Your browser version may not work well with NCBI's Web applications. More information here...
1: J Neurosci. 2003 Nov 26;23(34):10800-8.Click here to read Links

Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity.

Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA.

Synaptic strengthening induced by brain-derived neurotrophic factor (BDNF) is associated with learning and is coupled to transcriptional activation. However, identification of the spectrum of genes associated with BDNF-induced synaptic plasticity and the correlation of expression with learning paradigms in vivo has not yet been studied. Transcriptional analysis of BDNF-induced synaptic strengthening in cultured hippocampal neurons revealed increased expression of the immediate early genes (IEGs), c-fos, early growth response gene 1 (EGR1), activity-regulated cytoskeletal-associated protein (Arc) at 20 min, and the secreted peptide VGF (non-acronymic) protein precursor at 3 hr. The induced genes served as prototypes to decipher mechanisms of both BDNF-induced transcription and plasticity. BDNF-mediated gene expression was tyrosine kinase B and mitogen-activated protein kinase-dependent, as demonstrated by pharmacological studies. Single-cell transcriptional analysis of Arc after whole-cell patch-clamp recordings indicated that increased gene expression correlated with enhancement of synaptic transmission by BDNF. Increased expression in vitro predicted elevations in vivo: VGF and the IEGs increased after trace eyeblink conditioning, a hippocampal-dependent learning paradigm. VGF protein was also upregulated by BDNF treatment and was expressed in a punctate manner in dissociated hippocampal neurons. Collectively, these findings suggested that the VGF neuropeptides may regulate synaptic function. We found a novel function for VGF by applying VGF peptides to neurons. C-terminal VGF peptides acutely increased synaptic charge in a dose-dependent manner, whereas N-terminal peptide had no effect. These observations indicate that gene profiling in vitro can reveal new mechanisms of synaptic strengthening associated with learning and memory.

PMID: 14645472 [PubMed - indexed for MEDLINE]