comp...		
11	Association Tests Randomness/Normality Tests Iime Series Quality Control Suryival Analysis Probability Functions...					
2						
3						
4						
5						
6						
7						
8	2 Medina	30da	6500			
9	3 Jackson	30da	6721			
10	3 Highlander	30da	7000			
11	3 SanMacos	30da	6345			
12	3 Medina	30da	6512		dnalysis of Variance	Completely Randomized Design...
13	1 Jackson	45 da	8812			Randomized Complete Block...
14	1 Highlander	45 da	9500			Latin Square Design...
15	1 SanMacos	45da	7816			Balanced Lattice Design...
16	1 Medina	45 da	6956			Eactorial Design...
17	2 Jackson	45 da	8745			Split-Fotosesign...
18	2 Highlander	45 da	9654		Strip-Plot Design...	
19	2 SanMacos	45 da	8721		Split-Split-Plot Design...	
20	2 Medina	45 da	6956		Strip-Split-Flot Design...	
21	3 Jackson	45 da	8887		Repeated Measures Desion	
22	3 Higlander	45 da	9555		General AOV/AOCY.	
23	3 SanMacos	45 da	9800			
24	3 Medina	45 da	7934			
25	1 Jackson	60 da	11345			
26	1 Highlander	60 da	11999			
27	1 SanMacos	60 da	10456			
28	1 Medina	60 da	10009			
29	2 Jackson	60 da	11099			
30	2 Highlander	60 da	11678			
31	2 SanMacos	60 da	10678			
32	2 Medina	60 da	10999			
33	3 Jackson	60da	11567			
34	3 Hinhlander	finda	11890			

Figure 3-39

Figure 3-41

B. Results and Interpretation of the Analyses

The following statistical analysis was performed by Statistix 8 (Fig. 3-42). Rather than discuss all of the numbers generated in the analysis of variance, we will focus on numbers of greatest interest to the user (Table 3-9). Interested numbers have been highlighted in red followed by an interpretation of the number and its significance to the user.
Statistix
File Edit Results window Help

三 Split-Plot AOV - AOV Table					
Statistix 8.1	gamagrass, 2/3/2006,				
Analysis of Variance Table for Yld					
Source	DF	SS	MS	F	P
Rep	2	875333	437667		
Clipping	2	$1.204 \mathrm{E}+08$	$6.022 \mathrm{E}+07$	384.08	0.0000
Error Rep*Clipping	4	627157	156789		
Cultivars	3	7223245	2407748	17.61	0.0000
Clipping*Cultivars	6	4541992	756999	5.54	0.0021
Error Rep*Clipping*Cultivars	18	2461661	136759		
Total	35	$1.362 \mathrm{E}+08$			

Grand Mean 8794.1
CV(Rep*Clipping) 4.50
CV(Rep*Clipping*Cultivars) 4.21

Figure 3-42

Table 3-9
Analysis of Variance Table for Yld

Note: When a significant interaction effect is detected in the analysis of variance, the user will ignore the main effect means of the treatment variables and analyze the simple effects means of the interaction.

Interpretation: In reviewing the analysis of variance table we find that there are significant differences in "Clipping" and "Cultivars" for total yield. Because there was a significant "Clipping*Cultivar" interaction effect ($\mathrm{p}=0.0021$), we will ignore the significant "Clipping" and "Cultivars" differences and focus on the "Clipping*Cultivar" interaction effect.

C. Comparing Means of Clipping *Cultivar Interaction

Statistix 8 performs an all-pairwise comparison Test on the simple effects means of the "Clipping*Cultivars" interaction, which may help to explain what may be causing the interaction.

To perform a mean comparison test on the simple effect means:

1. Make sure the result of the analysis of variance table is in the active window.
2. From the main menu, select Results, Multiple Comparison, All-Pairwise Comparison (Fig. 3-43).
3. In the All-pairwise Comparison dialog box, move the statement "Clipping*Cultivar" from the Terms in Model list in the left column to the Terms Selected for Mean Comparison in the right column by highlighting the statement and clicking on the rightarrow button to the left of the Terms Selected for Mean Comparison (Fig. 3-44).
4. In the Comparison Method group, select $L S D$ or some other preferred method.
5. Keep the default alpha level, which is 0.05 , in the Alpha text box, or enter 0.01 or 0.10 .
6. In the Report Format group, select the default Homogeneous groups.

Note: The homogenous groups format will give the means followed by letters (A, B, C, etc). The letters assigned to the simple effects means by the All Pairwise Comparison test have little or no impact on explaining the interaction.

7.Click OK.

Statistix 8 performs a mean comparison test on the simple effect means (Table 3-10).

Figure 3-43

Figure 3-44

Table 3-10

LSD All-Pairwise Comparisons Test of Yld for Clipping*Cultivars

Clipping	Cultivars	Mean	Homogeneous Groups
60 da	Highlander	11856	A
60 da	Jackson	11337	AB
60 da	Medina	10784	BC
60 da	San Marcos	10500	C
45 da	Highlander	9583	D
45 da	Jackson	8808	E
45 da	San Marcos	8779	E
45 da	Medina	7282	F

30 da	Highlander	6789	FG
30 da	Jackson	6751	FG
30 da	San Marcos	6545	G
30 da	Medina	6515	G

| Comparisons of means for the same level of Clipping | | | |
| :--- | :---: | :---: | :---: | :---: |
| Alpha | 0.05 | Standard Error for Comparison | 301.95 |
| Critical T Value | 2.1 | Critical Value for Comparison | 634.37 |
| Error term used: Rep*Clipping*Cultivars, 18 DF | | | |
| Comparisons of means for different levels of Clipping | | | |
| Alpha | 0.05 | Standard Error for Comparison | 307.43 |
| Critical T Value | 2.3 | Critical Value for Comparison | 703.30 |
| Error terms used: Rep*Clipping and Rep*Clipping*Cultivars | | | |

Figure 3-45

Chapter 4: Regression Analysis

I. Linear Regression

A. Eastern Gamagrass Nitrogen Rate Trial

Statistix 8 performs simple and multiple linear regression analysis. The menu driven options make it easy to analyze data from gradient experiments such nitrogen (N) fertilizer rates, seeding depths, seeding rates, row spacing, and chemical concentration experiments.

The focus of a gradient treatment design is to investigate the response relationship. To do that, one should plot the response (Y) against the treatment level (X) and look for an equation describing the relationship between X and Y .

For example, you wish to determine if there is a relationship in the response of eastern gamagrass to increased rates of nitrogen fertilizer. Your study design is a randomized complete block with 3 replications. Nitrogen rates ("Nrate") are applied in increments of 120 lbs beginning with $0 \mathrm{lb} / a c r e$ up to 480 lb /acre ($0,120,240,360$ and $480 \mathrm{lb} /$ acre). Yield is taken ever 45 days during the growing season and reported in tons/acre. Data is entered into the Statistix 8 spreadsheet (Fig. 4-1).

To execute the regression analyses:

1. From the main menu, select Statistics, Linear Models, Linear Regression (Fig. 4-2).
2. In the Linear Regression dialog box (Fig. 4-3), move the variable "TotalYld" from the Variables list in the left column to the Dependent Variable list in the right column by highlighting the variable and clicking on the right-arrow button to the left of the Dependent Variable text area.
3. Move the variable "Nrate" from the Variables list in the left column to the Independent Variable list in the right column by highlighting the variable and clicking on the right-arrow to the left of the Independent Variable list (Fig. 4-4).
4. Click OK.

Statistix 8 performs the linear regression analyses and provides a table of the coefficients (Fig. 4-5, Table 4-1).

Statistix - [C:IStatistixlexamplelegnrate.sx]
黄 Eile Edit Data Statistics Preferences window Help

		Rep	Nrate	TotaYld
-	1	1	0	2.3045
	2	1	120	3.5875
	3	1	240	4.862
	4	1	360	4.899
	5	1	480	5.179
	6	2	120	3.544
	7	2	0	2.8665
	8	2	480	5.3125
	9	2	360	5.479
	10	2	240	4.042
	11	3	360	4.6585
	12	3	480	4.5945
	13	3	240	4.5475
	14	3	0	2.3125
	15	3	120	3.207
*				

Figure 4-1

Figure 4-3

Figure 4-2

Figure 4-4

Figure 4-5

B. Interpreting the Regression Analyses

Table 4-1

Linear Regression of TOTALYLD

Predictor
Variables Coefficient Std Error P P

The constant coefficient (2.76620) is the point where the regression line intercepts or crosses the Y axis. In this example, the line intercepts Y at 2.8 (rounded) which would be 2.8 tons/acre.

NRATE	0.00553	$6.830 E-04$	8.09	0.0000

The 0.00553 is the linear regression coefficient which is the slope of the line or the amount of change in Y for each unit change in X . In this example, for every one lb of N applied we see a 0.00553 tons/acre yield increase in gamagrass. For a better interpretation of the number we will convert 0.00553 tons/acre to lbs/acre so we find that for every 1 lb of N applied we get an 11 lb /acre increase in yield.
R-Squared 0.8344 Resid. Mean Square (MSE) 0.20153

The R-squared (R^{2}) value of 0.8344 or 83% is the total variation in yield that can be accounted for by linear function of the independent variable X , which is N fertilization rate. The higher the R^{2} value the more important the regression equation is in characterizing Y .

Note: If the R^{2} value is low, even if the P value is significant for the model, the regression equation may not be meaningful. For example, an R^{2} is .30 , even if the model is significant, indicates that only 30% of the variation in the dependent variable Y is explained by the linear function of the independent variables considered. In other word, 70% of the variation in Y cannot be accounted for by the regression. With such low level of influence, the estimated regression equation would not be useful in estimating, much less predicting, the value of Y.

C. Model Defined

The model for this example is defined as linear

$$
\mathrm{Y}=a+b \mathrm{X}
$$

Where: Y is estimated yield; a is intercept and b is slope.
In our example, the model would be written with the following coefficients:

$$
\text { Yield }=2.7660+0.00553(\mathrm{X})
$$

D. Application and Presentation of Regression Equation

Our question at the beginning of this example was whether or not there is a relationship in yield of eastern gamagrass as a function of N fertilizer. The linear model was significant and N fertilizer explained 83% of the variation in yield (Fig. 4-6). We can conclude that there is a positive relationship in yields of eastern gamagrass with increased rates of N fertilization.

Figure 4-6
We can use the regression equation to predict yield at treatment levels not included in the data. For example, you want to predict what the yield of eastern gamagrass would have been if 100 of N was applied. Since 100 lbs is between 0-480 lbs, which was in the range of fertilizer rates applied, we are able to predict the yield using the coefficients calculated by Statistix 8.

Using the equation, $\mathrm{Y}=2.7660+0.00553(\mathrm{~N})$, and inserting 100 for N , the equation is written as:

$$
\text { Yield }=2.7660+0.00553(100)
$$

To estimate the yield of eastern gamagrass multiply 0.00553 by 100 , then add 2.7660 . The calculated result is 3.319 . Thus, the predicted yield of eastern gamagrass fertilized with 100 lbs of N would be approximately 3.3 tons/acre.

II. Quadratic Regression

A. Eastern Gamagrass Nitrogen Rate Trial

Statistix 8 can also perform quadratic regression analysis or second-degree polynomials. In order to perform this task we will need to transform the data using the built-in mathematical formulas in the Statistix 8 software program.

B. Regression Analysis (Quadratic) and Transformations

For our example, we will use the data set from the pervious N fertilization experiment example (Fig. 4-1). In order to describe eastern gamagrass response to N fertilization using a quadratic regression equation we will need to "square" the independent variable X , which in our case is "Nrate", and create a new variable called "N2".

To create a new variable and transform the data:

1. From the main menu, select Data, Insert, Variable (Fig. 4-7).
2. In the Insert Variable dialog box, enter the new variable "N2" without quotes in the New Variable Names text area (Fig. 4-8).

3. Click OK.

The new variable "N2" is inserted into the data set (Fig. 4-9).
Note: Notice that the column contains the letter "M" which indicates missing data.

Figure 4-7

Figure 4-8

Win Eile Edit Data Statistics Preferences Window Help						
		Rep	N2	Nrate	TotaMld	
-	1	1	M	0	2.3045	
	2	1	M	120	3.5875	
	3	1	M	240	4.862	
	4	1	M	360	4.899	
	5	1	M	480	5.179	
	6	2	M	120	3.544	
	7	2	M	0	2.8665	
	8	2	M	480	5.3125	
	9	2	M	360	5.479	
	10	2	M	240	4.042	
	11	3	M	360	4.6585	
	12	3	M	480	4.5945	
	13	3	M	240	4.5475	
	14	3	M	0	2.3125	
	15	3	M	120	3.207	
*						

Figure 4-9

Figure 4-10

To calculate the square of the variable "Nrate":

1. From the main menu, select Data, Transformations (Fig. 4-10).
2. In the Tranformations dialog box (Fig. 4-11), move the variable "N2" from the Variables list in the left column to the Transformation Expression text area by highlighting the variable and clicking on the right-arrow button to the left of the Transformation Expression text area.
3. Insert an equals sign ($=$) after the "N2" variable (e.g. N2=).
4. Insert the square function into the Transformation Expression text area by scrolling down the Functions list in the right column, highlighting the function " $\operatorname{Sqr}()$ ", and clicking on the left-arrow button to the left of the "Functions" list (Fig. 4-12). The equation in the Transformation Expression text area should be:
N2=Sqr()

Figure 4-11

Figure 4-12

To take the square of the "Nrate":

1. Move the variable "Nrate" from the Variables list in the left column to the

Transformation Expression text area by highlighting the variable and clicking the rightarrow button to the left of the Transformation Expression text area.

The expression "N2=Sqr(Nrate)" appears in the Transformation Expression text area (Fig. 4-13).

2. Click Go.

The transformation is executed and the new values are added into the $N 2$ column (Fig 4-14).

Figure 4-13

Figure 4-14

C. Quadratic Regression

To execute the regression analyses:

1. From the main menu, select Statistics, Linear Models, Linear Regression (Fig. 4-15)
2. In the Linear Regression dialog box (Fig. 4-16), move the variable "TotalYld" from the "Variables" list in the left column to the Dependent Variable list in the right column by highlighting the variable and clicking n the right-arrow button to the left of the Dependent Variable list.
3. Move the variables "Nrate" and "N2" from the Variables list in the left column to the Independent Variable list in the right column by highlighting each variable one at a time and clicking on the right-arrow button to the left of the Independent Variable list.
4. Click OK.

Statistix 8 performs the linear regression analyses and provides a table of the coefficients (Fig. 4-17, Table 4-2).

Figure 4-15

Figure 4-16

Figure 4-17

D. Interpretation of the Regression Analysis

Table 4-2

Predictor Variables	Coefficient	Std Error	T	P	VIF
Constant	2.42625	0.18602	13.04	0.0000	
Constant or Intercent is 2.43					
NRATE	0.01119	0.00184	6.10	0.0001	12.4
Coefficient for Nrate is 0.01					
N2	-1.180E-05	3.668E-06	-3.22	0.0074	12.4

| Conefficient for N2 is $-1.18 \mathrm{~F} .-0.5$ or -0.0000118 | | | |
| :--- | ---: | ---: | ---: | ---: |
| R-Squared | 0.9111 | Resid. Mean Square (MSE) | 0.11720 |

The R-squared (R^{2}) value is .91 or 91% which in this case indicates a good relationship.

E. Model Defined

The model for this example is defined as:

$$
\mathrm{Y}=a+B_{1} \mathrm{X}+B_{2} \mathrm{X}^{2}
$$

Where: Y is estimated yield; a is intercept and B_{1} and B_{2} are partial regression coefficients.
In our example, the quadratic regression equation would be written with the following coefficients:

$$
\text { Yield }=2.42+0.01 \mathrm{~N}+-1.18 \mathrm{E}-05 \mathrm{~N}^{2}
$$

F. Application and Presentation of Regression Equation

A quadratic equation fit the real data on which this example was based better than the linear equation we used earlier (91% vs. 83%). We can conclude that eastern gamagrass evaluated in this study produced a curvilinear response to N fertilization (Fig. 4-18).

Figure 4-18
We can also use the quadratic equation to predict the yield of eastern gamagrass at a treatment level not included in the data. For example, we wish to estimate the yield of eastern gamagrass fertilized with $200 \mathrm{lbs} /$ acre N . Insert 200 in the partial regression coefficients (N and N^{2}) and calculate the estimated yield.

$$
\text { Yield }=2.42+0.01(200)-1.18 \mathrm{E}-05(200)^{2}
$$

The estimated yield of eastern gamagrass fertilized with 200 lbs of $\mathrm{N} /$ acre is 3.9 tons/acre.

The quadratic equation can also be useful in determining at which treatment becomes cost-effective or the treatment level associated with the maximum or minimum response. For example, we wish to determine the N rate at maximum yield. To make this calculation we will take a derivative of the regression equation and set it equal to 0 (zero) and solve for N (nitrogen).

The equation becomes:

$$
\begin{aligned}
& B_{1}+2\left(B^{2} N\right)=0 \\
& \text { Solving for Nitrogen }=\frac{B_{1}}{-2 B_{2}} \\
& \text { Nitrogen }=\frac{0.01}{-2(0.0000118)}
\end{aligned}
$$

Nitrogen $=424$
The N rate at maximum yield occurred at $424 \mathrm{lb} / \mathrm{acre}$.

Chapter 5: Missing Data

I. Missing Data

A. Description

There is a difference between missing data and the number zero (0). For example, if cultivar A was used as standard of comparison in an adaptation trial in Pullman, WA and was winterkilled, then it would be reported as a 0 because the cultivar was not adapted. Conversely, if you have 10 clover cultivars planted in a randomized complete block with four replications and deer forages on cultivar A in replication 4, and no production data can be collected, then replication 4 would be reported as missing data.

There are times when you may encounter missing data in your experiment. There are techniques to estimate missing data that are based on data for the treatment with the missing value that are available and data for treatments in the surrounding plots (see Gomez and Gomez, 1984). However, the question is can statistical analyses be performed on data collected from unequal observations? In other words, can data collected from "accession A" from 3 observations (replications) be compared to data collected on accessions from 4 replications without estimating a missing value for accession A? The answer to this question is yes. Statistix 8 handles missing data for a treatment observation without requiring that you estimate a missing value for the treatment.

For example, you collected yield data on 5 accessions of wheatgrasses that were planted in a randomized complete block design replicated 4 times (Fig. 5-1). Unfortunately, you were unable to collect data on accession 4567 in replication 1 and accession 1245 in replication 2 due to loss of the sample. In the dataset, the missing data is represented by the letter "M".

Perform the analysis of variance for a randomized complete block design with the missing data in the dataset (Fig. 5-2).

Figure 5-1

Grand Mean 8401.5 CV 5.22

Relative Efficiency, RCB 1.13
Means of YIELD for ACCN

ACCN	H	Mean	SE
1245	3	10797	252.98
1580	4	5407	219.09
4567	3	10882	252.98
4689	4	8803	219.09
7890	4	6120	219.09

Figure 5-2

B. Results and Interpretation of the Analyses

Rather than discuss all of the numbers in the analysis of variance we will discuss those of interest to the user (Table 5-1).

Table 5-1

Source	DF	SS	MS		Since the P value is
REP	3	1148484	382828		less than 0.05 then we
ACCN	4	$9.005 \mathrm{E}+07$	2.251E+07	117.25	conclude that there are
Error	10	1920020	192002		significant differences
Total	17				between wheatgrasses.

Note: SS are marginal (type III) sums of squares
A Type III sums of squares test the same hypothesis that would have been tested if the cell size would have been eaual that is. if there was no missing data.

Grand Mean 8401.5 CV 5.22

Tukey's 1	Degree of	Freedom	Test	for	Nonadditivity	
Source	DF	SS	MS	F	P	
Nonadditivity	1	401596	401596	2.38	0.1573	
Remainder	9	1518424	168714			

Relative Efficiency, RCB 1.13

Since there were significant differences in wheatgrass accessions as determined by the analysis of variance ($\mathrm{p}=0.0000$), you may perform a mean separation test to determine significant means and report the results.

Chapter 6: Data Transformations

I. Introduction

The analysis of variance is valid when certain assumptions are made such as additive effects, (treatment and environmental effects are additive) independence of errors (experimental errors are independent), homogeneity of variance (experimental errors have common variance) and normal distribution (experimental errors are normally distributed). When these assumptions are not valid (e.g. when there is a significant treatment x replication), data transformations may be used. Some of the more popular data transformations are square root, logarithmic, and arc sine. In another chapter, we used the square root transformation of N rate to create a new variable named N 2 .

II. Tukey's One Degree of Freedom Test of Non-additivity

A. Description

Statistix 8 conducts a Tukey's One Degree of Freedom Test for Non-additivity for a randomized complete block design analysis of variance. In the example given in chapter 2, we found that there was no suggestion of non-additivity in the Yield1 data of the switchgrass cultivar trial ($\mathrm{p}=0.4649$). If the P value had been less than $p=0.05$, which would have indicated the likely presence of nonadditivity, we would have transformed the data in an attempt to reduce the non-additive effect. The question is how do we transform the data to remove the non-additive effect and how is it reported?

For this example, we will use seed weight data of 7 accessions of crested wheatgrass harvested from plots arranged in a randomized complete block design with four replications (Fig. 6-1). You perform the analysis of variance (Fig. 6-2).

Figure 6-1

Figure 6-2

B. Results and Interpretation of the Analyses

Results of the analysis of variance (Table 6-1) indicate that there are significant differences in crested wheatgrass accessions as indicated by the P value of 0.0234 . However, we also find that there is evidence of non-additivity effect as determined by Tukey's 1 Degree of Freedom Test for Non-additivity ($\mathrm{p}=0.0415$). The next step is to see if we can reduce the non-additivity by transforming the data.

Table 6-1

Grand Mean 29.954 CV 36.31


```
Means of SEEDWT for CWHEAT
```

CWHEAT	Mean
4409	25.175
6293	28.460
6622	41.782
7320	20.210
7401	37.773
7432	39.403
7621	16.875

Observations per Mean 4
Standard Error of a Mean 5.4381
Std Error (Diff of 2 Means) 7.6906

III. Transforming the Data Using Logarithmic

A. Transformation

To transform the seed weight data into a logarithmic scale:

1. From the main menu, select Data, Transformation (Fig. 6-3).
2. In the Transformation dialog box (Fig. 6-4), in the Transformation Expression text box, enter "NEWT=" without quotes, to represent new weight (Fig. 6-5).
3. In the Functions list, scroll down and select "Log(x)" and click on the right arrow button to insert the $\log (\mathrm{x})$ function into the Transformation Expression text area (Fig. 6-6).

Figure 6-3

Figure 6-5

Figure 6-4

Figure 6-6

The seed weight variable upon which the data transformation will be performed is now added to the mathematical equation.
4. Insert "SEEDWT" within the parenthesis by highlighting the variable in the Variables list and clicking on the right-arrow button to the left of the Transformation Expression text area, to achieve (Fig. 6-7):
(NEWT=Log(SEEDWT)

5. Click Go.

A new variable named "NEWT" plus the logarithmic of the seed weight data is inserted into the original data set (Fig.6-8).

To determine if transforming the data removed the nonadditivity effect, we will perform an analysis of variance on the "NEWT" variable.

Figure 6-7

Figure 6-8

B. Results and Interpretation of the Analyses

Since the P value for the Tukey's 1 Degree Test for Nonadditivity is greater ($\mathrm{p}=0.3887$) than $\mathrm{p}=0.05$ then we can conclude that transforming the seed weight data using the logarithmic transformation was successful in removing the nonadditivity effect (Table 6-2).

Table 6-2

Randomized Complete Block AOV Table for NEWT

				MS	F	P
Source	DF	SS	MS			
REP	3	0.03514	0.01171			
CWHEAT	6	0.54876	0.09146	4.54	0.0057	
Error	18	0.36228	0.02013			
Total	27	0.94617				

Grand Mean 1.4380 CV 9.87

Tukey's 1 Degree of Freedom Test for Nonadditivity

Source	DF	SS	MS	F	
N					
onadditivity	1	0.01594	0.01594	0.78	0.3887
Remainder	17	0.34633	0.02037		

Relative Efficiency, RCB 0.94
Means of NEWT for CWHEAT

CWHEAT	Mean
4409	1.3935
6293	1.4458
6622	1.6139
7320	1.2954
7401	1.5556
7432	1.5591
7621	1.2027

Observations per Mean 4
Standard Error of a Mean 0.0709
Std Error (Diff of 2 Means) 0.1003

C. Presenting the Results

Now that we have successfully transformed the data and removed the nonadditivity effect, how is the transformed data used and how do you present the results? Since the analysis of variance determine that there were significant differences in the crested wheatgrass accessions ($\mathrm{p}=0.0057$; Table 6-2) then perform an all Pairwise Comparison Test (e.g. Tukey’s HSD) on the transformed means to determine differences between accessions (Fig. 6.9).

Like any other data presentation, report the original seed weight data of the 7 crested wheatgrass accessions (means are found in Table 6-1) in a table but use mean separation test results from the transformed data (Fig. 6.9). Results are presented in Table 6-3. If the paper is peer viewed for symposia proceedings or journal article, you will need to report in the materials and methods section that the seed weight data was transformed (e.g. logarithmic, square root, etc.). It would also be advisable to report it in the PMC ATR.

```
Statistix - [Randomized Complete Block AOV - All-pairwise Comparisons]
目 Eile Edit Results Window Help
```



```
Tukey HSD All-Pairvise Comparisons Test of NEHT for CHFEAT
```

Tukey HSD All-Pairvise Comparisons Test of NEHT for CHFEAT
CFHEAT Mean Homogeneous Groups
CFHEAT Mean Homogeneous Groups
6622 1.6139 A
6622 1.6139 A
7432 1.5591 A
7432 1.5591 A
7401 1.5556 A
7401 1.5556 A
6293 1.4458 AB
6293 1.4458 AB
4409 1.3935 AB
4409 1.3935 AB
7320}101.2954 AB
7320}101.2954 AB
7621 1.2027 B
7621 1.2027 B
Alpha 0.05 Standard Error for Comparison 0.1003
Alpha 0.05 Standard Error for Comparison 0.1003
Critical Q Value 4.674 Critical Value for Comparison 0.3315
Critical Q Value 4.674 Critical Value for Comparison 0.3315
Error term used: REP*CWHEAT, 18 DF
Error term used: REP*CWHEAT, 18 DF
There are 2 groups (A and B) in which the means
There are 2 groups (A and B) in which the means
are not significantly different from one another.

```
are not significantly different from one another.
```


Figure 6-9

Table 6-3

Presenting crested wheatgrass seed weight using original means in Table 6-1 and the means separation test using Tukey's HSD in Fig 6-9 that was performed on the transformed data.

	Seed weight
Accession	--------- -g/plot-----------
	$41.782 \mathrm{a}^{*}$
6622	39.403 a
7432	37.773 a
7401	28.460 ab
6293	25.175 ab
4409	20.210 ab
7320	16.875 b
7621	
Mean	29.954
* Means followed by the same letters are not significantly different	
as determined by Tukey's HSD at $\mathrm{P}<0.05$.	

Chapter 7: Other Model Statements

I. Other Model Statements

Listed below are examples of model statements that Statistix 8 recognizes and will perform the appropriate analyses given the model statement has been correctly entered.

In most situations, neither the order in which terms are specified in the model nor the order in which variables are specified within terms has any influence on the analysis. The only exception occurs in certain models with multiple error terms.

Example 1: Completely randomized design, also called the one-way design. If the treatment factor is A , the model is specified simply as:

A

Example 2: Randomized complete block design. BLK is the factor for blocks and A if the treatment factor.

BLK A

Example 3: Single-factor Latin square design. The variables ROW and COL are the row- and column blocking factors, and A is the treatment factor.

ROW COL A

Example 4: Three-factor factorial in a completely randomized design with all two factor interactions.

A B C A*B A*C B*C
Note: The example factorial design above could be entered more concisely using the ALL2 keyword.

ALL2(A B C)

Example 5: Split-plot design. The variable REP is the factor for replication, A is the main-plot factor, and B is the subplot factor.

REP A REP*A(E) B A*B
Note: the interaction REP*A is an error term. The three factor interaction term REP*A*B is also an error term, but was omitted above because Statistix 8 always adds the high order interaction term automatically.

Example 6: Strip-plot design. The variable REP is the factor for replication, A is the main-plot factor, and B is the subplot factor.
REP A REP*A(E) B REP*B(E) A*B

Example 7: One-way repeated measures design. SUBJ is the subjects factor and A is the withinsubjects factor.

SUBJ A

Example 8: Two-factor repeated measures design with a between-subjects factor A and a withinsubjects factor B.

A SUBJ*A(E) B A*B
Examples 1-8 above are all models that could be more easily specified using the specific AOV procedures discussed earlier in this chapter. But the General AOV/AOCV procedure allows you to specify other models, including variations of the above models.

Example 9: A two-factor nested model with factor B nested within factor A.
A B*A
Compare the nested model with the two-factor cross-classified (factorial) model:
A B A*B
Example 10: A three-factor factorial experiment in a split-plot design. The factors A and B are both main-plot factors, and C is the subplot factor.

REP A B A*B REP*A*B(E) C A*C B*C A*B*C

Chapter 8: Converting MSTAT-C Files to Statistix 8 Files

Many PMCs and PMSs used MSTAT-C to analyze performance data of plant accessions and cultivars. The question is how to convert MSTAT-C data files into Statistix 8 files without reentering the data? The following steps provide a procedure on how to convert MSTAT-C files to Statistix 8 files:

Step 1 Open the file in MSTAT-C.
Step 2 Select 41 (SEDIT). Select which variables that you want to convert (i.e., $1=$ rep; 4 = seed trt; 5 = cultivar, etc.

Step 3 Select 36 (Printlist) and chose all cases
Step 4 Enter the variables of interest (i.e., 1, 4, 5)
left justified = No
wide paper $=$ No
paginagation $=$ No
variable description $=$ No
Step 5 Save output to disk
Step 6 Exit MSTAT-C
Step 7 Open OUTPUT file in Microsoft Word (Excel had problems copying alphanumeric variables).

Step 8 Open Statistix 8
Step 9 From the main menu bar in Statistix 8 select Data, Insert, Variables
Enter the name of the variables you want to move over from the MSTAT-C file. For example, rep, seedtrt, cultivar

Step 10 Copy data from OUTPUT to Statistix 8 spreadsheet (shift-alt to prevent copying the "case no." column)

Step 11 Save file

