

				-		
	I	11	111	IV	butyricum	baratii
Toxin	A,B,F	B,E,F	C,D	G	E	F
Proteolysis	+	-	-	+	-	-
Lipase	+	+	+	-	-	-
Lecithinase	-	-	-	-	-	+
Opt temp	35-40	18-25	40	37	30-37	30-45
Min temp	10	3.3	15		10	

Egg Yolk Agar Plate Preliminary Identification

- Lipase positive-pearly luster film around the colonies on the surface of the agar
- Lecithinase- opaque precipitate within the agar, diameter of precipitate varies among strains
 - *C. perfringens*, a lecithinase producer is commonly found in human stool

Non-neurotoxigenic Similates

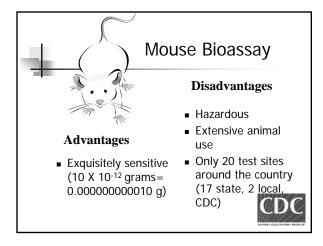
- *C. botulinum* group I: *C. sporogenes*
- *C. botulinum* group II: no name assigned
- C. botulinum group III: C. novyi
- C. botulinum group IV: C subterminale
- C. baratii: all typical strains
- C. butyricum: all typical strains

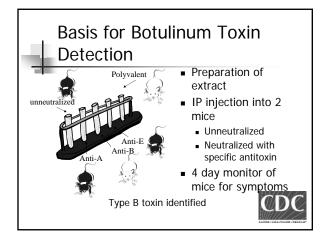
Differentiation from Similates

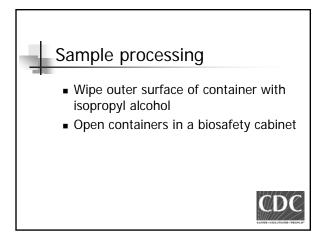
The only definitive method to differentiate botulinum producing strains from non-neurotoxigenic simulates is through toxin identification

Culture characteristics of *C. botulinum*

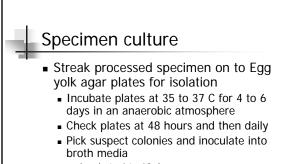
- Anaerobic
- Gram positive (>24 hr culture may be negative)
- Spore former (not always present)
 Spores resistant to heat
- Sensitive to high salt or sugar
- Inhibited by low pH (<4.6)</p>

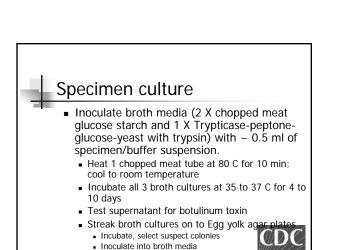

4	Acceptable Specimens (from patients exhibiting symptoms consistent with the diagnosis of botulism, only)					
	Foodborne	Infant	Wound			
	serum, gastric, vomitus, stool, sterile water enema, food samples	serum, stool, rectal swabs, potential sources	serum, stool (in case not wound), tissue			
	All specimens should be maintained at 4 C, not frozen, until tests are performed.					

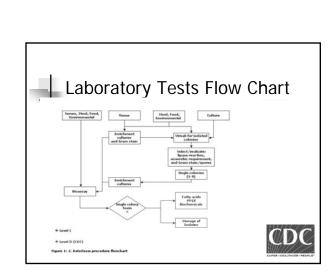


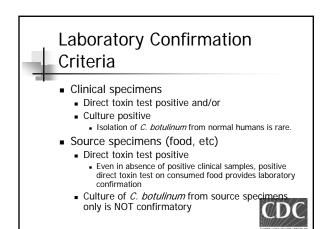

Current approved test

- Mouse bioassay is the only currently approved test for the laboratory confirmation of botulism
- An ELISA (FDA/CDC) was recently validated for toxin detection in cultures
 - Currently under evaluation at CDC for utility in the clinical diagnostic laboratory

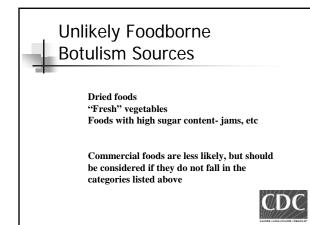


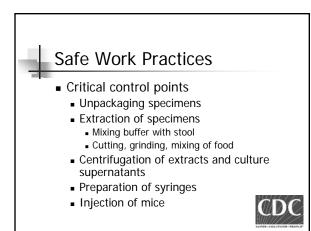

Sample processing


- Weigh specimen
- Add 1 ml cold gelatin buffer to each gram of specimen (food, stool, etc) up to ~25 grams.
 - Very dry material may require additional buffer
 - Large pieces of material must be cut and/or pulverized before adding buffer.
- Hold sample for 30 minutes at room temperature (several hours or several days at 4 C is acceptable).
- Centrifuge 20 minutes at 27,000 X g to prepare for direct toxin tests


- Incubate 4 to 10 days
- Test supernatant for botulinum toxin

Test for toxin




Non-Alaska Native Implicated Foods Home-canned vegetables of any kind Pickled material- pigs feet, artichoke hearts, eggs Herbs in oil (garlic, etc)

Herbs in oil (garlic, etc) Smoked fish Potato salad Home prepared soup Temperature abused commercial products Clam chowder Tiramisu-low sugar Baked potato (foil wrapped, room temperature)

Cheese sauce (contaminated from potato)

- Personal protective equipment
 - Gloves
 - Gown
 - Eye protection
 - Facial or desktop plexiglass shield
 - Biological safety cabinet during procedures that could produce aerosols (cutting, grinding, etc of food/environmental specimens)

Safe Work Practices

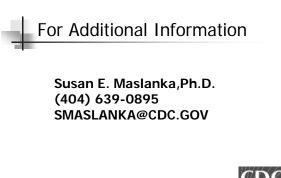
- Minute quantities of toxin are hazardous
- Decontamination
 - 0.1N sodium hydroxide
 - · Will inactivate toxin
 - 10% household bleach (prepared fresh daily) Will inactivate toxin
 - · Will kill vegetative cells and spores
 - Treat spills sequentially (15 to 20 minutes each) with sodium hydroxide, bleach solution, and finally isopropyl alcohol (to reduce caustic effects of decontamination procedure)

Safe Work Practices

- Waste handling
 - All material with potential contact with botulinum toxin and/or C. botulinum must be autoclaved for 60 minutes, 121C, at 15 to 20 PSI
 - Since small quantities of toxin may cause illness, all material in the laboratory should be considered contaminated

Safe Work Practices Response to potential exposure Workers should be made aware of early symptoms of botulism Blurred or double vision Dry mouth Slurred speech Peripheral muscle weakness Self-monitor 2 to 4 days for symptoms Report to emergency care facility if symptoms develop Prophylactic antitoxin is not (ADX administered in the absence of symptom

Botulinum Toxoid Vaccine


- "Investigational New Drug" for the past 30+ years
- Available for laboratory workers through your health clinic after enrollment with CDC Drug Services (404 639-3356)
- Initial series: 0, 2 weeks, 12 weeks, 1 year
- Booster provided every 2 years following proof of need (serum submission to CDC for residual antitoxin test prior to boost)
- May eliminate future treatment options of therapeutic toxin preparations.

Summary

- The mouse bioassay is the only currently accepted method for laboratory confirmation of botulism.
- Detection of toxin directly in clinical specimens or source specimens provides laboratory confirmation; production of toxin in cultures of clinical specimens also provides confirmation.
- Most botulinum producing cultures produce lipase on egg yolk agar plates and some rare strains produce lecithinase; however non-neurotoxigenic simulates exist.
- Good safe work practices are essential for handling *C. botulinum* and it's associated neurotoxin.

