"Telling More": a 2006 NASA SARP project (Technical Briefing)

Tim Menzies Lane Department of Computer Science and Electrical Engineering West Virginia University tim@menzies.us

June 28, 2006

Download from http://unbox.org/wisp/trunk/silap/doc/tb.pdf

SAS_06_Telling_More_Menzies - slide 1

Introduction: Use it or Lose it (and this is the last "business-level" slide)

- Introduction
- ♦ Use it or Lose it
- ✤ This talk...
- Disclaimer etc
- Knowledge Farming
- SILAP
- mb1
- What's next?
- Conclusion

- NASA data = active repository or data tomb?
 - write once;
 - read never;
 - buried;
 - doomed;
- If an organization spends millions of dollars on data collection and archiving...
 - It should spend tens of thousands (at least) in analyzing that data.
- NASA IV&V is in a unique position to review and comment on much of the NASA software enterprise.
 - We see more, but what have we learned?
 - What can we tell?

This talk...

Introduction

Use it or Lose it

♦ This talk...

- Disclaimer etc
- Knowledge Farming
- SILAP
- mb1
- What's next?
- Conclusion

- "Knowledge farming" on "SILAP" models
 - "Knowledge farming": see below
 - "SILAP": how IV&V selects which tasks to perform for a given project;
- Results:
 - SILAP v.1: an open source version of SILAP http://unbox.org/wisp/trunk/silap;
 - ♦ MB1:
 - 433 SLIAPed software elements from NASA
 - divided into different project types.
 - http://unbox.org/wisp/trunk/silap/data/mb1.csv
 - Experiments showing:
 - Selected IV&V tasks often the same, despite processing different projects;
 - Identification of the *really different* project types that lead to different IV&V tasks

Disclaimer etc

In	tr	0	d	u	ct	tio	0	n	

Use it or Lose it

- This talk...
- Disclaimer etc

Knowledge Farming

SILAP

mb1

What's next?

- Disclaimer
 - Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government.
 - While the planning&scoping team at Fairmont is currently reviewing this material....
 - the views expressed here-in are the author.
 - They do NOT reflect official NASA policy
 - They do NOT reflect the views of NASA civil servants.
- Acknowledgments
 - The research described in this talk was carried out at West Virginia University under a contract with the National Aeronautics and Space Administration.
 - This work would not have been possible without the advise, assistance, and access to data offered by the NASA software Independent Verification & Validation planning & scoping team (at Fairmont WV).
 - Special thanks to (in alpha order): Markland Benson, Ken Costello, Ken McGill, Christina Moats, Melissa Northey.

Introduction

Knowledge Farming

Types

♦ Why not KM?

Examples

More examples

Yet more examples

SILAP

mb1

What's next?

Conclusion

Knowledge Farming

Data/Knowledge Farming

Introduction

Knowledge Farming

- Types
- ♦ Why not KM?
- Examples
- More examples
- Yet more examples
- SILAP
- mb1
- What's next?
- Conclusion

- Andrew Kusiak : J. Ops. research, 2005: "data farming"
 - DF generalizes DM (data mining)
 - DF = models + practices used to define most appropriate features for data collection/ transformation/ assessment
 - DF.effort greater than data mining effort
- DOD : "data farming"
 - Using a super-computer...
 - ... simulate the h#ck out a model
 - e.g. the Marine Corps' *Project Albert*
 - understand the landscape of potential simulated outcomes, enhance intuition, find surprises and outliers, and identify potential options
 - Heavily augmented with interactive visualization tools
 - ??? no automatic summarization methods (e.g. data miners)
- Me, ASE 2000: "Knowledge farming"
 - + **Plant** the seeds; i.e. build a simulator that can reproduce domain conditions;
 - Grow the seedlings; i.e. Monte Carlo the simulator to generate data;
 - Harvest the crop; i.e. use data miners to find patters in the data;
 - Core problem: how to build human-readable succinct rules from gigabytes of data

The Case Against Knowledge Farming (KM)

Introduction

- Knowledge Farming
- Types
- ♦ Why not KM?
- Examples
- More examples
- Yet more examples
- SILAP
- mb1
- What's next?
- Conclusion

- Q: Won't you just re-learn the original model?
 - A: Nope
 - Learned model = input data + summarization method;
 - Different summarization, different models;
 - KM + relevancy tests often prunes away variables that are noisy, low variance, under-sampled, not informative, etc etc
 - KM's harvest smaller than original.
 - Effects that are obscure in original are clear in summary
- Q: Aren't you just learning quirks in the model?
 - A_1 : If you have domain data, don't rely on a (possibly incorrect) model
 - A₂: What's the difference?
 - If the model is being used to make policy decisions, then we need to know the model, warts and all.
 - A₃: if your model has subtle quirks, how will you find them otherwise? (e.g. KARDIO)

Examples of knowledge farming (KARDIO: Bratko'89; ESA: Pearce'88)

(More) Examples of knowledge farming (Menzies&Raffo: ASE'02; Menzies&Feather: RE'02)

Introduction

- Knowledge Farming
- Types
- ♦ Why not KM?

Examples

More examples

Yet more examples

SILAP

mb1

What's next?

Conclusion

Optimizing a combined staffing/"worries" model: staffing: the COCOMO-II effort model; "worries": the Madachy software risk model.

Trade space studies at JPL: benefits: requirements coverage; costs: cost of risk mitigation strategies (each dot is yes-no to 99 decisions).

Download from http://unbox.org/wisp/trunk/silap/doc/tb.pdf

(Yet more) Examples

knowledge farming and SILAP

Introduction	This talk:
Knowledge Farming	
✤ Types	
♦ Why not KM?	
♦ Examples	
More examples	
♦ Yet more examples	
SILAP	
mb1	
What's next?	
Conclusion	

Introduction

Knowledge Farming

SILAP

Context

♦ SILAP

♦ SILAP structure

♦ WBS

mb1

What's next?

Conclusion

SILAP

The context of SILAP

Introduction

Knowledge Farming

SILAP

- Context
- ♦ SILAP

SILAP structure

♦ WBS

mb1

What's next?

- Components have artifacts
- SILAP selects WBS tasks
- Tasks are associated with artifacts;
- Artifacts generate anomalies;
- Filters reject bogus anomalies;
- Projects accept issues

SILAP: why yet another risk model?

Introduction

- Knowledge Farming
- SILAP
- Context
- ♦ SILAP
- SILAP structure
- ♦ WBS
- mb1
- What's next?
- Conclusion

- <u>Software</u> Integrity <u>Level</u> Assessment Process
- 16 criteria (scored 1,2,3,4,5)
 - Criteria used to calculate errorpotential (risk) and consequence (severity).
 - Which, in turn, select IV&V tasks from the IV&V work breakdown structure adapted from IEEE Std 1012 (V&V standard)
- In practice, takes two weeks (or more) fulltime work to do a SILAP assessment.
 - Review the documents
 - Offer a score for the criteria
 - Write a detailed rationale for the score

- Understood locally (very important):
 - Previous risk models where developed elsewhere and, to a degree were "black box"; i.e. inexplicable, not defensible
 - SILAP, on the other hand, was built locally at Fairmont IV&V after *extensive* meetings between NASA civil servants.
- Civil servants report that SILAP has simplified and clarified their discussions with projects regarding what IV&V tasks are/are not to be performed.

SILAP makes IV&V business knowledge explicit, publicly accessible.

- This record lets outsiders (like me) review their work practices.
- How many other organizations can say they have done the same?

SILAP structure

		variable = meaning	variable =meaning
		AM3 = Artifact Maturity	FR3 =Use of Formal Reviews
Introduction		AS2 = Asset Safety	HS2 =Human Safety
	-	CL3 = CMM Level	PF2 =Performance
Knowledge Farming		CO1 = Consequence	PR2 =Process
	-	CX3 = Complexity	RA3 =Re-use Approach
SILAP		DI3 = Degree of Innovation	RM3 =Use of Risk Management System
✤ Context		DO3 = Development Organization	SC2 =Software Characteristic
		DT3 = Use of Defect Tracking System	SS3 =Size of System
SILAP		DV2 = Development	UC3 =Use of CM
♦ SILAP structure		EP1 = Error Potential	US3 =Use of Standards
♦ WBS		EX3 = Experience	
mb1			
What's next?	function CO1(t	mp) { // Consequence	
	tmp=0.35*valu	ue("AS2") + 0.65 *value("PF2");	rn round((value("HS2") > tmp) ? value("HS2") : tmp;)
Conclusion			

function EP1() { // Error Potential
 return round(0.579*DV2() + 0.249*PR2() + 0.172*SC2()) }

```
function SC2() { // Software Characteristic
    return 0.547*value("CX3") + 0.351*value("DI3") + 0.102*value("SS3") }
function DV2() { // Development
    return 0.828*value("EX3") + 0.172*value("DO3") }
function PR2() { // Performance
    return 0.226*value("RA3") + 0.242*value("AM3") + formality() }
function formality() {
    return 0.0955*value("US3") + 0.0962*value("UC3") + 0.0764*value("CL3")
    +0.1119*value("FR3") + 0.0873*value("DT3") + 0.0647*value("RM3") }
```

SILAP selects tasks from the IV&V work breakdown structure

Introduction

Knowledge Farming	wbs 1.1	factor Management and Planning of IV&V	CO11 X	CO12 X	CO13 X	CO14 X	CO15 X	EP11 X	EP12 X	EP13 X	EP14 X	EP15 X
SILAP	1.2	Issue and Risk Tracking		Х	Х	Х	х		Х	Х	Х	Х
◆ Context	1.3	Final Report Generation		Х	Х	Х	Х		Х	Х	Х	Х
	1.4	IV&V Tool Support		Х	X	Х	Х		Х	Х	Х	X
♦ SILAP	1.5	Management & Technical Review Support	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
SILAP structure	1.6	Criticality Analysis	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
♦ WBS												
mb1	2.1	Reuse Analysis*			Х	Х	Х					
Whether earth	2.2	Software Architecture Assessment			Х	Х	Х					
what's next?	2.3	System Requirements Review			х	Х	Х				х	х
Conclusion	2.4	Concept Document Evaluation				Z	Z					Z
Conclusion	2.5	SW/User Requirements Allocation Analysis				Z	Z					Z
	2.6	Traceability Analysis				Z	Z					Z
	3.1	Traceability Analysis - Requirements		Х	Х	Х	Х				Х	Х
	3.2	Software Requirements Evaluation			Х	Х	Х				Х	Х
	3.3	Interface Analysis - Requirements				Х	Х			Х	Х	Х
	3.4	System Test Plan Analysis			Х	Х	Х					
	3.5	Acceptance Test Plan Analysis					Х					
	3.6	Timing and Sizing Analysis									Z	Z

{CO1, EP1} computed via SILAP CO1 = "consequences of failure" EP1 = "error potential"

X = "or";

* = for RA3 > 1;

Z = for human-rated flights

Work breakdown structure (cont.)

Introduction Knowledge Farming SILAP Context SILAP SILAP	wbs 4.1 4.2 4.3 4.4 4.5 4.6 4.7	factor Traceability Analysis - Design Software Design Evaluation Interface Analysis - Design Software FQT Plan Analysis Software Integration Test Plan Analysis Database Analysis Component Test Plan Analysis	C011	со12 Х	со13 Х	CO14 X X	CO15 X X X	EP11	EP12 X	EP13 X X	EP14 X X X X X	EP15 X X X X X X X
* WBS	5.1	Traceability Analysis - Code					x		x	x	x	x
	5.2	Source Code and Documentation Evaluation				x	x			x	x	x
mb1	5.3	Interface Analysis - Code				X	X			X	x	X
	5.4	System Test Case Analysis				Х	Х					
What's next?	5.5	Software FQT Case Analysis				Х	Х					
Conclusion	5.6	SW Integration Test Case Analysis										Х
Conclusion	5.7	Acceptance Test Case Analysis					Х					
	5.8	SW Integration Test Procedure Analysis										Х
	5.9	SW Integration Test Results Analysis									Х	Х
	5.1	Component Test Case Analysis										Х
	5.11	System Test Procedure Analysis					Z					
	5.12	Software FQT Procedure Analysis					Z					
	6.1 6.2 6.3 6.4 6.5	Traceability Analysis - Test Regression Test Analysis Simulation Analysis System Test Results Analysis Software FQT Results Analysis		Х	Х	X X X	X Z X X				Z	X Z
	7.1	Operating Procedure Evaluation					Z					
	7.2	Anomaly Evaluation					Z					
	7.3	Migration Assessment					Z					
	7.4	Retirement Assessment					Z					

Introduction

Knowledge Farming

SILAP

mb1

Components

 \diamond separation

♦ "All" and "Orbits"

"Orbits" (cont.)

♦ "Prime"

♦ "Profile"

"Profile" (cont.)

Selections

Separation

Selected WBS

Selected WBS (more)

Weighted Frequencies

What's next?

Conclusion

MB1: 433 SILAPed software elements

MB1: Components

Introduction

Knowledge Farming

- SILAP
- mb1
- Components
- \diamond separation
- "All" and "Orbits"
- ♦ "Orbits" (cont.)
- ♦ "Prime"
- "Profile"
- "Profile" (cont.)
- Selections
- Separation
- ♦ Selected WBS
- Selected WBS (more)
- Weighted Frequencies

What's next?

Conclusion

433 SILAP-ed software elements from NASA (system, subsystem, CSCI, or CSC level); sanitized data, i.e. mission/center names replaced with x1, x2,.... Divided into:

- All
- "Orbits"
 - gs1: ground system
 - es2: earth orbit
 - xf3: "transfer" (a mission that does not have an Earth-centric orbit),
 - go4: ground ops on different planet
- "profile": type of science
 - ♦ {es,hs,op,ss,su}
- "prime": who built the sub-system (which NASA center)
 - ♦ {p1,p2,p3,p4}
- Auto: learned by a clustering algorithm (EM) that ignores all the above distinctions
 - {cluster0, cluster1, cluster2, cluster3, cluster4}

Q: for the purposes of IV&V, which of the above matter at all? A: apply the *principle of separation*

Principle of separation

Introduction

- Knowledge Farming
- SILAP
- mb1
- Components
- \diamond separation
- "All" and "Orbits"
- "Orbits" (cont.)
- "Prime"
- "Profile"
- "Profile" (cont.)
- Selections
- Separation
- Selected WBS
- Selected WBS (more)
- Weighted Frequencies

What's next?

- Different things get effected different ways.
 - $\bullet \quad Out = f(In)$
 - Weak separation: All Ins don't have the same Outs
 - Strong separation: Different Ins have different Outs
- A model that does not *separate* is *blunt*; i.e. is not sensitive to changes in the inputs.
- I.e. the SILAP divisions that matter are those that:
 - Are most different to the *All* set;
 - "Profile" selects for nearly the same tasks as "All"
 - Most select different WBS tasks. different tasks.
 - All the manual divisions ("orbits", "prime", "profile") select for very similar tasks.
 - Only the automatic divisions separate from each other and from "All"
- Test for separation
 - For each division, summarize the distributions;
 - Run each distribution through SILAP; record selected WBS tasks;
 - Compare the selected WBS tasks.

SILAP input parameters: distributions "All" and "orbits"

Introduction
Knowledge Farming
SILAP
mb1
Components
separation
"All" and "Orbits"
♦ "Orbits" (cont.)
✤ "Prime"
♦ "Profile"
♦ "Profile" (cont.)

- Selections
- Separation
- Selected WBS
- Selected WBS (more)
- Weighted Frequencies

What's next?

Conclusion

433	records
-IS2	3 =0.00 5=0.02 2=0.02 4=0.05 1=0.35 0=0.56
AS2	5 =0.07 2=0.07 4=0.10 3=0.10 1=0.67
PF2	2 =0.09 5=0.13 4=0.16 1=0.19 3=0.43
EX3	5 =0.05 4=0.14 2=0.17 3=0.21 1=0.44
003	0.5=0.01 3=0.02 1=0.08 5=0.11 2=0.33 4=0.45
JS3	5 =0.04 3=0.21 2=0.24 1=0.50
JC3	3 =0.07 2=0.28 1=0.65
CL3	2 =0.00 5=0.04 4=0.20 3=0.76
FR3	3 =0.01 2=0.34 1=0.65
DT3	4 =0.01 3=0.31 2=0.34 1=0.35
RM3	1 =0.18 3=0.36 2=0.45
RA3	2 =0.07 3=0.11 4=0.12 5=0.12 1=0.58
٩МЗ	3 =0.15 2=0.21 1=0.64
CX3	5 =0.04 2=0.11 4=0.12 1=0.31 3=0.41
DI3	4 =0.02 3=0.02 2=0.12 1=0.85

SS3 1 =0.06 4=0.07 2=0.30 3=0.57

How to read these tables

All:

- rows sorted left-to-right as rarest-to-more-frequent;
- column one are SILAP variable names (see code)

e.g. the last line of the above table;

- Least common SS3 value = "1": occurs 6% of the time;
- Most common SS3 value = "3": occurs 57% of the time;
- "2" occurs 30% of the time;

Orbit = eo2 (265 records)

HS2	3 =0.01 5=0.01 2=0.02 4=0.08 1=0.41 0=0.48
AS2	5 =0.03 2=0.08 4=0.09 3=0.11 1=0.69
PF2	5 =0.09 2=0.10 4=0.19 1=0.25 3=0.37
EX3	5 =0.07 2=0.15 3=0.17 4=0.17 1=0.44
DO3	0.5=0.02 3=0.03 5=0.04 4=0.45 2=0.46
US3	5 =0.07 3=0.14 2=0.22 1=0.57
UC3	3 =0.03 2=0.16 1=0.81
CL3	2 =0.00 5=0.07 4=0.14 3=0.79
FR3	3 =0.00 2=0.09 1=0.91
DT3	4 =0.01 3=0.11 2=0.31 1=0.56
RM3	1 =0.16 2=0.30 3=0.54
RA3	3 =0.00 4=0.01 2=0.12 5=0.12 1=0.74
AM3	3 =0.19 2=0.20 1=0.61
CX3	5 =0.04 2=0.07 4=0.11 3=0.37 1=0.41
DI3	4 =0.01 3=0.01 2=0.08 1=0.91
SS3	1 =0.01 4=0.04 2=0.41 3=0.55

Orbit = xf3 (93 records)

HS2	2=0.02 1=0.10 0=0.88
AS2	5=0.03 2=0.07 3=0.09 4=0.14 1=0.67
PF2	2=0.08 1=0.10 5=0.11 4=0.15 3=0.57
EX3	4=0.12 2=0.14 3=0.24 1=0.50
DO3	1=0.18 5=0.37 4=0.45
US3	3=0.21 2=0.24 1=0.55
UC3	3=0.03 1=0.36 2=0.61
CL3	4=0.39 3=0.61
FR3	1=0.29 2=0.71
DT3	1=0.03 2=0.48 3=0.49
RM3	1=0.23 2=0.77
RA3	3=0.12 1=0.39 4=0.49
AM3	3=0.03 2=0.13 1=0.84
CX3	5=0.03 4=0.11 2=0.20 1=0.21 3=0.46
DI3	3=0.03 2=0.13 1=0.84
SS3	2=0.13 1=0.27 3=0.60
	4

SILAP input parameters: distributions "orbits" (cont.)

		In	tr	0	d	u	ci	ti	0	n	
--	--	----	----	---	---	---	----	----	---	---	--

Knowledge Farming

SILAP

mb1

Components

✤ separation

♦ "All" and "Orbits"

"Orbits" (cont.)

♦ "Prime"

"Profile"

"Profile" (cont.)

Selections

- Separation
- Selected WBS

Selected WBS (more)

Weighted Frequencies

What's next?

Conclusion

Orbit = g	go4 (57 records)
HS2	0=0.43 1=0.57
AS2	2=0.04 4=0.04 3=0.11 5=0.27 1=0.55
PF2	4=0.09 2=0.09 1=0.11 5=0.29 3=0.43
EX3	5=0.02 4=0.04 3=0.09 2=0.41 1=0.45
DO3	5=0.05 1=0.30 4=0.64
US3	1=0.27 3=0.27 2=0.46
UC3	1=0.27 3=0.32 2=0.41
CL3	4=0.23 3=0.77
FR3	3=0.07 1=0.25 2=0.68
DT3	3=1.00
RM3	1=0.25 3=0.27 2=0.48
RA3	4=0.05 1=0.30 3=0.64
AM3	3=0.21 1=0.38 2=0.41
CX3	1=0.09 5=0.11 2=0.12 4=0.20 3=0.48
DI3	3=0.05 4=0.09 2=0.30 1=0.55
SS3	2=0.18 3=0.82

Orbit = gs1 (20 records)								
HS2	4=0.05 2=0.05 5=0.26 0=0.63							
AS2	5=0.16 4=0.21 1=0.63							
PF2	4=0.05 2=0.05 1=0.11 5=0.26 3=0.53							
CX3	4=0.11 1=0.16 2=0.32 3=0.42							
EX3	3=1.00							
DO3	2=1.00							
US3	3=1.00							
UC3	1=1.00							
CL3	3=1.00							
FR3	2=1.00							
DT3	2=1.00							
RM3	2=1.00							
RA3	5=1.00							
AM3	1=1.00							
DI3	1=1.00							

SS3 4=1.00

SILAP input parameters: distributions "prime"

Introduction Knowledge Farming

SILAP

- mb1
- Components
- ✤ separation
- * "All" and "Orbits"
- ♦ "Orbits" (cont.)

"Prime"

- ♦ "Profile"
- ♦ "Profile" (cont.)
- Selections
- Separation
- ♦ Selected WBS
- Selected WBS (more)
- Weighted Frequencies

What's next?

Conclusion

Prime =	p1 (182 records)
HS2	2 =0.01 1=0.05 0=0.94
AS2	5 =0.01 2=0.04 4=0.08 3=0.08 1=0.78
PF2	2 =0.08 5=0.10 1=0.15 4=0.16 3=0.50
EX3	4 =0.06 5=0.10 3=0.23 2=0.28 1=0.33
DO3	0.5=0.03 3=0.04 1=0.09 2=0.16 5=0.23 4=0.45
US3	5 =0.10 1=0.17 3=0.29 2=0.44
UC3	3 =0.04 2=0.42 1=0.54
CL3	5 =0.10 4=0.27 3=0.63
FR3	2 =0.49 1=0.51
DT3	4 =0.02 1=0.02 3=0.28 2=0.69
RM3	3 =0.02 1=0.28 2=0.70
RA3	3 =0.04 2=0.12 5=0.18 4=0.27 1=0.39
AM3	3 =0.04 2=0.36 1=0.60
CX3	5 =0.04 2=0.09 4=0.12 3=0.33 1=0.41
DI3	4 -0 01 3-0 01 2-0 17 1-0 81

-

prime=p2 (96 records)

SS3

HS2	1=0.35 0=0.65
AS2	4=0.03 2=0.05 3=0.13 5=0.18 1=0.61
PF2	1=0.09 4=0.12 2=0.13 5=0.23 3=0.43
EX3	5=0.01 4=0.02 2=0.25 3=0.29 1=0.42
DO3	5=0.06 1=0.20 4=0.74
US3	3=0.20 2=0.27 1=0.53
UC3	3=0.23 1=0.31 2=0.46
CL3	4=0.39 3=0.61
FR3	3=0.05 2=0.40 1=0.55
DT3	2=0.02 1=0.12 3=0.86
RM3	3=0.17 1=0.29 2=0.54
RA3	5=0.01 4=0.03 2=0.12 3=0.41 1=0.43
AM3	2=0.25 3=0.25 1=0.49
CX3	1=0.08 5=0.11 2=0.12 4=0.16 3=0.54
DI3	4=0.05 3=0.05 2=0.20 1=0.69
SS3	2=0.14 3=0.86

1 =0.15 2=0.28 3=0.57

AS2 5=0.05 3=0.12 2=0.13 4=0.14 1=0.56 PF2 5=0.07 2=0.09 4=0.21 3=0.31 1=0.32 EX3 3=0.01 4=0.33 1=0.65 DO3 4=0.33 2=0.67 US3 3=0.01 1=0.99 UC3 3=0.01 1=0.99 CL3 2=0.01 3=0.99 FR3 3=0.01 1=0.99 3=0.01 1=0.99 DT3

Prime = p3 (139 records)

HS2

- RM3 3=1.00
- RA3 3=0.01 1=0.99
- AM3 3=0.25 1=0.75
- CX3 5=0.01 2=0.11 4=0.12 1=0.35 3=0.42

5=0.01 3=0.01 2=0.04 4=0.14 1=0.78

- DI3 4=0.01 3=0.01 1=0.98
- SS3 4=0.07 3=0.45 2=0.48

Prime = p4 (20 records)

4=0.05 2=0.05 5=0.26 0=0.63 HS2 AS2 5=0.16 4=0.21 1=0.63 PF2 4=0.05 2=0.05 1=0.11 5=0.26 3=0.53 EX3 3 = 1.002=1.00 DO3 US3 3 = 1.00UC3 1 = 1.00CL3 3 = 1.00FR3 2=1.00 DT3 2=1.00 RM3 2=1.00 RA3 5 = 1.00AM3 1 = 1.00CX3 4=0.11 1=0.16 2=0.32 3=0.42 DI3 1 = 1.00SS3 4=1.00

SILAP input parameters: distributions "profile"

Introduction	Profile =	es (29 records)	Profile =	op (85 records)
	HS2	0=1.00	HS2	2=0.02 1=0.44 0=0.54
Knowledge Farming	AS2	2=0.04 4=0.04 3=0.21 1=0.71	AS2	2=0.04 4=0.07 3=0.08 5=0.19 1=0.62
	PF2	4=0.04 1=0.07 5=0.18 2=0.18 3=0.54	PF2	2=0.08 1=0.10 4=0.14 5=0.23 3=0.45
SILAP	EX3	3=0.14 2=0.39 1=0.46	EX3	5=0.01 3=0.07 4=0.15 2=0.33 1=0.43
mb1	DO3	4=1.00	DO3	5=0.08 1=0.43 4=0.49
	US3	3=0.07 1=0.46 2=0.46	US3	1=0.23 3=0.38 2=0.39
Components	UC3	3=0.07 2=0.39 1=0.54	UC3	1=0.23 3=0.23 2=0.55
✤ separation	CL3	3=1.00	CL3	4=0.15 3=0.85
	FR3	1=0.46 2=0.54	FR3	3=0.06 1=0.21 2=0.73
	DT3	2=0.14 1=0.39 3=0.46	DT3	2=0.02 1=0.04 3=0.94
"Orbits" (cont.)	RM3	3=0.14 2=0.39 1=0.46	RM3	3=0.19 2=0.38 1=0.43
♦ "Prime"	RA3	1=0.14 2=0.86	RA3	5=0.01 4=0.21 1=0.25 3=0.52
♣ "Profile"	AM3	2=0.04 1=0.39 3=0.57	AM3	3=0.18 2=0.27 1=0.55
* Trome	CX3	5=0.14 1=0.14 4=0.29 3=0.43	CX3	5=0.08 1=0.08 4=0.18 2=0.20 3=0.45
"Profile" (cont.)	DI3	2=0.04 1=0.96	DI3	3=0.04 4=0.06 2=0.35 1=0.56
♦ Selections	SS3	1=0.04 3=0.46 2=0.50	SS3	1=0.12 2=0.12 3=0.76
✤ Separation	Profile =	hs (158 records)	Profile =	ss (111 records)
 Separation Selected WBS 	Profile = HS2	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69	Profile = HS2	ss (111 records) 1=0.05 0=0.95
 Separation Selected WBS Selected WBS (merc) 	Profile = HS2 AS2	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57	Profile = HS2 AS2	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77
 Separation Selected WBS Selected WBS (more) 	Profile = HS2 AS2 PF2	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34	Profile = HS2 AS2 PF2	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50
 Separation Selected WBS Selected WBS (more) Weighted Frequencies 	Profile = HS2 AS2 PF2 EX3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57	Profile = HS2 AS2 PF2 EX3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34
 Separation Selected WBS Selected WBS (more) Weighted Frequencies 	Profile = HS2 AS2 PF2 EX3 DO3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71	Profile = HS2 AS2 PF2 EX3 DO3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? 	Profile = HS2 AS2 PF2 EX3 DO3 US3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87	Profile = HS2 AS2 PF2 EX3 DO3 US3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73 2=0.14 5=0.17 3=0.25 1=0.44
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73 2=0.14 5=0.17 3=0.25 1=0.44 3=0.03 2=0.47 1=0.50
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73 2=0.14 5=0.17 3=0.25 1=0.44 3=0.03 2=0.47 1=0.50 5=0.17 4=0.33 3=0.50
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99 3=0.01 2=0.12 1=0.87	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73 2=0.14 5=0.17 3=0.25 1=0.44 3=0.03 2=0.47 1=0.50 5=0.17 4=0.33 3=0.50 2=0.38 1=0.62
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99 3=0.01 2=0.12 1=0.87 3=0.01 2=0.12 1=0.87	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73 2=0.14 5=0.17 3=0.25 1=0.44 3=0.03 2=0.47 1=0.50 5=0.17 4=0.33 3=0.50 2=0.38 1=0.62 3=0.22 2=0.78
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99 3=0.01 2=0.12 1=0.87 3=0.01 2=0.12 1=0.87 2=0.12 3=0.88	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73 2=0.14 5=0.17 3=0.25 1=0.44 3=0.03 2=0.47 1=0.50 5=0.17 4=0.33 3=0.50 2=0.38 1=0.62 3=0.22 2=0.78 1=0.17 2=0.83
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99 3=0.01 2=0.12 1=0.87 2=0.12 3=0.88 3=0.01 5=0.12 1=0.87	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3	$\begin{array}{r} \text{ss (111 records)} \\ \hline 1=0.05 \ 0=0.95 \\ 5=0.02 \ 2=0.05 \ 3=0.07 \ 4=0.09 \ 1=0.77 \\ 2=0.09 \ 5=0.09 \ 4=0.13 \ 1=0.19 \ 3=0.50 \\ 5=0.17 \ 3=0.19 \ 2=0.30 \ 1=0.34 \\ 5=0.27 \ 4=0.73 \\ 2=0.14 \ 5=0.17 \ 3=0.25 \ 1=0.44 \\ 3=0.03 \ 2=0.47 \ 1=0.50 \\ 5=0.17 \ 4=0.33 \ 3=0.50 \\ 2=0.38 \ 1=0.62 \\ 3=0.22 \ 2=0.78 \\ 1=0.17 \ 2=0.83 \\ 3=0.03 \ 4=0.27 \ 1=0.70 \end{array}$
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RM3 RA3 AM3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99 3=0.01 2=0.12 1=0.87 3=0.01 2=0.12 1=0.87 3=0.01 5=0.12 1=0.87 3=0.22 1=0.78	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3	$\begin{array}{r} \text{ss (111 records)} \\ \hline 1=0.05 \ 0=0.95 \\ 5=0.02 \ 2=0.05 \ 3=0.07 \ 4=0.09 \ 1=0.77 \\ 2=0.09 \ 5=0.09 \ 4=0.13 \ 1=0.19 \ 3=0.50 \\ 5=0.17 \ 3=0.19 \ 2=0.30 \ 1=0.34 \\ 5=0.27 \ 4=0.73 \\ 2=0.14 \ 5=0.17 \ 3=0.25 \ 1=0.44 \\ 3=0.03 \ 2=0.47 \ 1=0.50 \\ 5=0.17 \ 4=0.33 \ 3=0.50 \\ 2=0.38 \ 1=0.62 \\ 3=0.22 \ 2=0.78 \\ 1=0.17 \ 2=0.83 \\ 3=0.03 \ 4=0.27 \ 1=0.70 \\ 2=0.28 \ 1=0.72 \end{array}$
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RM3 RA3 AM3 CX3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99 3=0.01 2=0.12 1=0.87 3=0.01 2=0.12 1=0.87 3=0.22 1=0.78 5=0.01 4=0.11 2=0.13 1=0.32 3=0.42	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RM3 RM3 RM3 CX3	ss (111 records) $1=0.05\ 0=0.95$ $5=0.02\ 2=0.05\ 3=0.07\ 4=0.09\ 1=0.77$ $2=0.09\ 5=0.09\ 4=0.13\ 1=0.19\ 3=0.50$ $5=0.17\ 3=0.19\ 2=0.30\ 1=0.34$ $5=0.27\ 4=0.73$ $2=0.14\ 5=0.17\ 3=0.25\ 1=0.44$ $3=0.03\ 2=0.47\ 1=0.50$ $5=0.17\ 4=0.33\ 3=0.50$ $2=0.38\ 1=0.62$ $3=0.22\ 2=0.78$ $1=0.17\ 2=0.83$ $3=0.03\ 4=0.27\ 1=0.70$ $2=0.28\ 1=0.72$ $5=0.02\ 4=0.06\ 2=0.07\ 3=0.29\ 1=0.55$
 Separation Selected WBS Selected WBS (more) Weighted Frequencies What's next? Conclusion 	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 CX3 DI3	hs (158 records) 3=0.01 5=0.04 2=0.04 0=0.08 4=0.13 1=0.69 5=0.06 3=0.10 2=0.11 4=0.15 1=0.57 2=0.09 5=0.09 4=0.19 1=0.29 3=0.34 3=0.13 4=0.29 1=0.57 4=0.29 2=0.71 3=0.13 1=0.87 3=0.01 1=0.99 2=0.01 3=0.99 3=0.01 2=0.12 1=0.87 3=0.01 2=0.12 1=0.87 2=0.12 3=0.88 3=0.01 5=0.12 1=0.87 3=0.22 1=0.78 5=0.01 4=0.11 2=0.13 1=0.32 3=0.42 4=0.01 3=0.01 1=0.98	Profile = HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3 DT3 RM3 RA3 AM3 CX3 DI3	ss (111 records) 1=0.05 0=0.95 5=0.02 2=0.05 3=0.07 4=0.09 1=0.77 2=0.09 5=0.09 4=0.13 1=0.19 3=0.50 5=0.17 3=0.19 2=0.30 1=0.34 5=0.27 4=0.73 2=0.14 5=0.17 3=0.25 1=0.44 3=0.03 2=0.47 1=0.50 5=0.17 4=0.33 3=0.50 2=0.38 1=0.62 3=0.22 2=0.78 1=0.17 2=0.83 3=0.03 4=0.27 1=0.70 2=0.28 1=0.72 5=0.02 4=0.06 2=0.07 3=0.29 1=0.55 3=0.03 2=0.18 1=0.79

SILAP input parameters: distributions "profile" (cont.)

Introduction	Profile =	su (55 records)
Knowledge Ferming	HS2	1=0.05 0=0.95
Knowledge Farming	AS2	5=0.02 2=0.05 3=0.07 4=0.09 1=0.77
	PF2	2=0.09 5=0.09 4=0.13 1=0.19 3=0.50
SILAP	EX3	5=0.17 3=0.19 2=0.30 1=0.34
mb1	DO3	5=0.27 4=0.73
	US3	2=0.14 5=0.17 3=0.25 1=0.44
Components	UC3	3=0.03 2=0.47 1=0.50
✤ separation	CL3	5=0.17 4=0.33 3=0.50
* "All" and "Orbita"	FR3	2=0.38 1=0.62
All and Orbits	DT3	3=0.22 2=0.78
"Orbits" (cont.)	RM3	1=0.17 2=0.83
♦ "Prime"	RA3	3=0.03 4=0.27 1=0.70
* "Due file"	AM3	2=0.28 1=0.72
* Profile	CX3	5=0.02 4=0.06 2=0.07 3=0.29 1=0.55
♦ "Profile" (cont.)	DI3	3=0.03 2=0.18 1=0.79
♦ Selections	SS3	1=0.14 2=0.34 3=0.53

Separation

- Selected WBS
- Selected WBS (more)
- Weighted Frequencies

What's next?

500 times * {pick SILAP inputs from known distributions; compute (EP1,CO1); select relevant WBS tasks}

Introduction Knowledge Farming

SILAP

- mb1
- Components
- ✤ separation
- * "All" and "Orbits"
- ♦ "Orbits" (cont.)
- "Prime"
- "Profile"
- ♦ "Profile" (cont.)

♦ Selections

- Separation
- Selected WBS
- Selected WBS (more)
- Weighted Frequencies

What's next?

- "Profile" offers least separation;
- "Orbit" and "Prime" very similar
- "Orbits", "prime", and "profile" select for very similar tasks.
- "Clusters" offers the most separation

Sanity check: sampling naive?

Introduction	• The proceedin	g experiment drew values from pr	obability	distributions of each SILAP
Knowledge Farming	variable, <i>ignor</i>	ing any correlations between varia	ables.	
SILAP	• Q: are there la	rge correlations?		
mb1	A: No			
✤ Components		HS2 AS2 PF2 EX3 DO3 US3 UC3 CL3 FR3	DT3 RM3	3 RA3 AM3 CX3 DI3 SS3
✤ separation	HS2	0.41 0.08 -0.06 -0.18 -0.26 -0.22 -0.29 -0.09	-0.42 0.47	7 -0.16 -0.05 0.07 0 0.13
* "All" and "Orbits"	AS2	0.44 -0.05 -0.06 -0.16 -0.05 -0.21 0.05	0.01 0.04	4 -0.01 -0.1 0.34 0.14 0.07
* "Orbite" (cont.)	PF2	0.01 0.01 -0.02 0.07 -0.07 0.08	0.26 -0.1	5 0.16 -0.12 0.4 0.12 0.08 0 0.05 0.41 0.00 0.24 0.18
* "Drime"			0.23 -0.13	3 -0.07 -0.05 -0.04 0.09 -0.23
* Prime	US3	0.44 0.48 0.26	0.43 -0.47	7 0.29 0.03 -0.22 0.29 0.1
♦ "Profile"	LIC3	0.39.0.49	0.68 -0.2	3 0.08 0.14 0.13 0.34 0.01
"Profile" (cont.)		-0.13	0.21 -0.3	
♦ Selections	CE3	-0.13	0.21 -0.3	
✤ Separation	FR3		0.5 -0.12	2 0.53 -0.02 0.15 0.21 -0.03
* Selected WBS	DT3		-0.58	0.34 -0.12 0.24 0.3 0.09
* Selected WBS (more)	RM3			-0.28 0.02 -0.04 -0.23 -0.12
	RA3			0.02 0.15 0.06 0.2
Weighted Frequencies	AM3			0.01 0.11 -0.01
What's next?	CX3			0.05 0.14
what's hext:	DI3			0.18
Conclusion	333	I		

 Besides, when we run the raw data for "all" through SILAP, it picks tasks very similar to the simulation for "all".

What Separates the Clusters?

```
Introduction
Knowledge Farming
SILAP
mb1
Components
✤ separation
♦ "All" and "Orbits"
"Orbits" (cont.)
"Prime"
♦ "Profile"
"Profile" (cont.)
Selections
Separation
Selected WBS
Selected WBS (more)
Weighted Frequencies
What's next?
Conclusion
```

- "Tag" each record with its cluster identifier
- Using feature subset selection, learn which SILAP attributes are most important
 - 10-way, CFS, selected: HS2, EX3, US3, CL3, FR3, DT3, RM3
- Learn a decision procedure that identifies each clusters
- If SILAP performs differently for each cluster, then those clusters represent truly different project types.

```
DT3= use of defect tracking; CL3= CMM level; US3= use of standards;

EX3= experience; HS2= human safety

DT3 <= 1: cluster2 (150.0/4.0)

DT3 > 1

CL3 <= 4

US3 <= 2: cluster0 (170.0)

US3 > 2

DT3 <= 2

EX3 <= 2: cluster3 (25.0)

EX3 > 2

EX3 > 2

HS2 = 3: cluster0 (14.0)

HS2 > 3: cluster3 (6.0)

DT3 > 2: cluster1 (19.0)
```

In a 10-way cross-val, accuracy=99.061% (!!).

"The variables in the tree are all about how much a project knows about itself and how much it is willing to share that knowledge with others."

What WBS tasks are Selected by the Clusters?

Introduction			W=231	X=21	Y=148	Z=32
	id	task	c0	c1	c2	сЗ
Knowledge Farming	1.1	Management and Planning of IV&V	100	100	100	100
	1.2	Issue and Risk Tracking	99	100	91	100
SILAP	1.3	Final Report Generation	99	100	91	100
mb1	1.4	IV&V Tool Support	99	100	91	100
	1.5	Management & Technical Review Support	100	100	100	100
Components	1.6	Criticality Analysis	100	100	100	100
separation	2.1	Reuse Analysis*	87	10	55	66
"All" and "Orbits"	2.2	Software Architecture Assessment	52	5	51	58
	2.3	System Requirements Review	52	93	51	58
☆ "Orbits" (cont.)	2.4	Concept Document Evaluation	6		24	20
♦ "Prime"	2.5	SW/User Requirements Allocation Analysis	6		24	20
♦ "Profile"	2.6	Traceability Analysis	6		24	20
* "Drofile" (cont.)	3.1	Traceability Analysis - Requirements	95	97	83	88
* Profile (cont.)	3.2	Software Requirements Evaluation	52	93	51	58
Selections	3.3	Interface Analysis - Requirements	54	95	47	41
Separation	3.4	System Test Plan Analysis	52	5	51	58
	3.5	Acceptance Test Plan Analysis	4		3	21
	3.6	Timing and Sizing Analysis				
Selected WBS (more)	4.1	Traceability Analysis - Design	95	100	51	100
Weighted Frequencies	4.2	Software Design Evaluation	28	93	25	38
3	4.3	Interface Analysis - Design	4	93	3	21
What's next?	4.4	Software FQT Plan Analysis	95	56	83	88
	4.5	Software Integration Test Plan Analysis		93		_
Conclusion	4.6	Database Analysis	37	95	30	5
	4.7	Component Test Plan Analysis				

What WBS tasks are Selected by the Clusters? (more)

			W=231	X=21	Y=148	Z=32
	id	task	c0	c1	c2	c3
Introduction	5.1	Traceability Analysis - Code	96	100	52	100
	5.10	Component Test Case Analysis	96	100	52	100
Knowledge Farming	5.11	System Test Procedure Analysis	1		3	18
	5.12	Software FQT Procedure Analysis	1		3	18
SILAP	5.2	Source Code and Documentation Evaluation	54	95	47	41
	5.3	Interface Analysis - Code	54	95	47	41
mb1	5.4	System Test Case Analysis	27	5	25	38
♦ Components	5.5	Software FQT Case Analysis	27	5	25	38
separation	5.6	SW Integration Test Case Analysis				
	5.7	Acceptance Test Case Analysis	4		3	21
"All" and "Orbits"	5.8	SW Integration Test Procedure Analysis				
"Orbits" (cont.)	5.9	SW Integration Test Results Analysis		93		
♣ "Prime"	6.1	Traceability Analysis - Test	95	56	83	88
	6.2	Regression Test Analysis				
♦ "Profile"	6.3	Simulation Analysis	1		3	18
"Profile" (cont.)	6.4	System Test Results Analysis	27	5	25	38
* Selections	6.5	Software FQT Results Analysis	27	5	25	38
	7.1	Operating Procedure Evaluation	1		3	18
* Separation	7.2	Anomaly Evaluation	1		3	18
Selected WBS	7.3	Migration Assessment	1		3	18
Selected WBS (more)	7.4	Retirement Assessment	1		3	18

But what good is any of this? Well...

- Check the above. Is it reasonable? If not-should SILAP be changed?
- Don't make "blunt" business distinctions:
 - e.g. don't plan IV&V around "mission type" but, rather, around the process maturity of the developers.
- Make business decisions that are sensitive to the kinds of current business; e.g.
- What are the *current* and *expected future* frequencies of {W,X,Y,Z}?
- Weight the above numbers by those frequencies.

Weighted Frequencies

What's next?

Weighted Frequencies

Introduction	1.1	Management and Planning of IV&V	100	*****
	1.5	Management & Technical Review Support	100	*****
Knowledge Farming	1.6	Criticality Analysis	100	****
	1.2	Issue and Risk Tracking	96	*****
SILAP	1.3	Final Report Generation	96	*****
mb1	1.4	IV&V Tool Support	96	*****
	3.1	Traceability Analysis - Requirements	90	*****
Components	4.4	Software FQT Plan Analysis	88	*****
✤ separation	6.1	Traceability Analysis - Test	88	****
♣ "All" and "Orbits"	4.1	Traceability Analysis - Design	81	****
	5.1	Traceability Analysis - Code	81	****
Orbits" (cont.)	5.10	Component Test Case Analysis	81	*****
"Prime"	2.1	Reuse Analysis*	71	****
♦ "Profile"	2.3	System Requirements Review	54	****
# "Drefile" (court)	3.2	Software Requirements Evaluation	54	****
* Profile (cont.)	3.3	Interface Analysis - Requirements	53	****
 Selections 	5.2	Source Code and Documentation Evaluation	53	******
Separation	5.3	Interface Analysis - Code	53	****
* Selected WPS	2.2	Software Architecture Assessment	50	*****
	3.4	Database Analysis	25	*****
Selected WBS (more)	4.0	Software Design Evaluation	31	****
♦ Weighted Frequencies		System Test Case Analysis	26	****
	5.5	Software FOT Case Analysis	26	****
What's next?	6.4	System Test Results Analysis	26	****
	6.5	Software FQT Results Analysis	26	****
Conclusion	2.4	Concept Document Evaluation	13	*
	2.5	SW/User Requirements Allocation Analysis	13	*
	2.6	Traceability Analysis	13	*
	4.3	Interface Analysis - Design	9	

Weighted Frequencies (more)

Introduction	
Knowledge Farming	
SILAP	
mb1	
✤ Components	
separation	
"All" and "Orbits"	
"Orbits" (cont.)	

- "Prime"
- "Profile"
- ♦ "Profile" (cont.)
- Selections
- Separation
- ♦ Selected WBS
- Selected WBS (more)Weighted Frequencies

```
What's next?
```

3.5	Acceptance Test Plan Analysis	5
4.5	Software Integration Test Plan Analysis	5
5.7	Acceptance Test Case Analysis	5
5.9	SW Integration Test Results Analysis	5
5.12	Software FQT Procedure Analysis	3
5.11	System Test Procedure Analysis	3
6.3	Simulation Analysis	3
7.1	Operating Procedure Evaluation	3
7.2	Anomaly Evaluation	3
7.3	Migration Assessment	3
7.4	Retirement Assessment	3
3.6	Timing and Sizing Analysis	0
4.7	Component Test Plan Analysis	0
5.6	SW Integration Test Case Analysis	0
5.8	SW Integration Test Procedure Analysis	0
6.2	Regression Test Analysis	0

- Assess current capabilities:
 - how well do we do the most frequent tasks seen in current practice?
- Gap analysis:
 - what aren't we doing now that we will be doing more of in the future? Are we ready for that jump?

Introduction

Knowledge Farming

SILAP

mb1

What's next?

Support

Extensions

Conclusion

What's next?

Download from http://unbox.org/wisp/trunk/silap/doc/tb.pdf

SAS_06_Telling_More_Menzies - slide 32

Supporting Process Improvement

Introduction

Knowledge Farming

SILAP

mb1

- What's next?
- Support

Extensions

Conclusion

The IV&V planning & scoping team are continually and actively reviewing and improving SILAP. Current activities include:

- Review/update SLP 9-1 (the WBS)
- Revising SILAP documentation
- identified areas for ?change:
 - right tasks selected by scores?
 - are factors the best selectors?
- Is the criteria sufficient/ correct?
 - Map factors directly to tasks?
 - Study planned vs actual to find a "best" or most common architecture break out?

Minimum set of tasks needed to add IV&V value?

- Defining sets of "common" tasks for specific types of functions?
- ?? break code analysis out into
 - tool execution only?
 - tool execution + review of results?
 - full-up code inspection?
- Etc etc

Can knowledge farming simplify, optimize any of these dialogues?

The Future

- This talk has been all about learning α .
- The rest of the alphabet awaits.

Conclusion

Introduction

Knowledge Farming

SILAP

mb1

What's next?

Conclusion

- If puzzled, then poke:
 - Model a little,
 - Simulate a little,
 - Summarize a little

• If certain, then check:

- ✦ Model a little,
- ♦ Simulate a little,
- Summarize a little
- There are surprises hiding in your business.
- Use knowledge farming to find them.