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ABSTRACT

This paper investigates the performance of the National Centers for Environmental Prediction (NCEP)
Noah land surface model at two semiarid sites in southern Arizona. The goal is to evaluate the transfer-
ability of calibrated parameters (i.e., direct application of a parameter set to a “similar” site) between the
sites and to analyze model performance under the various climatic conditions that can occur in this region.
A multicriteria, systematic evaluation scheme is developed to meet these goals. Results indicate that the
Noah model is able to simulate sensible heat, ground heat, and ground temperature observations with a high
degree of accuracy, using the optimized parameter sets. However, there is a large influx of moist air into
Arizona during the monsoon period, and significant latent heat flux errors are observed in model simula-
tions during these periods. The use of proxy site parameters (transferred parameter set), as well as tradi-
tional default parameters, results in diminished model performance when compared to a set of parameters
calibrated specifically to the flux sites. Also, using a parameter set obtained from a longer-time-frame
calibration (i.e., a 4-yr period) results in decreased model performance during nonstationary, short-term
climatic events, such as a monsoon or El Niño. Although these results are specific to the sites in Arizona,
it is hypothesized that these results may hold true for other case studies. In general, there is still the
opportunity for improvement in the representation of physical processes in land surface models for semiarid
regions. The hope is that rigorous model evaluation, such as that put forth in this analysis, and studies such
as the Project for the Intercomparison of Land-Surface Processes (PILPS) San Pedro–Sevilleta, will lead to
advances in model development, as well as parameter estimation and transferability, for use in long-term
climate and regional environmental studies.

1. Introduction

Numerous experiments have been carried out to
evaluate land surface models with a goal of facilitating

advances in model development. Many of these com-
parison studies have been undertaken by the Project for
the Intercomparison of Land-Surface Processes
(PILPS; Pitman et al. 1999; Henderson-Sellers et al.
1993, 1995) under the auspices of the Global Energy
and Water Cycle Experiment (GEWEX). However,
few of the evaluations have been carried out in semiarid
regions. Understanding the interaction of land surface
processes with climate is crucial for predicting the avail-
ability of water resources (i.e., groundwater and surface
water sources) in arid regions. The PILPS San Pedro–
Sevilleta experiment (Bastidas et al. 2004) is being un-
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dertaken using five semiarid vegetation sites in the
southwestern United States (including two from this
study). Length of data, seasonality, short-term climatic
events, and data quality are all issues that can impact
the estimation of model parameters. This analysis tests
some of the hypotheses for the calibration and cross-
validation schemes proposed for the PILPS intercom-
parison study.

Growing interest in the study of semiarid systems has
led to the formation of several interdisciplinary groups
instituted to furthering the understanding of hydro-
logic, ecologic, and atmospheric processes in semiarid
basins, including the Semi-Arid Land-Surface-
Atmosphere (SALSA) program (Goodrich et al. 2000)
and, more recently, the National Science Foundation
(NSF)-funded Science and Technology Center on the
Sustainability of Semi-Arid Hydrology and Riparian
Areas (SAHRA) (Sorooshian et al. 2002). Under these
programs, several flux tower and data collection sites
have been set up to investigate the coupling of surface
and climate processes and to investigate the interac-
tions of surface and groundwater systems. The avail-
ability of 4 yr of data from two distinct semiarid veg-
etation types allows us to study the diversity of these
environments and to analyze what degree of differen-
tiation (and, hence, parameter estimation) is needed for
modeling land–atmosphere interactions in semiarid re-
gions. The objectives of our work are threefold: 1) to
rigorously evaluate the performance of the Noah model
in semiarid regions, 2) to analyze transferability of the
model in semiarid regions (i.e., the ability to directly
transfer parameters to another site of similar climatic
and vegetated conditions), and 3) to evaluate the ability
of the model to capture variations in the energy and
water balance due to changes in climate forcings.

A background discussion is presented in the follow-
ing section. The study area and details of the region are
specified in section 3. Methods are described in section
4, along with a brief overview of the Noah model and
the optimization program used for parameter estima-
tion. Results are presented in section 5, with a discus-
sion and conclusions in section 6.

2. Background

The semiarid southwestern United States has expe-
rienced significant changes within the last century. In-
creasing population has had dramatic and varied im-
pacts on the region’s ecosystems. There have been
significant changes in the distribution and type of
vegetation found in the area, with large areas of native
grasses being replaced by Chihuahuan Desert shrubs
and mesquite trees. Human activities such as ranching,
agriculture, urban development, fire suppression, and
groundwater mining have influenced these transforma-
tions (Chehbouni et al. 2000). It is theorized that feed-
back influences on the local and regional climate have

caused a reduction in evaporation losses from the sur-
face to the atmosphere (Qi et al. 2000).

The scale at which surface fluxes are investigated
is crucial to understanding the dynamics of land–
atmosphere interactions (Rodriquez-Iturbe et al. 2001).
An evaluation of the performance of a land surface
model’s ability to capture high-frequency variations in
the water and energy budget (i.e., diurnal processes)
may be better suited for study at a finer spatial resolu-
tion, or point scale, before evolving to simulations of
regional-scale water balance, or global climate. Various
land surface modeling studies are occurring at the point
scale, but temporal aggregations are typically made to
evaluate model performance at the monthly and yearly
time scales (Wood et al. 1998; Schlosser et al. 2000;
Boone et al. 2001). This study focuses on the point (or
flux tower) scale and short time scales to allow for an
unbiased evaluation of the Noah model’s performance.

Parameter estimation for land surface models is still
traditionally done via a global land surface classifica-
tion scheme with standard values assigned for various
land cover or vegetation types. In many cases, calibra-
tion is problematic because data may not exist in re-
gions where comprehensive land surface studies are un-
dertaken, and little parameter estimation, and even less
validation, can be done. The validation of a model has
been defined as the “process of demonstrating that a
site-specific model is capable of making accurate pre-
dictions for periods outside a calibration period” (Refs-
gaard and Knudsen 1996). A model is considered vali-
dated if the accuracy and prediction during the valida-
tion period (outside of calibration) are within what are
defined as acceptable errors. The importance of cali-
bration (albeit manual or automatic) and validation
within the land surface modeling community is becom-
ing more accepted. This study will use a testing scheme
adapted from Refsgaard and Knudsen (1996), along
with previously developed multicriteria techniques
(Bastidas 1998; Gupta et al. 1999; Bastidas et al. 2001),
to obtain parameter values and conduct an objective
model performance assessment (validation) at the ob-
servational time step of 20 min.

3. Study area

a. Walnut Gulch

The study sites are part of the Walnut Gulch Experi-
mental Watershed in southeastern Arizona, a subbasin
of the Upper San Pedro River basin, located in the
borderland of southeastern Arizona and northeast So-
nora, Mexico. The San Pedro basin is a broad, high-
desert valley representing a transition between the So-
noran and Chihuahuan deserts. There is significant to-
pographic (1100–2900 m) and vegetation variation
within the basin, and the region experiences significant
variability in climate. Vegetation types in the basin in-
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clude a desert shrub steppe, grassland, oak savannah,
riparian corridor, and ponderosa pine at the higher el-
evations. The woody plants in the region tend to be
most active in spring or autumn (using deeper soil mois-
ture reserves), while the C4 grass species respond
quickly to upper soil moisture during the summer mon-
soon periods (Kemp 1983). Two specific study sites
were developed within Walnut Gulch during 1996: the
Lucky Hills site, with mixed desert shrub vegetation,
and the Kendall site, which is a semiarid grassland (Fig.
1). The two sites are located approximately 10 km
apart, with Lucky Hills at an elevation of 1372 m and
Kendall at 1526 m. Further details regarding the soils
and vegetation for these sites can be found in Emmer-
ich (2003) and Scott (1999).

b. Hydroclimatology

Annual rainfall in the Upper San Pedro ranges from
300 to 750 mm yr�1 (Goodrich et al. 2000). The mean
annual (1 July 1893–31 July 2003 for Tombstone, Ari-
zona) precipitation in the watershed is estimated at 356
mm yr�1, and mean annual temperature is 17°C (West-
ern Region Climate Center 2003). There are several
distinct climate periods in the Southwest—the winter
period, which receives a significant portion of the an-
nual precipitation, a distinct dry season in spring
(March through June), and the summer monsoon, typi-
cally from July through September, which brings con-
vective storms to the region and typically delivers over
half of the annual rainfall. Potential evaporation rates
in the lower parts of the basin are estimated to be 10
times the annual rainfall (Goodrich et al. 2000). Statis-
tics were gathered on the temporal variability of the
precipitation time series on the two sites. Some of these
data are displayed in Table 1. For the purposes of this
study, the monsoon period (MON) is defined as the
months of July, August, and September, and the winter
period (WIN) is defined as the months of December,
January, and February. Values for the study periods are

shown, along with the percent of annual precipitation
falling in the monsoon for each year (in parentheses).

Several climatic events occurred during the period of
the study data, including an El Niño period (1997/98
winter) and an extremely wet monsoon period (1999
summer). The 1997/98 El Niño significantly increased
the winter rainfall totals over Arizona during this pe-
riod (Buizer et al. 2000). During the 1999 monsoon,
Lucky Hills received 412 mm of rain, nearly 94% of the
annual rainfall during this monsoon season, while Ken-
dall received 315 mm of rain, which is 93% of the yearly
total. The precipitation time series for each year are
plotted in Fig. 2. Lines are drawn at 1 July and 30
September to designate the monsoon period.

c. Flux data

Micrometeorological measurements were initiated in
1996 at both the Kendall and Lucky Hills sites using a

FIG. 1. Kendall grassland and Lucky Hills desert shrub sites within the Walnut Gulch
Experimental Watershed [photos courtesy of B. Emmerich and U.S. Department of Agricul-
ture (USDA) Agricultural Research Service (ARS)].

TABLE 1. Temperature and precipitation totals for the desig-
nated study periods at the Kendall and Lucky Hills sites. Shown in
parentheses are the percent of the yearly total precipitation for
the monsoon period. The monsoon period (MON) is defined as
Jul, Aug, and Sep, and the winter period (WIN) is defined as Dec,
Jan, and Feb.

Kendall Lucky Hills Kendall Lucky Hills

Temperature
data (°C)

Precipitation
data (mm)

4-yr avg 16.86 16.91 372 480
1997 16.63 16.79 333 495
1998 16.43 16.56 365 338
1999 17.08 16.99 337 439
2000 17.30 17.29 451 649
1997 MON 24.25 24.72 151 (45%) 241 (49%)
1998 MON 24.38 24.94 250 (68%) 197 (58%)
1999 MON 22.64 22.88 315 (93%) 412 (94%)
2000 MON 24.26 24.63 158 (35%) 282 (43%)
1997/98 WIN 6.65 6.53 132 171
1998/99 WIN 9.99 9.55 9.2 9.9
1999/00 WIN 9.95 9.4 6.1 12.4
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Bowen ratio energy balance system. Continuous, 20-
min measurements of water and carbon vapor flux mea-
surements were collected for the four study years
(1997–2000). Along with these flux measurements,
standard meteorological data (shortwave radiation, air
temperature, precipitation, wind speed, precipitation,

and relative humidity) were also collected. Data for
both sites (4 yr) were subject to quality control with
particular attention to extraneous values and Bowen
ratio values approaching �1.0.

Annual mean diurnal cycles of sensible and latent
heat fluxes are displayed in Fig. 3. Each line in the

FIG. 2. Twenty-minute time series of precipitation for 4 yr at the (a) Kendall and (b) Lucky
Hills sites. The monsoon time period is designated with gray vertical lines at 1 Jul and 30 Sep.

FIG. 3. Annual mean diurnal cycle of sensible and latent heat at the Kendall and Lucky Hills
sites: (a) Kendall: latent heat, (b) Kendall: sensible heat, (c) Lucky Hills: latent heat, and (d)
Lucky Hills: sensible heat. Single-year diurnal fluxes are shown (1997, 1998, 1999, 2000) along
with the daily average flux for the 4-yr period (1997–2000). Note the scale on the latent heat
flux axis is half that of the sensible heat flux axis.

FEBRUARY 2005 H O G U E E T A L . 71



figures represents the aggregated daily average flux for
each of the 4 yr (i.e., the yearly average at each of the
72 twenty-minute time steps throughout the day), along
with the 4-yr average (note the scale on the latent heat
axis is half that of the sensible heat axis). The diurnal
cycle of sensible heat for each of the 4 yr reveals good
consistency from year to year. However, the diurnal
cycles of latent heat reveal much more variability. At
the Kendall site, the average maximum varies from 70
to around 100 W m�2, and has a fairly smooth diurnal
cycle. At the Lucky Hills site, three of the years are
fairly similar (1998, 1999, and 2000). The 1997 year at
Lucky Hills was much drier overall (lowest average pre-
cipitation). Also, the monsoon period during 1997 was
problematic at this site (W. Emmerich 2003, personal
communication), and was removed for purposes of this
study, resulting in a lower overall diurnal average for
this year. Although precipitation totals for the 1997 and
1999 years are similar, the patterns in the latent heat
flux are not. During 1997, the rain was more distributed
throughout the year, while in 1999 there is a much
larger concentration of precipitation during the mon-
soon, resulting in an above-average latent heat flux for
this year. The increased latent heat is most likely due to
more active vegetation and possible saturation of the
top soil layers during the monsoons. At Kendall, 2000 is
similar to 1997, with lower annual means for latent
heat. This could also be due to the slightly drier mon-
soon period (like 1997), and more moisture later in the
fall season.

4. Methods

a. Model

The Noah model (Ek et al. 2003) is one of the ever-
evolving community, or multigroup, land surface mod-
els. The Noah model was chosen for evaluation for sev-
eral reasons. The model has been used in previous stud-
ies by this research group and demonstrated the best
performance for another semiarid site (Hogue 2003).
More importantly, the model is currently parameter-
ized for use over semiarid regions in the National Cen-
ters for Environmental Prediction (NCEP) North
American Land Data Assimilation System (NLDAS)
(Mitchell et al. 2004) of the National Weather Service
(NWS). The model is updated periodically on the
NCEP Web site (online at ftp://ftp/ncep.noaa.gov/pub/
gcp/ldas/Noahlsm) and version 2.5.1 is used in this
analysis (release date: 5 March 2002). The Noah model
contains four soil layers: a thin 10-cm top layer, a sec-
ond root zone layer of 20 cm, a deep root zone of 60 cm,
and a subroot zone of 110 cm. It can be run for 13
vegetation covers (2 of which use the same parameter
values) and nine different soil types (two of which also
use the same parameters).

The Noah model has 33 parameters: 10 related to
vegetation and 23 that describe soil properties (Table

2). The model also has 16 initial states (when run with
four root layers). Of these 49 variables to be estimated,
32 are included throughout the parameter estimation
and validation testing. Because soil moisture data were
not available at this site, eight of the initial soil moisture
states were included in the parameter analysis. Al-
though optimizing initial states is not common practice
in operational forecasting, it was undertaken in this
study to allow for an objective “best” estimate of initial
soil moisture states and to allow for a balanced com-
parison of model performance for short time periods
(seasonal and yearly time frames). The Noah model
uses a local greenness fraction from the Normalized
Difference Vegetation Index (NDVI) to establish sea-
sonality in the model for each of the 13 vegetation
types. The leaf-area index (LAI) value is typically held
constant (or used as a tuning parameter) instead of also
being varied seasonally (Gutman and Ignatov 1998).
Consequently, the LAI parameter was included as a
parameter to be calibrated, while the monthly green-
ness fraction was obtained from NCEP and not ad-
justed.

b. Optimization

Calibration (or optimization) of a model involves se-
lecting values for parameters so that the model simu-
lates the behavior (as closely as possible) of the study
site. Various automated techniques have evolved over
the past few decades, with increasing success and ap-
plication to hydrologic models. The multicriteria theory
was more recently applied to the optimization of land
surface models by Gupta et al. (1998). This work pro-
posed that the parameter estimation problem be refor-
mulated as a multicriteria problem that seeks a set of
trade-off solutions (pareto set) instead of a single
unique solution (parameter set). Yapo et al. (1997) de-
veloped the Multiple-Objective Complex Optimization
Method-University of Arizona (MOCOM-UA), which
has shown success in providing improved calibrations of
watershed models (Boyle et al. 2000, 2001; Beldring
2002), hydrochemistry models (Meixner et al. 2000,
2002), and land surface schemes (Gupta et al. 1999;
Bastidas 1998; Bastidas et al. 2001; Leplastrier et al.
2002; Xia et al. 2002). More details on the MOCOM-
UA algorithm may be found in Gupta et al. (1999) and
Yapo et al. (1997). We utilize root-mean-square error
(rmse) as the error function for the MOCOM-UA op-
timization of the Noah model. For validation, both the
rmse and the Nash–Sutcliffe forecasting efficiency (nse)
(Nash and Sutcliffe 1970) are used. Rmse is defined as

rmse ��1
n � �Ot � St�

2, �1�

where Ot is the observed value at time t, St is the model
simulation at time t, and n is the number of observa-
tions. The nse measures the fraction of the variance of
observed values explained by the model. Values can
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range from minus infinity to 1.0, with higher values
indicating better agreement. The nse is represented as

nse � 1 � �� �Ot � St�
2�� �Ot � Omean�2�, �2�

where Ot and St are defined as above, and Omean is the
mean of the observed values.

c. Validation

Traditional model evaluation includes a split-sample
(SS) testing strategy, where parameters are estimated

during one time period and are evaluated on a separate
or independent time period. Few studies follow more
rigorous testing schemes, such as those proposed in
Klemes (1986) and Refsgaard and Knudsen (1996), in-
cluding proxy basin (PB) and differential split-sample
(DSS) analyses. These tests vary somewhat in ap-
proach, but, in general, parameter sets are obtained via
calibration and then validated in the SS, PB, or DSS
framework. The PB test involves application of a cali-
brated model to a similar catchment or site with no
direct calibration of parameters on the validation basin.

TABLE 2. Noah model parameter descriptions, default values, optimized values for the 4-yr and 1999 monsoon calibrations, ranges
for calibration, and flag for optimization (OPT) or fixed value (FIX).

No.
Parameter

name Flag Default Min value Max value Physical meaning of parameters

1 rcmin OPT 400 40 1000 Minimum stomatal resistance (m)
2 rgl OPT 100 30 150 Used in solar radiation term of canopy resistance Fx
3 hs OPT 42 36.35 55 Used in vapor pressure deficit term of canopy resistance Fx
4 z0 OPT 0.011 0.01 0.99 Roughness length (m)
5 lai OPT 4 0.05 6 Leaf-area index
6 cfactr OPT 0.5 0.1 2 Canopy water parameter
7 cmcmax OPT 5.00E�04 1.00E�04 2.00E�03 Second canopy water parameter (m)
8 sbeta OPT �2 �4 �1 Used in calculation of vegetation effect on soil heat flux
9 rsmax OPT 5000 2000 10000 Maximum stomatal resistance (m)

10 topt OPT 298 293 303 Optimum transpiration air temperature (K)
11 maxsmc OPT 0.42 0.33 0.66 Porosity
12 drysmc OPT 0.119 0.02 0.2 Air dry soil moisture content limits
13 psisat OPT 0.62 0.04 0.62 Saturated soil potential
14 satdk OPT 1.41E�05 5.00E�07 3.00E�05 Saturated soil hydraulic conductivity (m s�1)
15 b OPT 4.26 3.5 10.8 The “b” parameter
16 satdw OPT 2.33E�05 5.71E�06 2.33E�05 Saturated soil diffusivity
17 quartz OPT 0.1 0.1 0.82 Soil quartz content
18 nroot FIX 4 4 4 Number of root layers
19 refdk OPT 2.00E�06 5.00E�07 3.00E�05 Reference value for saturated hydraulic conductivity
20 fxexp OPT 2 0.2 4 Bare soil evaporation exponent used in DEVAP
21 refkdt OPT 3 0.1 10 Reference value for surface infiltration parameter
22 czil OPT 0.2 0.05 0.8 To calculate roughness length of heat
23 csoil OPT 2.00E�06 1.26E�06 3.50E�06 Soil heat capacity for mineral soil component
24 zbot FIX �8 �3 �20 Depth of lower boundary soil temperature (m)
25 frzk OPT 0.15 0.1 0.25 Ice threshold (above frozen soil is impermeable)
26 xnup OPT 0.025 0.025 0.08 Threshold snow depth (100% snow cover) (m)
27 snoalb FIX 0.75 0.3 0.75 Maximum albedo over deep snow
28 salp FIX 2.6 2.6 2.6 Shape of distribution function of snow cover
29 slope FIX 0.1 0.001 1 Slope
30 t1 FIX 299 265 300 Initial skin temperature (K)
31 cmc FIX 5.00E�04 0 0.001 Intitial canopy water content (m)
32 snowh FIX 0 0 0.1 Initial actual snow depth (m)
33 sneqv FIX 0 0 0.1 Initial water equivalent snow depth (m)
34 sldpt1 FIX 0.1 0.1 0.1 Soil depth, layer 1 (m)
35 sldpt2 FIX 0.2 0.2 0.2 Soil depth, layer 2 (m)
36 sldpt3 FIX 0.6 0.6 0.6 Soil depth, layer 3 (m)
37 sldpt4 FIX 1.1 1.1 1.1 Soil depth, layer 4 (m)
38 stc1 FIX 297 260 300 Initial soil temperature (K)
39 stc2 FIX 293.7 260 300 Initial soil temperature (K)
40 stc3 FIX 291.5 260 300 Initial soil temperature (K)
41 stc4 FIX 290.4 260 300 Initial soil temperature (K)
42 smc1 OPT — 0.05 0.56 Initial soil total moisture
43 smc2 OPT — 0.05 0.56 Initial soil total moisture
44 smc3 OPT — 0.05 0.56 Initial soil total moisture
45 smc4 OPT — 0.05 0.56 Initial soil total moisture
46 sh2o1 OPT — 0.05 0.56 Initial soil liquid moisture
47 sh2o2 OPT — 0.05 0.56 Initial soil liquid moisture
48 sh2o3 OPT — 0.05 0.56 Initial soil liquid moisture
49 sh2o4 OPT — 0.05 0.56 Initial soil liquid moisture
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This evaluation provides insight into the common prac-
tice of transferability of parameters within similar cli-
matic regions. Adjustment of parameters can be under-
taken to account for different conditions within the
proxy basin (i.e., slightly different soil type, etc.), but
the parameters are not calibrated against any observa-
tions. The DSS test involves calibration of the model
based on data before a catchment change occurs, ad-
justment of parameters to reflect the expected changes,
and validation or testing of the model after the change
has occurred. These changes could involve land alter-
ations (i.e., fire, urbanization, deforestation, etc.) or
some sort of nonstationary climate event, where a cli-
mate phenomenon occurs that has not been observed in
the calibration data.

Given the length of our dataset, we can only assess
short-term climate phenomena (monsoon, El Niño con-
ditions, wet and dry years, etc.) and the impact of these
periods on model simulations. Longer-term climate
change and variability, and how these will affect veg-
etation and evaporation processes in semiarid regions,
can only be undertaken through long-term model simu-
lations. Taking into account the complexity of the
above regime, the given data, and the climatic condi-
tions of the basins in this study, a modified testing
scheme is developed for this analysis as follows:

1) The SS tests will involve calibration on one time
period and validation on independent time seg-
ments. However, to make this analysis more robust
and to assess the influence of data length on the
estimated parameters, calibration is performed over
various time periods in the datasets, with corre-
sponding validation on differing lengths of data.
This is illustrated in Fig. 4.

2) The PB analysis will include the direct transfer of
the estimated parameters from the calibrated mod-
els between the two similar study sites. This PB test
is undertaken to test the capability of the model to
simulate energy fluxes from a site for which no cali-
bration data would be available. Direct application
of the model is done, with no calibration of param-
eters. The two sites used in this analysis contain

similar soils, but slightly different vegetation types
(one grassland and one desert shrub), which re-
spond differently to the atmospheric forcing in the
region. Testing on the proxy basins will be done for
the corresponding time period (i.e., same calibration
and validation period).

3) A modified DSS is undertaken for this study. Be-
cause the data period of this analysis included a total
of 4 yr of data, only short-term climatic and seasonal
conditions were evaluated. The summer monsoon
period is evaluated, as are the winter periods (the
two typical precipitation periods in this region),
along with the 1999 monsoon period and the 1997/98
winter (El Niño event). Parameters from the yearly
calibrations are evaluated on these unusual climatic
events The DSS testing scheme is illustrated in
Fig. 5.

5. Results

a. General calibration

The Noah model was calibrated for each of the listed
periods (Table 3) using sensible heat (SH), ground heat
flux (G), and ground temperature (Tg) data (taken at a
5-cm depth), using rmse as the objective function. Due
to the variability of latent heat (LE) flux and the low
values found through most of the year at the Arizona
sites, latent heat was not explicitly used as one of the
calibration criteria, but model simulations of latent heat
flux were evaluated along with the other fluxes. This
selection is supported by previous work by the authors,
investigating which surface fluxes are best suited to the
multicriteria estimation procedures (Bastidas 1998;
Bastidas et al. 2001). The multicriteria approach pro-
duces a set of solutions, or Pareto set, with the property
that, moving from one solution to another, results in the
improvement of one criterion while causing deteriora-
tion in another. The Pareto set represents the minimal
uncertainty that can be achieved for the parameters via
calibration, without subjective assignment of weights to
the individual model responses (Gupta et al. 1998). For
each calibration a 250 parameter set, or Pareto solution,

FIG. 4. The SS testing scheme. Calibration periods are listed down the left column (desig-
nated in black in the matrix). Validation periods are listed across the top with corresponding
testing periods designated as gray blocks. For example, parameters from the 1997 calibration
period are evaluated on the same period (1997), along with single years 1998, 1999, and 2000,
and the 3-yr period of 1998, 1999, and 2000.
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was generated using SH, G, and Tg for criteria (based
on Bastidas 1998). Along with the calibrations, default
parameters were also run for each of the data periods.

Cumulative distribution plots of the objective func-
tion solutions (from the 250 values) were generated
(Fig. 6). Each surface flux is labeled across the top of
the respective column. Each line represents one Pareto
set (represented by its objective function values). The
top row in each plot (a and b) displays the distribution
of results for the 1-yr calibrations, and the second row
contains the seasonal calibrations (monsoons and win-
ter periods). Each set of functions is normalized against
the 4-yr calibration (1997–2000). The 4-yr set would be
represented as a zero line on the plots. Therefore, if the
errors during the selected calibration periods are lower
than the errors from the 4-yr set, the distributions will
lie to the left of zero, and errors higher than the 4-yr
period will lie to the right of zero. A more vertical line
represents a set of solutions that have less variation
(very similar objective functions and parameter sets),
while a more curved or horizontal line indicates more
variations.

Results at the Kendall site are illustrated in Fig. 6a,
with Lucky Hills in Fig. 6b. In general, most of the
errors for the fluxes are lower during the 1-yr calibra-
tion periods than the 4-yr period (curves lie to the left
of 0). There is more variability from year to year in the
parameter sets for SH and Tg, while sets are more con-
sistent for G. Errors in the LE fluxes are higher, al-
though, as stated previously, this flux was not used in
the calibration process. The seasonal calibrations at

Kendall are similar to the yearly calibrations, with
slight variability in the parameter sets during the sea-
sons, but generally similar performance for SH, G, and
Tg. However, model simulations did not reproduce LE
for either the 4-yr monsoon calibration (MON1997–
2000) or the 1999 monsoon (MON1999). Both of these
time periods have much higher errors for LE than the
overall 4-yr set and are off of the normalized scale (�2)
for this figure. For the other fluxes, the parameter sets
reveal fairly good consistency when compared to the
1997–2000 calibration set (0 line), and all seasonal cali-
bration sets have lower errors for Tg than over the 4-yr
period.

The same set of plots is shown in Fig. 6b (Lucky
Hills). Again, the yearly calibration periods have much
lower errors than the 4-yr set and show more consistent
behavior for most of the fluxes than at Kendall. For the
seasonal calibrations, SH and G fluxes show consis-
tency and similar behavior, and errors are much lower
for the winter periods than the overall 4-yr period for
Tg. Again, the latent heat flux is where the model di-
verges. Errors are lower for the winter calibration pe-
riods (WIN1997–2000 and WIN1997–98), but are off
the scale for the MON1999 and MON1997–2000. Simi-
lar to the results at Kendall, these results tell us that the
model performs well during the dry periods when SH is
the dominant energy component, but during the wet
monsoon periods, the model does not capture the dra-
matic change in the energy balance and does not cap-
ture this variability in LE as well.

b. Nash–Sutcliffe efficiency

After parameter sets were generated for each of the
study periods, a “best set” was chosen to use in the
cross-validation testing schemes. This single-best set
was generated using an L2 norm procedure (or Euclid-
ean distance). The Euclidean distance of two points x
� (x1, . . . , xn) and y � (y1, . . . , yn) in Euclidean n
space is computed as

L2 norm � ��x1 � x2�2 � �x2 � y2�2 � . . . � �xn � yn�2.

�3�

The nse statistics for the selected parameter sets are
shown in Fig. 7, with both the Kendall and Lucky Hills
results plotted (SH, LE, and Tg). The best results are
arguably for SH and Tg at both sites. There is some
decrease in performance during the 4-yr winter period
(WIN1997–2000) at Lucky Hills, but the trend is such
that greater than 80% (�0.80 nse) of the variance of
both SH and Tg is captured by the model simulations.
Keeping in mind that calibration was not performed
using the latent heat flux, the model performance is still
less than ideal. Efficiency values range from 40%–70%
at Kendall, and from 10%–70% at Lucky Hills. The
high variability (and low average values) of LE at these

TABLE 3. Data periods used for calibration of the Noah model.

Calibration periods for study sites

1997–2000 (4-yr period)
1997–2000 (each yearly period)
1997–98 (2-yr period)
1999–2000 (2-yr period)
1997–2000 monsoon periods (MON1997–2000)
1997–2000 winter periods (WIN1997–2000)
1999 monsoon (MON1999)
1997/98 winter (WIN1997–98)

FIG. 5. The DSS testing scheme. Calibration periods are listed in
the left column and the validation periods in which these param-
eters were tested are MON1997–2000, WIN1997–2000,
MON1999, and WIN1997–98. The gray shading represents testing,
white is no testing, and black is the same period as calibration.
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sites results in poor model simulations, especially 1997,
which overall has much lower LE values throughout
the year. Low nse during the 4-yr monsoon period
(MON1997–00) and the winter period (WIN1997–00) is
indicative of problems with the model capturing the
unusual variability of LE using parameters from a
longer-time-period calibration. The model calibration
from the MON1999, on the other hand, is able to cap-
ture this variability. These results suggest that the abil-
ity of the model to capture short-term, intense changes
from a dry condition to a wetter, evaporative condition
is limited using parameter sets from longer time peri-
ods. We theorize that this is due to the optimization
procedure finding parameters that capture the domi-
nant sensible heat flux that occurs during most of the
year in this region (typically 9–10 months each year).
Parameter sets calibrated specifically on the short,

highly variable monsoon period do a better job of cap-
turing the variability in these periods.

c. Model validation

1) SPLIT SAMPLE

The SS analysis consisted of applying the best param-
eter set, and default parameters, to each of the periods
as shown in Fig. 4 (only annual or multiannual calibra-
tion periods). Results are presented as scatterplots in
Figs. 8a and 8b. Each box in the figures represents ab-
solute rmse (W m�2) for LE (y axis) versus SH (x axis)
for each of the selected 11 validation periods. For ex-
ample, in the 1997–2000 plot (upper-left corner), the
parameters calibrated on this time period, along with
parameters from the other calibration periods (1997,
1998, 1999, 2000, 1997–98, 1999–2000), and default, are

FIG. 6. Cumulative distribution functions (CDFs) of objective functions (or rmses) from the
calibration periods for (a) Kendall and (b) Lucky Hills. Each box represents the errors from
the calibration set for a specific flux. For example, in the upper-left corner in (a), four
single-year calibrations (1997, 1998, 1999, and 2000) and the errors that resulted during the
calibration for sensible heat are shown. The rmses are normalized against the 4-yr calibration
and each yearly set is designated by a gray or black, thick or thin line. Objective function
values that are more or less than a difference of 2 (normalized value) are offscale and are
designated by an arrow.
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tested over the 4-yr period. Each specific parameter set
is designated via symbols described in the lower-right
legend, and default parameter simulation errors are
designated as the dashed lines on each plot.

At the Kendall site (Fig. 8a), simulations from the
default parameters generally result in higher rms errors
than the calibrated parameter sets. In many cases there
is a 5–10 W m�2 reduction in sensible heat errors and
up to 20 W m�2 when using any calibrated parameter
set rather than the default values. In the 1997–2000
period for Kendall, the default parameters resulted in
rms errors of around 65 W m�2 for sensible heat and 50
W m�2 for latent heat over the 4-yr dataset (1997–
2000). Although these errors may seem high, in relation
to the normally large sensible heat values in this region
(up to 	600 W m�2 during summer periods), the model
errors are actually around 10% or less of this value. As
has been discussed, latent heat has greater variability
than sensible or ground heat fluxes in this region, with
fairly low values throughout the year (near 10–15 W
m�2) and increasing to much higher values of around
300 W m�2 during the monsoon period, hence, the
model errors are a significantly higher percentage of
the average values. During the shorter time periods at
the Kendall site (1997, 1998, 1999, and 2000), the pa-
rameter sets all perform fairly consistently on these
validation periods, except for 1999, where there is more
spread in the results. The parameter set calibrated over
the 4-yr period, designated by the star (*), results in
slightly larger errors for the latent heat fluxes when
compared to the other parameter sets during three of
the 1-yr periods. This result also suggests that the pa-
rameter sets from the longer time periods do not cap-
ture the short-term year-to-year variability in the data
at these sites. The extremely wet monsoon period was
during 1999, and the inconsistency in the parameter sets
to capture this extreme is observed, with the 1999 and

2000 parameter sets performing better than other sets
for this wetter year. Of the 2-yr validation periods
tested, the 1999–2000 period shows more inconsistency,
with only the parameter set calibrated specifically for
this period performing well. The final four validation
periods in the graphic consist of testing a 1-yr calibra-
tion set on the other 3 yr, along with a test of the 4-yr
set and the default on these periods. Results from these
runs reveal that the 1-yr set performs fairly well on the
alternative 3-yr periods, and on some occasions, as well
as, or slightly better than, the 4-yr set.

The Lucky Hills site (Fig. 8b) shows some of the
same general trends as at the Kendall site. However,
the default parameters perform better during some of
the validation periods than at Kendall. This could be
explained by the difference in vegetation at the two
sites, with the Kendall site having a more dense veg-
etation cover, while the desert scrub at Lucky Hills,
having bare ground exposed, may be more typical of
the vegetation parameterized in these regions. Again,
there is more spread in the results in the periods con-
taining the 1999 and the 2000 periods, and the param-
eters calibrated from these periods perform better than
the other sets tested for this time. For the 3-yr valida-
tion periods, the default parameters perform slightly
better than that of the 4-yr period, and similar to the
calibrated set on latent heat flux. Errors for SH are still
higher in most periods using the default parameters. As
stated previously, the magnitude of the errors is also
related to the magnitude of the fluxes, with the sensible
heat fluxes being much higher at this site for most of
this year.

2) PROXY BASIN

Each parameter set discussed above, along with the
four seasonal calibrations, were evaluated directly
against the same time period on the other study site.

FIG. 7. Nash–Sutcliffe forecasting efficiency for the various calibration periods. The Kendall
site is represented by the solid lines and Lucky Hills is represented by the dashed lines. Each
calibration period is listed on the x axis. Sensible heat values are represented by a (●) symbol,
latent heat values are represented by a (o) symbol, and ground temperature values are rep-
resented by a (
) symbol.
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Direct application of the parameter sets is used to simu-
late surface fluxes for the same time period at a proxy
site (Kendall to Lucky Hills, and Lucky Hills to Ken-
dall), with no adjustment of parameters. Results from

this site-to-site cross-validation study are presented in
Fig. 9. Results for the calibrated parameter sets (stars),
default (dashed lines), and the proxy basin parameter
set (squares) are shown in each plot.

FIG. 8. The SS results for the (a) Kendall and (b) Lucky Hills sites. Each box represents one
of the validation periods and is a scatterplot of the rmse for latent heat and sensible heat flux
for each parameter set. Default parameters: dotted gray lines; various calibration sets: symbols
listed in legend.
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When applying the Lucky Hills parameters to the
Kendall site (Fig. 9a), there are a few validation periods
when the default parameters perform as well as the
calibrated sets. However, the default set also results in
extremely poor performance for several periods (1997,

1998, 1999, 2000, 1999–2000) when compared to the
calibrated or proxy parameter sets. More significantly,
in most cases at these sites, proxy basin parameters
result in a slight decrease in model performance when
compared to the site-specific calibrated set (increase of

FIG. 9. Same as in Fig. 8, but for the PB results. Again, the (a) Kendall and (b) Lucky
Hills sites are shown.
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5–20 W m�2 in flux errors). Two of the seasonal cali-
brations—the 1997–2000 monsoon period (MON1997–
2000), and the 1999 monsoon (MON1999)—have proxy
basin and calibration sets that result in errors greater
than the 70 W m�2 on the given figure.

At the Lucky Hills site (Fig. 9b) the proxy basin pa-
rameters (Kendall sets) generally also result in poorer
performance than the site-specific set for several time
periods (1999, 1997–1998, MON1999, WIN1997–2000,
and WIN1997–1998). Only during 2000 do the proxy
basin parameters yield similar results to the site-specific
calibration. Default parameters at the Lucky Hills typi-
cally result in larger flux errors than either of the cali-
brated sets, but do perform well for two winter periods
at Lucky Hills (WIN1997–2000 and WIN1997–98). The
monsoon periods at Lucky Hills show similar problems
as at the Kendall site, with generally higher errors for
these periods.

3) DIFFERENTIAL SPLIT SAMPLE

Four distinct climatic periods were selected
(MON1997–2000, WIN1997–2000, MON1999, and
WIN1997–98) to evaluate how parameter sets from
various calibration periods would perform on these
atypical climatic events found in the southwest. Default
parameters were also run. Results are presented in Fig.
10. Findings from the Kendall site are displayed in the
top row of plots (Fig. 10a), with Lucky Hills in the
bottom series (Fig. 10b). Note the difference in scale for
the rmse (range of 20–100 W m�2) from Figs. 8 and 9
(range of 20–70 W m�2). The parameter sets show con-
sistent performance during the winter periods at both
sites with a clustering of errors in the same region.
These sets (and default parameters) result in fairly low
LE errors (20–40 W m�2). The parameter sets have
much greater variability during the monsoon periods.
For the monsoon 1997–2000 period (Kendall site), the

parameter sets yield similar errors for SH, but much
more variability in errors for LE. For the MON1999, all
parameter sets show a large spread in both SH and LE.
Interestingly, the 4-yr parameter set (1997–2000) does
capture this period fairly well, along with the 1999 and
MON1999 set (which would be more expected). At
Lucky Hills, similar results are observed, with param-
eter sets performing well on the drier winter periods,
and showing poorer performance on the wetter mon-
soon periods. Simulations during these wet periods
(with high LE fluxes) seem to be very dependent on the
parameter values, and calibration of parameters spe-
cific to these periods appears critical for the model to
yield adequate simulations. Again, using parameter sets
from longer time frames or periods where the sensible
heat flux is dominant (which is most of the year in this
region), contributes to poorer model performance dur-
ing short, wet periods.

4) TIME SERIES

Time series of selected optimizations from the Ken-
dall site are presented in Figs. 11 and 12, with 10-day
periods from the dry season (1 June 1998) and the mon-
soon period (1–10 August 1999), respectively. Both fig-
ures show the default (dark solid line) simulation, the
250 trade-off or Pareto set solution (gray area), and the
observed data for the period (circles). The scatterplots
to the right of the time series correspond to the entire
period of calibration (i.e., observed versus 4-yr calibra-
tion results). For the 10-day period during June (Fig.
11), it is observed that the model tracks well for SH, G,
and Tg. The trade-off solution encompasses the ob-
served data throughout the diurnal cycle for these three
fluxes. The width of the solutions is also fairly narrow,
indicating less parameter uncertainty for these simula-
tions. The default parameters tend to overestimate on
the sensible heat and undersimulate for Tg and G. For

FIG. 10. Same as in Fig. 8, but for the DSS results. Both the (a) Kendall and (b) Lucky
Hills sites are shown.
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latent heat, although the daily flux values are very low,
neither the narrow trade-off solution, nor the default,
are capturing the peak flux during the height of the day.
The situation is much different during the monsoon
period displayed in Fig. 12. Sensible heat fluxes trend
much lower during the day, while latent heat fluxes are
higher and more variable. The trade-off solution still
tracks SH with a fairly narrow range of uncertainty, and
captures G and Tg well. Default parameters oversimu-
late SH during this period, but match G and Tg as well
as the pareto set. However, there are obvious differ-
ences when evaluating LE. The uncertainty associated
with the trade-off solution is much greater during this
period. The range of solutions tracks better than the
default parameters, but still slightly underestimates the
peak flux. This is also evident in the scatterplots of the
observed and simulated LE. Although the correlation is
not extremely poor (r � 0.715), the trend of the model
to undersimulate higher values is apparent. These re-
sults reinforce earlier statements, which is the inability
of the model to capture latent heat fluxes during the
monsoon period, and especially with parameter sets
from longer-time-period optimizations.

6. Discussion and conclusions

The goal of this investigation was to rigorously evalu-
ate the performance of the Noah land surface model in

a semiarid region using an objective, systematic, cali-
bration and evaluation procedure. We sought to answer
several questions, including the following: 1) How well
does a common land surface model, such as the NCEP
Noah model, perform in semiarid regions? 2) Do pa-
rameters calibrated at a proxy site lead to reasonable
simulations at other sites with similar climate and veg-
etation? and 3) How do parameters perform when
tested under various climatic conditions that were not
included as part of the calibration period? Few studies
have addressed these issues with long-term datasets or
in a semiarid region.

In general, the Noah model accurately reproduces
the sensible heat, ground heat, and ground temperature
observations. Soil moisture observations were not
available for this study, and, hence, no conclusions can
be directly stated regarding the tracking of this vari-
able. Follow-up studies may be needed to address the
issue of initialization of prognostic land states without
observation data, and the potential impact on optimi-
zation of parameter values. However, latent heat flux
values were available and it is observed that the model
does not reproduce this variable as well, especially dur-
ing the very significant monsoon period. The dramatic
increases in LE during this period (and decrease in sen-
sible heat) are problematic for the model, and hence,
higher errors are observed. The latent heat flux in the

FIG. 11. Kendall site model simulations for an 11-day period during the dry season (Jun
1998). Gray shaded area: trade-off bounds (Pareto set) for 1997–2000 parameters (4-yr cali-
bration); circles: observed data; and solid line: default parameters.
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Noah model is strongly dependent on the greenness
fraction value obtained from long-term remote sensing
data (Kurkowski et al. 2003). This fraction may be a
major source of poor performance during the wet mon-
soon summers, because the model has no mechanism to
adjust to abnormal or abrupt changes in vegetation re-
sponse (Kurkowski et al. 2003). This season is critical in
the southwest, because vegetation processes are fully
active for most of the grasses and other plant species in
the region, and the evaluation of the evaporative com-
ponent in these basins (and land surface models) is cru-
cial to the ongoing consumptive use studies in the re-
gion.

Parameter sets from the optimization procedure
show improved performance over nearly all of the de-
fault simulations with model error reduced by as much
as 20–40 W m�2 using the calibrated parameters. Cli-
matic events such as El Niño and the seasonal monsoon
period require parameters that are specifically cali-
brated during these events (or include similar events)
for adequate representation of the latent heat fluxes.
This finding has significance for the range of studies
comparing the performance of land surface models.
The elimination of parameter identification errors and
a systematic evaluation procedure allows for a more
realistic and fair intercomparison of model perfor-
mance.

In this study, single-year calibrations have lower er-
rors during that period than using parameters from a
longer calibration period. Also, when applying shorter
time period calibrations (1 yr) to longer time series (3
or 4 yr), performance does not decline significantly.
This analysis supports that for long-term simulations, it
may be acceptable to select a representative data pe-
riod for application to a longer period. There is also a
demonstrated need to include both a “wet” and a “dry”
period in this calibration period. Using parameter sets
from longer time-frame periods (2 or 4 yr) results in
decreased performance during the nonstationary cli-
matic events, especially for the more extreme monsoon
periods (such as the 1999 monsoon period). To capture
the variability of these climatic conditions, there is a
need to include wet periods where latent heat is mark-
edly pronounced to initiate all physical processes in the
model and to improve the estimation of model param-
eters.

In general, it can be stated that the application of
proxy site (transferred) parameters results in slightly
larger errors, from 5 to 20 W m�2, over a parameter set
specific to the flux site. Results also indicate that this
conclusion is specific to the validation time period, with
model performance declining by as much as 40–60 W
m�2 (sensible heat) when using proxy parameters over
some time periods. In most cases, however, the proxy

FIG. 12. Same as in Fig. 11, but for Kendall site model simulations for an 11-day period
during the monsoon season (Aug 1998).
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site parameters are still an improvement over default
values at these sites. In the absence of calibration data,
a proxy basin set of parameters can be applied with a
moderate decline in performance. Although these re-
sults are specific to the Arizona sites and, in theory, can
not be generalized to other pairs of proxy sites, we
suspect that these results may hold for other case stud-
ies. As longer-term datasets become available, further
proxy site studies will allow greater insight into this
hypothesis. At the minimum, this analysis provides a
first attempt to quantify the range of errors that can be
expected when applying proxy site parameters to other
similar climatic regions.

This is one of the first studies to address data length
and quality on parameter estimates in a land surface
model, and the transferability of those estimates in
semiarid regions. The Noah model was selected as a
surrogate in this study for other common land surface
models and did have some simulation problems during
the wet season. However, based on our analysis of
model performance in semiarid and other regions
(Hogue 2003), we expect other models to behave simi-
larly under these conditions. Land surface models need
to be able to simulate long-term change, but one would
also hope they would also capture seasonal variability.
An assessment of this ability was tested in this analysis.
Our goal is that rigorous calibration and validation
studies performed on models, such as the NCEP Noah
model, will lead to improved parameter estimates for
use in long-term climate and regional environmental
studies. A companion paper is in progress, further ana-
lyzing the parameter behavior and sensitivity at these
two sites, as well as at five other climatic regions.
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