For Chan Joshi Interagency Task Force Workshop Gaithersburg, Maryland May 26, 2004

Beams Working Group Summary Thrusts #4-6

Scientific objectives, milestones and resources

Panelists and Contributors: G. Logan, B. Jacak, T. Hallman, J. Barnard, T. Katsouleas, A. Melissinos

Thrust Area 4:

Heavy-Ion-Driven High Energy Density Physics and Fusion

Grant Logan

Compelling Question for heavy ion thrust area:

How can heavy ion beams be compressed to the high intensities required for creating high energy density matter and fusion ignition conditions?

Strategy: maximize uniformity and the efficient use of beam energy by placing center of foil at the Bragg peak in dE/dx

In simplest example, target is a foil of solid or "foam" material

Simulations of first proposed experiment (NDCX-I) show large compression of tailored-velocity ion beams *inside a plasma column* (Welch, Henestroza, Yu 3-11-04)

Existing 3.9T solenoid focuses beam

First experiments (~FY06) to assess physics limits of neutralized ion beam compression to short pulses (NDCX-I, before upgrade to NDCX-II)

FY09 milestone: Integrated beam and target experiments reaching HEDP threshold of 10¹¹ J/m³ (NDCX-II)

Using a low density target with the "2015" machine results in more uniformity, but less energy density

(slide courtesy D. Callahan and M. Tabak, LLNL)

In Warm Dense Matter regime large errors exist even for most studied materials (slide courtesy R. Lee, LLNL)

- EOS Differences > 80% are common
- Measurements are essential for guidance
- Where there is data the models agree!!
 - Data is along the Hugoniot single shock $\rho\text{-}T\text{-}P$ response curve

Opportunities for Interagency Cooperation

With BES (SNS), with HEP (RHIC), and with NNSA (PSR) and in common issues of data, mitigation, and diagnostics for electron cloud effects.

With all agencies (e.g., BES, HEP, NNSA) sponsoring programs using intense accelerators that would benefit from joint development of advanced computational tools for electron cloud effects, beam halo production and associated losses.

With NNSA-sponsored electron beam radiography programs that would benefit from comparisons of equation of state and constitutive properties data for targets heated isochorically by particle beams.

With HEP for Plasma Wakefield Energy Doubler for a Linear Collider, on some common physics areas in compression and focusing limits with plasma lens and particle energy spreads.

Backup slides

Conclusion

Scientific campaigns in high brightness transport, compression, focusing, advanced computational tools, and beam-target interaction address the top-level scientific question central to both HEDP and inertial fusion energy (IFE):

How can heavy ion beams be compressed to the high intensities required for creating high energy density matter?

Understanding how beams can be compressed to 10¹¹ J/m³ (HEDP threshold) is a compelling intermediate step towards 10¹³J/m³ needed for IFE.

The new 10 year plan would meet the OMB/OFES 10-Year Measure for IFE/HEDP: "With the help of experimentally validated theoretical and computer models, determine the physics limits that constrain the use of IFE drivers in future key integrated experiments needed to resolve the scientific issues for inertial fusion energy and high energy density physics".

Synergy with other HEP funded accelerator research (laser-based wake-field short pulse xrays for diagnostsics

Example parameters: Ne⁺¹ beam

Ne: Z=10, A=20.17, E_{min}=4.4 MeV, E_{center}=11.7 MeV, E_{max}=19 MeV Δz_{min} = 40 μ

ρ (g/cm³) (%solid)	0.027 (1%)			0.27 (10%)			2.7 (100%)		
Foil length (μ)	700			70			7		
kT (eV)	3.5	7.9	15.	4.5	15	20	7.2	32	38
Z*	1.5	2.8	3.4	1.3	2.8	3.3	1.1	2.8	3.4
Γ _{ii} =Ζ*²e²n _i ¹/³/kΤ	0.77	1.4	0.93	0.99	1.4	1.45	0.95	1.4	1.7
N _{ions} /(r _{spot} /1mm)² /10 ¹²	2.2	6.4	22	2.2	14	22	2.2	22	30
∆t (ns)	56	33	18	2.6	1.0	0.8	0.03	0.01	.008
U (J/m ³)/10 ¹¹	.021	.073	0.21	0.21	1.27	2.1	2.1	21	28

(Eq. of state, Z*: Zeldovich and Raizer model from R.J. Harrach and F. J. Rogers, J. Appl. Phys. 52, 5592, (1981).)

"Adiabatic plasma lens" can be used as a final focusing optic with large velocity acceptance

Length of lens

>~ 1 "betatron" or particle oscillation length, so particles are "funneled" to a focus

Velocity spreads $\Delta v/v \sim 1$ are transmitted; Ultimate spot size determined by balance between focusing force and beam emittance

Phase 2: 10 A, 100-ns He beam at end of accelerator

Compressed from 1-A 1- μ s beam in accel-decel injector ϵ =1.2 π -mm-mrad, r=2cm, .75 J 60-cm long adiabatic discharge channel (20 kA); 10 mm to 1 mm radius 67% energy tilt from 500-1000 keV in 100 ns Need to compress 100x and focus to 1-mm spot to achieve "HEDP"

Thrust Area 5:

High Energy Density Science with Ultra-Relativistic Electron Beams

For Chan Joshi

Compelling Question : High Energy Density Science with Ultrarelativistic Electron Beams:

How can the ultra high electric fields in a beam-driven plasma wakefield be harnessed and sufficiently controlled to accelerate and focus high-quality, high-energy beams in compact devices?

Drive Beam Energy	50 GeV
Number of Particles in Drive Beam	3e10
Trailing Beam Energy	50 GeV
Number of Particles in Trailing Beam	1e10
R.M.S, Bunch Length of Drive Beam	45 microns
R.M.S. Bunch Length of Trailing Beam	10 microns
Spacing Between Bunches	0-150 micron
R.M.S. Spot Size of the Bunches	1-3 microns
Plasma Density	2e16 cm-3
Average gradient	16 GeV/m
Transformer ratio	1-1.2
Energy Spread	5-10%
Length of Accelerating Sections	3 m

Table 1: A Non-Optimized set of beam and PlasmaParameters for a 100 GeV Afterburner

Scientific Milestones and Objectives

- 1) Can appropriately shaped (drive and trailing) electron and positron bunches with a variable spacing and the necessary charge be generated to excite the wakefield and extract the energy from it?
- 2) Can one demonsrate relatively efficient beam loading of the wake and obtain a reasonable energy spread of the trailing beam?
- 3) Can transformer ratios of greater than 2 be obtained by shaping the drive beam?

This may make it possible to add more than twice the drive beam energy to the trailing beam

Scientific Milestones and Objectives

- 4) Production of 1-10m homog. (and tapered) Plasmas
- 5) Stable beam propagation from 10cm-10m of highdensity plasma w/o hosing/erosion
- 6) Compatible integration of plasma into a beam dump/detector
- 7) Hollow channel accel. of positron beam
- 8) Positron beam accel. on an electron wake
- 9) Matched beam propagation
- 10) Hi demagnification plasma lenses
- 11) 1-to-1 computer modeling of 10m-scale expts.
- 12) Generation of intense X-rays and γ -rays via plasma wigglers
- 13) Production of ultra-low emittance beams for future X-
- ray FELs (as well as matching to plasma stages)

PIC Simulation of 2 bunch Afterburner Experiment

Resource Requirements

- Dedicated high energy beam line with beam compression for both electrons and positrons \$10M
- 2. Science Program

\$5M/yr

Agency Cooperation

DoE-HEP – support plasma accel/focusing; accel. development DOE-BES –e- and e+ pulse compression, radiation generation, emittance reduction NSF—beam propagation physics, relativistic beamplasma interactions

Figure 1. Location of the Instrument Section close to the beginning of the SARC

Courtesy P. Krejcik, P. Emma

The Tools Needed to Explore the High Energy Density Frontier at RHIC II

T. Hallman HEDP Conference Gaithersburg, MD May 24-26, 2004

Compelling questions

• What is the nature of matter at exceedingly high density and temperature?

• Does the quark gluon plasma exhibit any of the properties of a classical plasma?

The Ongoing Scientific Journey at RHIC

Search and discovery — Exploring new states of matter

Is there a QCD phase transition?

- Chiral symmetry restored (shifted ρ mass)?
- Lattice QCD predictions for the equation of state (latent heat/deconfinement)?
- Fluctuations near phase boundary?

•Nature of a possible saturated initial-state gluon distribution

Like all good science, one advance leads to even more interesting, fundamental scientific questions

Scientific objectives:

- Heavy quark probes
 - High mass \rightarrow high E to produce (made at 1st step in collision)
 - Screening properties via (c-anticharm) bound states
 - Do the heavy quarks thermalize? Lose energy?
 - higher luminosity → sufficient statistics of rare, heavy quarks
 - lattice calculation under relevant conditions
- Initial quark gluon plasma temperature
 - detector upgrade for background rejection
 - lattice, hydro simulations (with relevant ρ , coupling)
- Characterize this new kind of plasma
 - radiation rate, conductivity, collision frequency
 - Need rare probes, including tagged jets
 - detector & accelerator improvements; simulations
- Consistent theoretical picture of
 - quark gluon plasma, heavy ion collision to connect with data
 - Need large scale computational resources for numerical simulation

How to get there?

- Experimental side upgrade facility (~2009-2015)
 - increase RHIC luminosity by ~40
 - by electron cooling of heavy ion beams
- Capabilities of large detectors (2 steps between now & 2015)
 - technology for rare features in high muliplicity events
 - secondary decay vertices
 - background rejection
 - triggering, readout capabilities
 - data analysis infrastructure (already write 0.5 pB/year)
- Theory progress (over next 5-10 years)
 - Large scale computing resources
 - lattice QCD, hydrodynamic & transport simulations
 - Personnel to develop new approaches

What's Needed?

To exploit this opportunity, the future RHIC HI program, beyond the present exploratory phase, is driven by the need for sensitivity to rare processes.

Not because the QGP, etc. are rare phenomena in these collisions, but because signals that can reveal the details of early-time phenomena are rare processes.

High p_T hadrons Heavy quarks (bound & unbound) Direct photons, electrons Direct γ + jet, di-jets

A+A Species scan p+p Energy scan p+A

Physics Beyond Reach of Current RHIC Program

Provide key measurements so far inaccessible at RHIC in three broad areas:

- Comprehensive study of QCD at high T with heavy ion, p-nucleus, and pp
 - high p_T phenomena (identified particle, $p_T > 20$ GeV/c and γ -jet)
 - electron pair continuum (low masses to Drell-Yan)
 - heavy flavor production (c- and b-physics)
 - charmonium spectroscopy (J/ ψ , ψ ', χ_c and Y(1s), Y(2s), Y(3s))
- Extended exploration of the spin structure of the nucleon
 - gluon spin structure (Δ G/G) with heavy flavor and g-jet correlations
 - quark spin structure ($\Delta q/q$) with W-production
 - Transversity
- Exploration of the nucleon structure in nuclei
 - A-, p_T-, x-dependence of the parton structure of nuclei
 - gluon saturation and the color glass condensate at low x

AA luminosity

requires highest polarization and luminosity

Requires not only upgrade of RHIC luminosity But also of the experiments The needs have been studied over the last 2 years

Measurements foreseen in the PHENIX and STAR decadal plans

Extended machine & detector capability at RHIC

High P_t and Q^2 : Direct photons to $P_t > 15$ GeV/c Photon-tagged jets...*jet tomography* Low x, high Q^2 in pA... *Probe color glass* Rare probes:

Open Charm and Beauty Many x1000 upsilons W production in AA, pA, pp

Very large unbiased event samples:

Low mass lepton pairs... ρ mass spectrum Low P_t Direct Photons γγ interferometry... Disoriented Chiral Condensate; Strong parity violation

Most of these require data samples <u>per run</u> equivalent to 10/nb in Au-Au RHIC will integrate ~ 10/nb up to 2010 at present (design) luminosity !

Included as part of the DOE 20 year "roadmap"

•These estimates in FY03 dollars and do not include escalation.

Interagency opportunities?

- Currently DOE/NP & NSF cooperate in this area
 - RHIC operated by DOE/NP exclusively
- Collaboration on experimental & computational infrastructure
- Support for the people
- Opportunities?
 - Large scale simulation and data analysis computational resources
- Foster study of other HED questions which may be addressed by the same facilities
 - Accelerator physics relevant to HED???