

Assessment of the Toxicity of Coal-Fired Power Plant Emissions: Preliminary Results from the TERESA Study

Annette C. Rohr, Sc.D. Air Quality V Arlington, VA September 19, 2005

The Team

Harvard School of Public Health

Stack Sampling, Atmospheric Simulation/Characterization:

- Petros Koutrakis
- Steve Ferguson
- Tarun Gupta
- Choong-Min Kang
- Joy Lawrence
- Pablo Ruiz
- Mike Wolfson

Toxicology:

- John Godleski
- Beatriz Gonzalez-Flecha
- Edgar Diaz
- Meriam Lemos

Supported in part by DOE-NETL (Cooperative Agreement DE-FC26-03NT41902)

TERESA: Toxicological Evaluation of Realistic Emissions of Source Aerosols

Approach:

- Evaluate toxicity of *secondary* particles from power plants, at power plants
- Expose rats to multiple simulated atmospheric conditions
- Examine mobile source emissions using same methods

Study Schematic

- Evaluate the relative toxicity of coal-fired power plant emissions, mobile source emissions, and ambient particles
- Assess the effect of atmospheric conditions on particle formation/toxicity
 - Oxidants (OH radicals) convert SO₂ to sulfuric acid
 - NH₃ neutralizes strong acidity
 - Secondary organic aerosol (α -pinene + ozone)
- Evaluate the impact of coal type and pollution control technologies on toxicity

Why Is TERESA Important?

- Highly innovative and ground-breaking
 - First study to evaluate secondary particles at power plants
- Previous studies have significant limitations:
 - Studies using collected primary coal fly ash
 - Inhalation exposure studies using emissions from pilot combustors
- TERESA addresses these limitations

Three Plants in Program

- 1. Upper Midwest: Powder River Basin coal, no SCR, no FGD. Fieldwork completed November 2004.
- 2. Southeast: Low sulfur (<1%) eastern bituminous coal, SCR, no FGD. Fieldwork nearing completion.
- 3. Midwest: Medium-to-high sulfur (>2-3%) eastern bituminous coal, SCR, FGD. Fieldwork in summer 2006.

Field Operations at Plant 1

Exposure Characterization

	Parameter	Medium and Method	
Integrated	PM _{2.5} mass	47 mm Teflon filter; gravimetric	
	Elements	Teflon filter; XRF	
	Sulfate, nitrate, NH ₄ , NH ₃ , SO ₂ , HNO ₃ , HONO	Diffusion denuder + Teflon filter; ion chromatrography	
	Strong acidity	Teflon filter; pH analysis	
	EC/OC	47mm Quartz filter; TOR method	
	SOA species (pinonic acid, pinic acid, etc.)	47mm teflon filter	
	α-Pinene	Tenax Tubes	
	Ketones and aldehydes	DNPH cartridges	
Continuous	PM _{2.5} mass	R&P TEOM	
	Particle number	CPC TSI 3022	
	0 ₃	UV absorbance method	
	NOX	Chemiluminescence method	
	SO ₂	Pulsed fluorescence method	
	RH and T	Omega	

Toxicology Assessment

Breathing Pattern

- Pulmonary function/breathing pattern
- In vivo oxidative stress
- Blood cytology (CBC/differential)
- Bronchoalveolar lavage
- Pulmonary histopathology
- Blood chemistry
- ECG monitoring (subset of "susceptible" [MI – heart attack] animals)

Electrocardiogram (ECG)

^{© 2005} Electric Power Research Institute, Inc. All rights reserved.

Exposure Data, **Plant 1**, **Fall 2004** Values shown as mean (SD)

	Round 1: October 4-7 (secondary + SOA)	Round 2: October 11-14 (secondary, neutralized + SOA)	Round 3: November 3-5 (secondary only)	
	<i>n</i> =4	<i>n</i> =4	<i>n</i> =3	
Mass (µg/m ³)	193 (73)	141 (16)	69 (10.4)	
$SO_4 (\mu g/m^3)$	57.1 (24)	38.7 (11)	31.8 (1.3)	
$NO_{3} (\mu g/m^{3})$	1 (0.4)	37.7 (6.2)	1.1 (1.2)	
$NH_{4}^{+}(\mu g/m^{3})$	3.1 (1.2)	14.7 (4.1)	3.3 (1.7)	
Acidity (µg/m ³ H ₂ SO ₄)	49.1 (22.7)	1.6 (1.7)	22.5 (4)	
SO ₂ (ppb)	17.5 (4.4)	16 (3)	9.3 (3.5)	
HNO ₃ (ppb)	1.6 (0.3)	2.3 (0.6)	0.6 (0.1)	
HONO (ppb)	11.2 (5.1)	7.8 (1.5)	5 (1)	
NH ₃ (ppb)	20.8 (3.8)	16.1 (6.2)	9.9 (6.2)	
Organic carbon (µg/m ³)	130.7 (7.1)	100.6 (6.6)	54.9 (6.9)	
Elemental carbon (µg/m³)	12.1 (9.4)	4.3 (0.7)	2.8 (1.6)	
Formaldehyde (µg/m³)	16.1 (3.6)	18.1 (3.9)	N/A	
Acetaldehyde (µg/m³)	5.2 (1)	4.8 (0.6)	N/A	
Acetone (µg/m ³)	15.5 (5.2)	13 (2.9)	N/A	
Pinene (µg/m ³)	0.6 (0.1)	0.8 (0.3)	N/A	

Plant 1: Respiratory Effects

Plant 1: Oxidative Stress in Heart and Lung Tissue

Secondary + SOA (*n*=8 in each group)

Boston Particles (Gurgueira *et al.*, 2002) (*n*=4-6 in each group)

Plant 1: Summary of Results

- No changes in breathing pattern or pulmonary function
- No evidence of lung inflammation or injury
- No changes in blood parameters
- No evidence of oxidative stress in lung or heart tissue
- No changes in lung tissue

Plant 2: Respiratory Effects

Plant 2: Respiratory Effects

Scenario	Respiratory Frequency	Tidal Volume	Inspiratory Time	Expiratory Time	Penh
Secondary, unneutralized + SOA #1	↑ ns	↓ p=0.003	NCns	NC ns	↓ ns
Secondary, unneutralized + SOA #2	↑ ns	NCns	NCns	NCns	↓ p=0.001
Secondary, unneutralized	↑ ns	↓ p=0.04	↓ p=0.02	↓ ns	↓ p=0.01
Secondary, unneutralized (MI model)	↑ p=0.024	NCns	NCns	↓ p=0.005 (↑ p=0.03
Secondary, neutralized + SOA	↓ ns	↓ p=0.002	NCns	NCns	↓ p=0.001
Primary particles	↓ ns	↓ p=0.001	NCns	NCns	↓ p=0.003

<u>Airway restriction</u>: \uparrow Penh, \uparrow expiratory time <u>Sensory irritation</u>: \downarrow frequency <u>Pulmonary irritation</u>: \uparrow frequency, \downarrow tidal volume, \downarrow insp/exp time

Plant 2: Summary

- Some biological effects observed: breathing pattern, oxidative stress
- Respiratory results don't tell a clear story
- Most effects with unneutralized scenarios

Conclusions and Future Directions

- TERESA results to date suggest few/inconsistent effects of power plant emissions on laboratory rats
- But...we don't have all the data yet
- Awaiting ECG data from Plant 2 animals
- Need to understand how exposures at Plants 1 and 2 differ
- Plant 3 fieldwork next summer
- Mobile source component to begin in 2007 (funded through the Harvard/EPA PM Center)