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ABSTRACT

The use of internal state variables in modeling of inelastic solids is
gaining widespread usage in current research. Therefore, it is useful to con-
struct a well-defined framework for internal state variable models which is
based in continuum mechanics. The objective of this paper is to review and
clarify the general theory of internal state variables and to apply it to in-
elastic metals currently in use in high temperature environments. In this
process, certain constraints and clarifications will be made regarding internal
state variables.

It will be shown that the Helmholtz free energy can be utilized to con-
struct constitutive equations which are appropriate for metallic superalloys.
Furthermore, internal state variables will be shown to represent locally av-
eraged measures of dislocation arrangement, dislocation density, and inter-
granular gracture. Finally, the internal state variable model will be demon-
strated to be a suitable framework for comparison of several currently pro-
posed models for metals and can therefore be used to exhibit history depen-
dence, nonlinearity, and rate as well as temperature sensitivity.

INTRODUCTION

The prediction of inelastic behavior of structural materials at elevated
temperature is a problem of great importance which has accordingly been given
a great deal of interest by the research community in recent years. These
materials exhibit substantial complexity in their thermomechanical constitu-
tion. In fact, so complex is their material response that it could be argued
that without useful a priori information, experimental characterization is fu-
tile. The purpose of this paper is to show how the thermodynamics with in-
ternal state variables can be utilized to emplace certain constraints on the
allowable form of thermomechanical constitutive equations, thus providing some
limited insight regarding experimental requirements.

Historically, there have been two distinct approaches to the modelling
of inelastic materials: 1) the functional theory [1], in which all dependent
variables are assumed to depend on the entire history of independent variables;
and 2) the internal state variable (ISV) approach [2], wherein history depen-
dence is postulated to appear implicitly in a set of internal state variables.
Lubliner [3] has shown that in most circumstances ISV models can be considered
to be special cases of functional models. For experimental as well as ana-
lytic reasons numerous recently proposed models for the classes of materials



discussed herein have been proposed in ISV form. Therefore, in this paper
the ISV method will be reviewed as well as clarified and it will be shown that
this general framework is useful in modeling metals at elevated temperature.

The paper begins with a review of ISV theory, and this is supplemented
with a section describing the procedure for constructing macroscopically av-
eraged internal state variables. These concepts are then applied to metals'
at elevated temperatures. Finally, applications to boundary value problem
solving techniques are discussed.

REVIEW OF THE INTERNAL STATE VARIABLE (ISV) APPROACH

The concept of internal state variables, sometimes called hidden vari-
ables, was apparently first utilized in thermodynamics by Onsager [4,5] and
numerous applications are recorded since the second world war [2,6-14]. Al-
though not originally described for application to solids, the approach which
will be discussed herein is due to Coleman and Gurtin [2].

In the theory of internal state variables applied to solids the follow-
ing state variables are required in order to fully characterize the state of
the body at all points x. and at all times t:*

1) the displacement field u. = u.(x, ,t) ; (1)
* 1 1 K.

2) the stress tensor a.. = a..(x. ,t) ; (2)
ij 13 k

3) the body force per unit mass f. = f. (x, ,t) ; (3)
i i k

4) the internal energy per unit mass u = u(x, ,t) ; (4)
tc

5) the heat supply per unit mass r = r(x, ,t) ; (5)

6) the entropy per unit mass s = s(x, ,t) ; (6)

7) the absolute temperature T = T(x ,t) ; (7)
rC

8) the heat flux vector q. = q. (x, ,t) ; (8)
i i K

and

9) c = c (xm,t) , k = 1, 2 n ; (9)

•K
where c.̂ . are a set of n internal state variables which are necessary to
account for inelastic material behavior. Although they are listed here as
second order tensors, they may be tensors of other rank as well [15].

* For convenience, only infinitesimal deformations will be considered here,
although the general theory applies to finite deformations as well.



The method of Coleman and Noll [16] may be used to obtain the spatial
and time distribution of the body force f^ and heat supply r from the conser
vation of linear momentum and energy, respectively, assuming the displace-
ments u-^ and the temperature T are specified independent variables. Subse-
quently, it is hypothesized that constitutive equations of state may be con-
structed for the state variables described in (1) through (8) in terms of

' amn(xk't})

u. and T and their spatial derivatives:

U(VC) - ̂WV^' T(Vt), 8m(VC)' amn(xk't)} :.(11)

s(xk,t) = s(emn(xk,t), T(xk,t), gm(xk,t), aPn(xk,t)) ; (12) and

q.(xk,t) = q^Oc^t), T(xk,t), gjx̂ t), ajn(xk,t)) ; (13)

where g is the spacial temperature gradient T ,m and

e. . = %(u. . + u. .) . (14)
ij i.J J.1

The form of equations (11) through (13) implies that all constitu-
tive equations are evaluated in the specified state (x^. t) . For this rea-
son 3jH , u» s> anc* 1± are termed observable state variables since they
can be determined from equations of state even though there is implicit
history dependence via the internal state variables o^ , which are defined
to be of the form:

«ij — i j ( £ m n ' T ' V * m n > ;

where time and spacial dependence have been dropped for notational con-
venience. If equations (15) are at all times integrable in time, then
the following form is equivalent to (15):

= /
J •

where t is the time of interest and t' is a dummy variable of integra-
tion. Therefore, it is apparent that a^j are not directly observable
at any time and must therefore be considered to be hidden or internal.

Although the above framework has been shown to be applicable to rate
dependent crystalline solids [17,18], it is often misconstrued that the ab-
sence of explicit, strain-rate dependence renders the model inappropriate
for use in viscoplasticity theories. It is alternatively hypothesized that

a. . = o. .(£ , e , T, g , a'c ) (17)
ij ij mn mn &m mn

is an appropriate form of thermomechanical constitutive equations (10). Al-
though metals at elevated temperature certainly exhibit strain-rate depen-
dence, there are several reasons why equations (17) are less desirable than
equations (10). First, equations (17) are not actually equations of state
since the inclusion of strain rate implies knowledge is required at some time
other than the current time t. Secondly, as demonstrated in discussions of



materials similar to (17) but without internal state variables [19], very
little useful information will come from thermodynamic constraints. Finally,
explicit strain rate dependence is actually redundant for the materials dis-
cussed herein, as will be shown later. Therefore, although this is certainly
a semantical issue, equations (10) through (13) and (15) are utilized as the
constitutive model in the balance of this paper.

It should also be pointed out that internal state variable growth laws
(15) could contain explicit strain-rate dependence:

a.. = nk.(£ , e , T, e , a£ ) , (18)
ij ij ran mn °m mn

as in the example of a rate independent elastic-plastic material , in which
equations of the above form are linear in strain rate:

a*. = fik. (e , T, e , <xA )e . (19)
ij ijpq mn °m mn pq

Such a form, although not excluded by the principle of equipresence [20],
is only necessary in the circumstance wherein specific rate independence is
required, as can be demonstrated by direct substitution of (19) into (16).
Furthermore, although the thermodynamic constraints will vary somewhat when
(19) are utilized [21,22], the results will be quite similar to those described
below.

. On the basis of the Coleman-Mizel procedure [23] it can be shown that
satisfaction of the first and second laws of thermodynamics for the class of
materials detailed above will lead to the following conclusions:

h 5 u - Ts = h(e , T, a
k ) ; (20)

mn mn

where h is the specific Helmholtz free energy;

3h /-ION
s = - 3r - ; (22)

and

) • (23)

Equations (21) should not be interpreted as defining as hyperelastic material
since the Helmholtz free energy, described by (20), is dependent on the in-
ternal state and therefore path dependent.

Although not directly related to our problem, it is useful to note that
the path dependence of the Helmholtz free energy precludes the usefulness
of equations (21) in Rice's J-integral for fracture mechanics [24]. However,
in the case wherein the loading path is radial:

e. . = k. .1 ; o^. = k*.I ; I = V~£ . . e . . , (24)



v
where kjj and kjj are constant coefficients, then it is well known that equa-
tions (15) are directly integrable so that the free energy can be described
by

h(e , T, a1 ) = h(e , T, a1 (e )) =mn pq mn pq mn
U , T)mn (25)

Thus, for the case of proportional loading only, the constitutive equa-
tions are derivable directly from a potential function and the J-integral
method is applicable.

THE LOCAL AVERAGING PROCESS

Constitutive equations (10) through (13) and (15) are theoretically
pointwise in nature; that is, they are applicable to fixed infinitesimal
material points. However, practically speaking, there is no way to construct
experiments on material points since at the microscopic level the continuum
assumption becomes invalid. Rather, it is considered acceptable to construct
constitutive equations by subjecting local specimens to surface deformations
(or tractions) which lead to spacially homogeneous stresses and strains so
that some local average of the pointwise observable state variables can be
determined directly from the effects on the boundaries of the specimens.

As shown in Fig. 1, the scale of the smallest dimension of a local speci-
men is generally constructed so as to be at least an order of magnitude larger
than the scale of the largest material inhomogeneity. This sizing helps pre-
serve the continuum assumption while at the same time averaging out the effects
of point defects such as crystal lattice dislocations. Conversely, the scale
of the largest dimension of a typical specimen should be as small as possible
compared to the scale of the global boundary value problem of interest. This
constraint is necessary in order to pre-
serve the notion that constitutive equa-
tions are indeed pointwise in nature, but v ^
it is pragmatic in that it is a simple
matter of economy.

The local rather than pointwise con-
stitutive equations that result from ex-
perimentation are assumed to be of the
same form as pointwise equations (10)
through (13) and (15). For example, in
the uniaxial test described in Fig. 1
it is customary to define
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and

T = , (28)

where L is the local specimen gage length, A is the cross-sectional area in
the x9-x3 plane, and (a±, a2, a-j) is some arbitrary point on the surface of
the specimen. Utilizing these quantities, it is then hypothesized that

T'

wherec.

-ji _ i r £ , ,a = rr la dx. dxmn V J mn 1 2 dx3

(29)

, (30)

and all quantities with bars represent the locally measured state variables.

Although equations (29) represent an often used way of relating point-
wise equations to experimental results, the local averaging process is never-
theless fraught with shortcomings since definitions (26) through (28) all re-
resent nonunique relations between pointwise_state variables a±j , cjj , T, a^
and their locally defined counterparts 'ai j , £.j_j , T, and a^j . There are in
fact an infinite number_of distributions ̂ (̂x̂ , x2, x-j) which will result
in identical values of ot̂ . However, assuming that the scale of inhomogen-
eities is small and that the distribution of o^ is random the specimen will
be statistically homogeneous and the relation between o™n and o^n will be
reasonably one to one.

For example, suppose that during some monotonically increasing local
strain history £^ a particular internal state variable an such as a single
dislocation arrangement is governed on a pointwise basis by the almost dis-
continuous behavior shown in Fig. 2. Suppose further that the time t at
which the internal state begins to change
is determined by the pointwise stress
state. Then the number of dislocation
rearrangements occurring in the local
specimen as a function of time might be
distributed as shown in Fig. 3. If the
local specimen is large compared to the
scale of the dislocation, and there are
numerous dislocation rearrangements, as
is usually the case in testing of metals,
then the peak of the curve shown in Fig.
3 will be several orders of magnitude
greater than unity. It follows from
equations (30) that the locally averaged
value of the internal state variable
represented in Fig. 2 will be as quali-
tatively shown in Fig. 4.

t ,'d't
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APPLICATION TO METAL CONSTITUTION

In order to describe the class of metals discussed herein, the free en-
p

ergy maybe expanded in terms of the elastic strain tensor c£^ and the temper-
ature T in a second order Taylor series expansion as follows:

E I T1_« J- i

£ij = £ij * £ij - £ij ' '

T Iwhere e^-j is the thermal strain tensor and e-n is the inelastic strain tensor,
considered to be an internal state variable [17,18,22,25], and

- W (T - V ' (32)

where the subscript R refers to quantities in the reference state, D. is
/32h\ 1J

the linear elastic modulus tensor, and Cv E -TÎ =-2") is the specific heat at

constant elastic strain. Substitution of equation (32) into (21) will result
in

a, = D. . (e - s1 - £T ) . (33)
kl klmn mn mn mn

The above equations, together with internal state variable growth laws (15),
will be shown to be a suitable framework for comparison of all of the models
to be discussed herein.

Internal State Variables in Metals

It is now generally agreed in the literature that in single crystals there
are two locally averages internal state variables: the back stress (a )

ijrepresenting dislocation arrangement; and the drag stress (a?) representing
dislocation density; where the bars have been dropped for convenience and the
superscript has been converted to a subscript in order to avoid the confusion
which would arise if a state variable were raised to some power. For obvious
reasons the back stress is a second order tensor, whereas the drag stress is
a scalar. In specimens composed of multiple crystals it is generally agreed
that a third internal state variable loosely termed damage (a-j ) is neces-

sary in order to account for intergranular mechanisms such as grain boundary
sliding and microvoid growth and coalescence that may occur at high tempera-
ture and/or large strain. Although damage is obviously a directionally re-
lated quantity and therefore tensorial in nature, it is difficult to distin-
guish phenomenologically between damage and drag stress since both are pri-
marily stiffness reducing mechanisms.

Within the thermodynamic framework described earlier it is also possible
to define the inelastic strain tensor to be an internal state variable. How-
ever, this interpretation is not generally utilized within the materials



literature. It is hypothesized that the
rate of growth of the internal state vari-
ables does not depend on the inelastic
strain tensor so that

no. of dislocation
rearrangements in
a local 4

specimen

\j = • (34)
mn mn

Due to the form of equations (34) it is
said that since the inelastic strain ten-
sor does not appear on the right hand
side it is not an internal state vari-
able. However, within the framework de-
fined herein, it is still possible to
construct an internal state variable
growth law of the form

Li -
;ij '= V£mn'T'Val 'Va3 (35)

mn nin
-1

-H-

which is precisely in agreement with def-
initions (15).

In order to qualitatively verify the
supposition that the inelastic strain ten-
sor can be regarded to be an ISV, consider
the example of a uniaxial bar subjected to
applied displacements such that the end
tractions will be evenly distributed. It
is customary to deduce the inelastic strain
in an experiment of this type by utilizing
the output from a load cell to determine
the stress and then making use of equations
(33) to determine the elastic strain. This result and the total strain mea-
sured by an extensometer are then substituted into equations (31) to deter-
mine the inelastic strain. Nevertheless, this does not imply that the inelas-
tic strain tensor in an observable state variable. This result can be arrived
at only in constitutive experiments such as uniaxial bar tests in which the
stress and strain tensors are spacially homogeneous. In heterogeneous boun-
dary value problems, only two state variables may be input (temperature and
either stress or strain), and for this case equations (31) and (33) must be
supplemented with an ISV growth law of the form of equations (35) in order
to determine the inelastic strain tensor. Therefore, in the context of the
current thermodynamic framework the inelastic strain tensor may be interpreted
to be an ISV.

dt

Figure 4

A Framework for Current Metals Models

In order to establish that current models can be constructed from equa-
tions (33), consider the standard solid shown in Fig. 5. The governing dif-
ferential equation for this analog is

n F. "M • ™
M

(36)



where by convention the stress is denoted
G and the strain is e. Equation (36) may
be written in the following equivalent
form

\ [EM+EJ '
(37)

00 .

In accordance with the instantaneous lin-
ear elastic behavior of metals, it is as-
sumed that E

EM+E°° = E = Young's modulus = constant, (38)

so that it is clear that equation (37) can
be integrated in time to give the following _
stress formulation j !

O(t ) I !
£(t ) = ——- + ei(t ) . (39) f rL & J- ; a

where £ is the inelastic strain, defined
by

/

I E ra_E £T , Figure 5

IT —lf^dt ' (40>

Equation (39) may be solved for the stress and substituted into equation (40)
so that it is clear that equation (40) is in accordance with ISV growth laws
(16). Further, it can be seen from the standard solid analog in Fig. 5 that
since o-Ê E represents the stress in the Maxwell element, E1 is not observ-
able, so that £•"- satisfies the two conditions required for it to be an internal
state variable.

Equation (39) may be written equivalently in the following strain for-
mulation:

^ = E[£(tl) - £
I(t1)] . , (41)

which is an equation of state compatible with constitutive equations (10) as
well as equations (33) . Since no other internal state variables are present
in this equation, and also, no additional internal state variables are present
in growth law (40) it is apparent that the standard solid analog with constant
coefficients E , n and E^ is a single internal state variable model.

It has been noted by several researchers that the standard solid is an
appropriate analog for thermoviscoplastic metals if the springs and dashpot
are nonlinearized [26,27]. In order to demonstrate this feature, consider a
multiaxial extension of equation (36):



c + K a = G £ + M £ , (42)
pq pqmn mn pqmn mn pqmn mn

where by convention the small strain tensor £.jj is used in conjunction with
the work conjugate stress tensor a^ . In order to model metals
and Mpqmn are required to be nonlinear in some as yet undetermined way. In
addition, in accordance with, constraint equation (38), it is required that

K?! M . - = D. ., . , (43)ijmn mnkl ijkl

where Djjkl is the linear elastic modulus tensor. Equations (42) may be re-
written in a strain formulation equation of state form as follows:

where £r is the inelastic strain tensor, defined by

•L s /' ̂ [a -G £ ]dt . (45)
pq pqmn mn

Substituting equations (43) and (44) into equations (45) will result in
t

e1. = / {KT! [£ - E1 ] - M?1 G £ } dt , (46)
ij J ijmn mn mnj ijpq pqmn mn

—oo

so that equations (46) are in accordance with growth laws (.16). The number
of internal state variables contained in the model will depend on the degree
of nonlinearity proposed in the nonlinear tensors Kpqmn, Gpqmn, and Mpqmn,
and this will be discussed in the following section. However, before continu-
ing, it should be pointed out that the constitutive equations developed in
this section assume that the elastic and inelastic strain tensors may be lin-
early decoupled. It has been shown that this assumption is invalid for finite
deformation [28]. However, even under finite deformation conditions the in-
elastic strain is decoupled from the elastic strain in such a way that the
inelastic strain tensor may be considered to be an internal state variable.

Current Models for Metals

The framework for metals models discussed in the previous section can
be used to describe numerous models currently under development [26,27,29-58].
For example, the microphysically based isothermal model proposed by Krieg,
et al. , [30] is of the form described by equations (33):

where



e1. = e -<
1J O

pq pq

and £0 and m are material constants, and ajj is the deviatoric stress tensor
and a[ is the deviatoric component of the back stress tensor. Since equa-

tions (48) contain the stress tensor, substituting equations (33) into (48)
will result in equations consistent eith growth laws (15). In addition, Krieg,
et al., give the back stress and drag stress to be, respectively,

a -1pq pq
and

2 * \ j *S ~ rR '

where Aa and A^ are hardening constants, and ra and rR are recovery functions
of temperature and internal state variables. It can be seen that since ISV
growth laws (49) and (50) are consistent with equations (15) , the model pro-
posed by Krieg, et al., contains three internal state variables: the inelastic
strain tensor, the back stress tensor, and the drag stress tensor.

Furthermore, classical plasticity theories can be described by the gen-
eral form

aij = Dijmn (£mn ' ̂  > <5l>

where

% = * 3^7 • <")

•

A is a scalar valued function of state, and F is a scalar valued state func-
tion for inelastic behaviour often taken to be the yield function. If F is
described by the von Mises yield criterion [53], given by

F(a - a ) = Js(a - a ) (a - a ) = k2 , (53)
J ij 1J L±j 1J l±j

where a^ is a tensor describing the yield surface center in stress space and

k is a constant representing the yield surface size, then equations (52) can
be written as



eij = x(0ij-al..) ' (54)IJ
resulting in a kinematic hardening model with constant yield surface size.
Substitution of equations (51) into the above will yield a result consistent
with rate independent ISV growth laws (19).

Furthermore, if the yield surface translation is derived from the Ziegler
modification [60] of the Prager work hardening rule [61], it may be described
by

~ ai '
ij ij
•

where y is a scalar valued function of state. By use of equations (51), equa-
tions (55) can also be shown to be consistent with' equations (19). Therefore,
a classical plasticity-based kinematic hardening model contains two internal
state variables: the inelastic strain tensor and the yield surface transla-
tion tensor representing the back stress.

In order to further illustrate the applicability of equations (33), (35)
and (15) to current models for metals, ten of these models have been cast in
uniaxial form in Table 1 , wherein it is shown that although the framework for
each model is identical (Valanis ' model is in simplified form), the ISV growth
laws vary widely both in number and form.

CONCLUSION

The main content of this paper has been to review and clarify the continuum
and thermodynamics based internal state variable model for application to ther-
moviscoplastic metals. In this process the following points have been made:

1) the definition of an internal state variable utilized in this model
has been clarified;

2) internal state variables in metals represent local averages of dis-
location arrangement, dislocation density, and intergranular damage,

3) in the context of the ISV definition given here, inelastic strain may
also be interpreted as an internal state variable;

4).the path dependent Helmholtz free energy may be expanded in a second
order expansion in elastic strain and temperature in order to obtain a stress-
strain equation of state;

5) rate dependence enters the constitutive equations implicitly via the
inelastic strain, as demonstrated by the nonlinear standard solid analog; and

6) a three-dimensional generalization of the standard solid may be used
as a means of comparison of the general form of several currently proposed
models.



Further ramifications of the ISV model discussed are also of importance,
although not detailed herein. For example, this model may be utilized to con-
struct a coupled heat conduction equation which may be utilized to predict
heat, generation in thermoviscoplastic metals [62]. Furthermore, the concept
of internal state variables may be utilized to construct models for the mech-
anical constitution of composites with damage [63,15,65,66].
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