

J = 1

A REVIEW GOES HERE - Check our WWW List of Reviews

W MASS

OUR FIT uses the W and Z mass, mass difference, and mass ratio measurements.

To obtain OUR EVALUATION the correlation between systematics is properly taken into account.

VALUE (Ge	V)		EVTS	DOCUMENT ID		TECN	COMMENT
$80.396\pm$	0.061	l our e	VALUATI	ON			
80.42 ±	0.05	OUR F	T				
80.43 ±	0.06	our a	VERAGE				
80.38 ±	0.12	± 0.05	701	¹ ABBIENDI	99 C	OPAL	$E_{cm}^{ee} = 161 + 172 + 183$
$80.61 ~\pm$	0.15		801	² ACCIARRI	99	L3	$E_{\rm cm}^{ee} = 161 + 172 + 183$
$80.423\pm$	0.112	2±0.054	812	³ BARATE	99	ALEP	$E_{cm}^{ee} = 161 + 172 + 183$
80.44 ±	0.10	± 0.07	28323	⁴ ABBOTT	980	D0	$E_{\rm cm}^{p\overline{p}} = 1.8 \text{ TeV}$
$80.22 \ \pm$	0.41	± 0.07	72	⁵ ABREU	98 B	DLPH	<i>E</i> ^{<i>ee</i>} _{cm} = 172.14 GeV
$80.40 \ \pm$	0.44	± 0.095	29	⁶ ABREU	97	DLPH	<i>E</i> ^{ee} _{cm} = 161.3 GeV
$80.35~\pm$	0.14	± 0.23	5982	⁷ ABACHI	96E	D0	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
$80.41 \ \pm$	0.18		8986	⁸ ABE	95 P	CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
79.91 \pm	0.39		1722	⁹ ABE	90 G	CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
• • • W	e do n	ot use th	e followin	g data for averages	, fits,	, limits,	etc. • • •
$80.32 \ \pm$	0.30	± 0.094	96	¹⁰ ACKERSTAFF	98 D	OPAL	Repl. by ABBIENDI 99C
80.5 +	1.4 2.2	$^{+0.5}_{-0.6}$	104	¹¹ ACKERSTAFF	98 D	OPAL	Repl. by ABBIENDI 99C
$80.80 \ \pm$	0.32	± 0.114	95	¹² BARATE	98 B	ALEP	Repl. by BARATE 99
80.80 +	0.48 0.42	± 0.03	20	¹³ ACCIARRI	97	L3	Repl. by ACCIARRI 99
80.5 +	1.4 2.4	± 0.3	94	¹⁴ ACCIARRI	97 M	L3	Repl. by ACCIARRI 99
80.71 +	0.34 0.35	± 0.09	101	¹⁵ ACCIARRI	97 S	L3	Repl. by ACCIARRI 99
$80.14\ \pm$	0.34	± 0.095	32	¹⁶ BARATE	97	ALEP	Repl. by BARATE 99
81.17 +	$\begin{array}{c} 1.15\\ 1.62 \end{array}$		106	¹⁷ BARATE	97 S	ALEP	Repl. by BARATE 99
80.40 +	0.44 0.41	$^{+0.09}_{-0.10}$	23	¹⁸ ACKERSTAFF	96 B	OPAL	Repl. by ABBIENDI 99C

84	$^{+10}_{-7}$		13	¹⁹ AID	96D H1	$e^{\pm}p \rightarrow \nu_e(\overline{\nu}_e) + X$
80.84	± 0.22	±0.83	2065	²⁰ ALITTI 21 ALITTI	928 UA2	$\sqrt{s} \approx 300 \text{ GeV}$ See W/Z ratio below
80.79	\pm 0.31	± 0.84		ALIT II	908 UA2	$E_{cm} = 540,030 \text{ GeV}$
80.0	\pm 3.3	± 2.4	22	²² ABE	891 CDF	$E_{\rm cm}^{pp}$ = 1.8 TeV
82.7	\pm 1.0	± 2.7	149	²³ ALBAJAR	89 UA1	E ^{pp} _{cm} = 546,630 GeV
81.8	$^{+}$ 6.0 $^{-}$ 5.3	± 2.6	46	²⁴ ALBAJAR	89 UA1	E ^{pp} _{cm} = 546,630 GeV
89	\pm 3	± 6	32	²⁵ ALBAJAR	89 UA1	E ^{pp} _{cm} = 546,630 GeV
81.	\pm 5.		6	ARNISON	83 UA1	$E_{\rm cm}^{ee}$ = 546 GeV
80.	+10 6.		4	BANNER	83b UA2	Repl. by ALITTI 90B

- ¹ ABBIENDI 99C obtain this value properly combining results from a direct *W* mass reconstruction at 172 and 183 GeV with that from the measurement of the total *W*-pair production cross section at 161 GeV. The systematic error includes an uncertainty of ± 0.02 GeV due to the possible color-reconnection and Bose-Einstein effects in the purely hadronic final states and an uncertainty of ± 0.02 GeV due to the beam energy.
- ² ACCIARRI 99 obtain this value properly combining results obtained from a direct W mass reconstruction at 172 and 183 GeV with those from the measurements of the total W-pair production cross sections at 161 and 172 GeV. The value of the mass obtained from the direct reconstruction at 172 and 183 GeV is $M(W) = 80.58 \pm 0.14 \pm 0.08$ GeV.
- ³BARATE 99 obtain this value properly combining results from a direct *W* mass reconstruction at 172 and 183 GeV with those from the measurements of the total *W*-pair production cross sections at 161 and 172 GeV. The systematic error includes ± 0.023 GeV due to LEP energy uncertainty and ± 0.021 GeV due to theory uncertainty on account of possible color reconnection and Bose-Einstein correlations.
- ⁴ABBOTT 980 fit the transverse mass distribution of 28323 $W \rightarrow e\nu_e$ events. The systematic error includes a detector related uncertainty of ±60 MeV and a model uncertainty of ±30 MeV. Combining with ABACHI 96E DØ obtain a W mass value of _80.43 ± 0.11 GeV.
- ⁵ ABREU 98B obtain this value from a fit to the reconstructed W mass distribution. The W width was taken as its Standard Model value at the fitted W mass. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.05 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining with ABREU 97 authors find: $M(W) = 80.33 \pm 0.30 \pm 0.06 \pm 0.03$ (LEP) GeV.
- ⁶ ABREU 97 derive this value from their measured *W*-*W* production cross section σ_{WW} = $3.67^{+0.97}_{-0.85} \pm 0.19$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. The systematics include an error of ± 0.03 GeV arising from the beam energy uncertainty.
- ⁷ABACHI 96E fit the transverse mass distribution of 5982 $W \rightarrow e\nu_e$ decays. An error of ±160 MeV due to the uncertainty in the absolute energy scale of the EM calorimeter is included in the total systematics.
- ⁸ABE 95P use 3268 $W \rightarrow \mu \nu_{\mu}$ events to find $M = 80.310 \pm 0.205 \pm 0.130$ GeV and 5718 $W \rightarrow e \nu_{e}$ events to find $M = 80.490 \pm 0.145 \pm 0.175$ GeV. The result given here combines these while accounting for correlated uncertainties.
- ⁹ABE 90G result from $W \rightarrow e\nu$ is 79.91 \pm 0.35 \pm 0.24 \pm 0.19(scale) GeV and from $W \rightarrow \mu\nu$ is 79.90 \pm 0.53 \pm 0.32 \pm 0.08(scale) GeV.
- 10 ACKERSTAFF 98D obtain this value from a fit to the reconstructed W mass distribution. The W width was taken as its Standard Model value at the fitted W mass. When both W mass and width are varied they obtain $M(W) = 80.30 \pm 0.27 \pm 0.095$ GeV. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.05 GeV

due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining both values of ACKERSTAFF 98D with ACKERSTAFF 96B authors find: $M(W) = 80.35 \pm 0.24 \pm 0.07 \pm 0.03$ (LEP) GeV.

- ¹¹ ACKERSTAFF 98D derive this value from their measured WW production cross section $\sigma_{WW} = 12.3 \pm 1.3 \pm 0.4$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy.
- ¹² BARATE 98B obtain this value from a fit to the reconstructed W mass distribution. The W width was taken as its Standard Model value at the fitted W mass. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.032 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining with the M_W values from cross section measurements at 161 and 172 GeV (BARATE 97 and BARATE 97s) authors find: $M(W) = 80.51 \pm 0.23 \pm 0.08$ GeV.
- ¹³ ACCIARRI 97 derive this value from their measured *W*-*W* production cross section $\sigma_{WW} = 2.89 \substack{+0.81 \\ -0.70} \pm 0.14$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. Statistical and systematic errors are added in quadrature and the last error of ± 0.03 GeV arises from the beam energy uncertainty. The same result is given by a fit of the production cross sections to the data.
- ¹⁴ ACCIARRI 97M derive this value from their measured WW production cross section $\sigma_{WW} = 12.27^{+1.41}_{-1.32} \pm 0.23$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. Combining with ACCIARRI 97 authors find $M(W) = 80.78^{+0.45}_{-0.41} \pm 0.03$ GeV where the last error is due to beam energy uncertainty.
- ¹⁵ ACCIARRI 97S obtain this value from a fit to the reconstructed W mass distribution. The W width was taken as its Standard Model value at the fitted W mass. When both W mass and width are varied they obtain $M(W) = 80.72^{+0.31}_{-0.33} \pm 0.09$ GeV. The systematic error includes ± 0.03 GeV due to the beam energy uncertainty and ± 0.05 GeV due to the possible color reconnection and Bose-Einstein effects in the purely hadronic final state. Combining with ACCIARRI 97 and ACCIARRI 97M authors find: M(W) = $80.75^{+0.26}_{-0.27} \pm 0.03$ (LEP) GeV.
- ¹⁶ BARATE 97 derive this value from their measured *W*-*W* production cross section σ_{WW} = 4.23 ± 0.73 ± 0.19 pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. The systematics include an error of ±0.03 GeV arising from the beam energy uncertainty.
- ¹⁷ BARATE 97S derive this value from their measured WW production cross section $\sigma_{WW} = 11.71 \pm 1.23 \pm 0.28$ pb using the Standard Model dependence of σ_{WW} on M_W at the given c.m. energy. The errors quoted on the mass are statistical only. Combining with BARATE 97 authors find: $M(W) = 80.20 \pm 0.33 \pm 0.09 \pm 0.03$ (LEP) GeV.
- 18 ACKERSTAFF 96B derive this value from an analysis of the predicted M_W dependence of their accepted four-fermion cross section, explicitly taking into account interference effects. The systematics include an error of $\pm 0.03~{\rm GeV}$ arising from the beam energy uncertainty.
- ¹⁹ AID 96D derive this value as a propagator mass using the Q^2 shape and magnitude of the e^{\pm} charged-current cross sections. $Q^2 > 5000 \text{ GeV}^2$ events with p_T of the outgoing lepton > 25 GeV/c are used.
- ²⁰ ALITTI 92B result has two contributions to the systematic error (± 0.83) ; one (± 0.81) cancels in m_W/m_Z and one (± 0.17) is noncancelling. These were added in quadrature. We choose the ALITTI 92B value without using the LEP m_Z value, because we perform our own combined fit.
- ²¹ There are two contributions to the systematic error (±0.84): one (±0.81) which cancels in m_W/m_Z and one (±0.21) which is non-cancelling. These were added in quadrature.

 22 ABE 89I systematic error dominated by the uncertainty in the absolute energy scale.

²³ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e\nu$ events.

²⁴ ALBAJAR 89 result is from a total sample of 67 $W \rightarrow \mu \nu$ events.

²⁵ ALBAJAR 89 result is from $W \rightarrow \tau \nu$ events.

W/Z MASS RATIO

The fit uses the W and Z mass, mass difference, and mass ratio measurements.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT					
0.8820 ± 0.0006 OUR FIT									
0.8819 ± 0.0012 OUR AVER	RAGE								
$0.8821\ \pm 0.0011\ \pm 0.0008$	28323	²⁶ АВВОТТ	98N D0	$E_{cm}^{p\overline{p}}$ = 1.8 TeV					
$0.88114 \!\pm\! 0.00154 \!\pm\! 0.00252$	5982	²⁷ ABBOTT	98P D0	$E_{cm}^{p\overline{p}}$ = 1.8 TeV					
$0.8813\ \pm 0.0036\ \pm 0.0019$	156	²⁸ ALITTI	92B UA2	$E_{\rm cm}^{p\overline{p}}$ = 630 GeV					
$\bullet \bullet \bullet$ We do not use the following	wing data	a for averages, fits,	limits, etc. \bullet	• •					
$0.8831\ \pm 0.0048\ \pm 0.0026$		²⁸ ALITTI	90B UA2	$E_{cm}^{p\overline{p}}$ = 546,630 GeV					
 ²⁶ ABBOTT 98N obtain this decays. Of this latter sam ²⁷ ABBOTT 98P obtain this includes an uncertainty of 	²⁶ ABBOTT 98N obtain this from a study of 28323 $W \rightarrow e\nu_e$ and 3294 $Z \rightarrow e^+e^-$ decays. Of this latter sample, 2179 events are used to calibrate the electron energy scale. ²⁷ ABBOTT 98P obtain this from a study of 5982 $W \rightarrow e\nu_e$ events. The systematic error includes an uncertainty of ± 0.00175 due to the electron energy scale.								

²⁰ Scale error cancels in this ratio.

$m_Z - m_W$

The fit uses the W and Z mass, mass difference, and mass ratio measurements.

VALUE (GeV)	DOCUMENT ID			COMMENT
10.76±0.05 OUR FIT				
10.4 \pm 1.4 \pm 0.8	ALBAJAR	89	UA1	E ^{pp} _{cm} = 546,630 GeV
$\bullet~\bullet~\bullet$ We do not use the following c	lata for averages	, fits	, limits,	etc. • • •
11.3 $\pm 1.3 \pm 0.9$	ANSARI	87	UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV

$$m_{W^+} - m_{W^-}$$

Test of CPT invariance.

VALUE (GeV)	EVTS	DOCUMENT ID	TECN	COMMENT
-0.19 ± 0.58	1722	ABE	90g CDF	$E_{cm}^{p\overline{p}}=1.8$ TeV

W WIDTH

The CDF and DØ widths labelled "extracted value" are obtained by measuring $R = [\sigma(W)/\sigma(Z)] [\Gamma(W \rightarrow \ell \nu_{\ell})]/(B(Z \rightarrow \ell \ell)\Gamma(W))$ where the bracketed quantities can be calculated with plausible reliability. $\Gamma(W)$ is then extracted by using a value of $B(Z \rightarrow \ell \ell)$ measured at LEP. The UA1 and UA2 widths used $R = [\sigma(W)/\sigma(Z)] [\Gamma(W \rightarrow \ell \nu_{\ell})/\Gamma(Z \rightarrow \ell \ell)] \Gamma(Z)/\Gamma(W)$ and the measured value of $\Gamma(Z)$. The Standard Model prediction is 2.067 \pm 0.021 (ROSNER 94).

VALUE (GeV)	CL%	EVTS		DOCUMENT ID		TECN	COMMENT
2.06 ± 0.05	OUR AVERA	AGE					
$1.84 \pm 0.32 \pm$	±0.20	674	29	ABBIENDI	99 C	OPAL	$E_{\rm cm}^{ee} = 172 + 183$
$1.97 \pm 0.34 \pm$	±0.17	687	30	ACCIARRI	99	L3	$E_{\rm cm}^{ee} = 172 + 183$
2.044 ± 0.093		13k	31	ABACHI	95 D	D0	Extracted value
$2.11 \pm 0.28 \pm$	±0.16	58	32	ABE	95 C	CDF	Direct meas.
$2.064 \pm 0.060 \pm$	±0.059		33	ABE	95W	CDF	Extracted value
$2.10 \begin{array}{c} +0.14 \\ -0.13 \end{array}$	±0.09	3559	34	ALITTI	92	UA2	Extracted value
$2.18 \begin{array}{c} +0.26 \\ -0.24 \end{array}$	±0.04		35	ALBAJAR	91	UA1	Extracted value
$\bullet \bullet \bullet$ We do not	t use the fol	lowing da	ata i	for averages, fits	s, lin	its, etc.	• • •
$1.30 \begin{array}{c} +0.70 \\ -0.55 \end{array}$ =	±0.18	92	36	ACKERSTAFF	98 D	OPAL	Repl. by ABBI- ENDI 99C
$1.74 \begin{array}{c} +0.88 \\ -0.78 \end{array}$	±0.25	101	37	ACCIARRI	9 7s	L3	Repl. by ACCIA-
$2.16\ \pm 0.17$			38	ABE	92ı	CDF	Repl. by ABE 95W

$2.12 \hspace{0.1in} \pm 0.20$			³⁹ ABE	90 CDF	Repl. by ABE 921
$2.30 \ \pm 0.19 \ \pm 0$.06		⁴⁰ ALITTI	90c UA2	Extracted value
$2.8 \begin{array}{c} +1.4 \\ -1.5 \end{array} \pm 1$.3	149	⁴¹ ALBAJAR	89 UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
<7	90	251	ANSARI	87 UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
<7	90	119	APPEL	86 UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
<6.5	90	86	⁴² ARNISON	86 UA1	Repl. by ALBAJAR 89
²⁹ ABBIENDI 99c	obtain t	his value	from a fit to the re-	constructed <i>W</i>	mass distribution using

- ²⁹ ABBIENDI 99C obtain this value from a fit to the reconstructed W mass distribution using data at 172 and 183 GeV. The systematic error includes an uncertainty of ± 0.12 GeV due to the possible color-reconnection and Bose-Einstein effects in the purely hadronic final states and an uncertainty of ± 0.01 GeV due to the beam energy.
- 30 ACCIARRI 99 obtain this value from a fit to the reconstruced W mass distribution using data at 172 and 183 GeV.
- ³¹ABACHI 95D measured $R = 10.90 \pm 0.49$ and used the measured value $B(Z \rightarrow \ell \ell) = (3.367 \pm 0.006)\%$ from LEP.
- ³²ABE 95C use the tail of the transverse mass distribution of $W \rightarrow e \nu_e$ decays.
- ³³ABE 95W measured $R = 10.90 \pm 0.32 \pm 0.29$. They use $m_W = 80.23 \pm 0.18$ GeV, $\sigma(W)/\sigma(Z) = 3.35 \pm 0.03$, $\Gamma(W \rightarrow e\nu) = 225.9 \pm 0.9$ MeV, $\Gamma(Z \rightarrow e^+e^-) = 83.98 \pm 0.18$ MeV, and $\Gamma(Z) = 2.4969 \pm 0.0038$ GeV.

³⁴ ALITTI 92 measured $R = 10.4^{+0.7}_{-0.6} \pm 0.3$. The values of $\sigma(Z)$ and $\sigma(W)$ come from $O(\alpha_s^2)$ calculations using $m_W = 80.14 \pm 0.27$ GeV, and $m_Z = 91.175 \pm 0.021$ GeV along with the corresponding value of $\sin^2\theta_W = 0.2274$. They use $\sigma(W)/\sigma(Z) = 3.26 \pm 0.07 \pm 0.05$ and $\Gamma(Z) = 2.487 \pm 0.010$ GeV.

³⁵ ALBAJAR 91 measured $R = 9.5^{+1.1}_{-1.0}$ (stat. + syst.). $\sigma(W)/\sigma(Z)$ is calculated in QCD at the parton level using $m_W = 80.18 \pm 0.28$ GeV and $m_Z = 91.172 \pm 0.031$ GeV along with $\sin^2\theta_W = 0.2322 \pm 0.0014$. They use $\sigma(W)/\sigma(Z) = 3.23 \pm 0.05$ and $\Gamma(Z) = 2.498 \pm 0.020$ GeV. This measurement is obtained combining both the electron and muon channels.

 $_{27}^{36}$ ACKERSTAFF 98D obtain this value from a fit to the reconstructed W mass distribution.

³⁷ ACCIARRI 97S obtain this value from a fit to the reconstructed *W* mass distribution. ³⁸ ABE 92I report $1216 \pm 38^{+27}_{-31} W \rightarrow \mu\nu$ and $106 \pm 10^{+0.2}_{-1} Z \rightarrow \mu^{+}\mu^{-}$ events which are combined with 2426 $W \rightarrow e\nu$ events of ABE 91C to derive the ratio $\sigma_W B(W \rightarrow W)$ $\ell \nu)/\sigma_Z \ B(Z \rightarrow \ell^+ \ell^-) = 10.0 \pm 0.6 \pm 0.4$. Finally the value of $\Gamma(Z)$ measured by LEP 92 is used to extract $\Gamma(W)$.

- ³⁹ABE 90 extract $\Gamma(W) = 2.19 \pm 0.20$ by using the value $\Gamma(Z) = 2.57 \pm 0.07$ GeV. However, in ABE 91C they update their analysis with a new LEP value $\Gamma(Z) = 2.496 \pm 0.016$; the value $\Gamma(W) = 2.12 \pm 0.20$ above reflects this update. They measured $R = 10.2 \pm$ 0.8 ± 0.4, assumed sin² $\theta_W = 0.229 \pm 0.007$, and took predicted values $\sigma(W)/\sigma(Z) = 3.23 \pm 0.03$ and $\Gamma(W \rightarrow e\nu)/\Gamma(Z \rightarrow ee) = 2.70 \pm 0.02$. This yields $\Gamma(W)/\Gamma(Z) = 1000$ 0.85 ± 0.08 . The quoted error for $\Gamma(W)$ includes systematic uncertainties. $E_{\rm cm}^{pp} = 1.8$ TeV.
- ⁴⁰ ALITTI 90C used the same technique as described for ABE 90. They measured $R = 9.38^{+0.82}_{-0.72} \pm 0.25$, obtained $\Gamma(W)/\Gamma(Z) = 0.902 \pm 0.074 \pm 0.024$. Using $\Gamma(Z) =$ 2.546 \pm 0.032 GeV, they obtained the $\Gamma(W)$ value quoted above and the limits $\Gamma(W)$ < 2.56 (2.64) GeV at the 90% (95%) CL. $E_{\rm cm}^{p\overline{p}} =$ 546,630 GeV.

⁴¹ ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e\nu$ events. ⁴² If systematic error is neglected, result is $2.7^{+1.4}_{-1.5}$ GeV. This is enhanced subsample of 172 total events.

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)		
Г1	$\ell^+ \nu$	[<i>a</i>] (10.51± 0.24) %		
Γ2	$e^+ \nu$	$(10.78\pm~0.31)~\%$		
Γ ₃	$\mu^+ u$	(10.2 \pm 0.4) %		
Г4	$\tau^+ \nu$	(10.2 \pm 0.6) %		
Γ ₅	hadrons	(68.7 \pm 0.9) %		
Г ₆	$\pi^+\gamma$	< 8 ×	10 ⁻⁵ 95%	
Г ₇	$D_s^+\gamma$	< 1.3 ×	10 ⁻³ 95%	
Г ₈	<i>c</i> 5	$(32 {+13 \atop -11})$ %		

[a] ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

CONSTRAINED FIT INFORMATION

Overall fits are performed to determine the branching ratios of the W. For each LEP experiment the correlation matrix of the leptonic branching ratios is used. A first fit determines three individual leptonic branching ratios, $B(W \rightarrow e\nu_e)$, $B(W \rightarrow \mu\nu_{\mu})$, and $B(W \rightarrow \tau\nu_{\tau})$. This fit has a $\chi^2 = 5.8$ for 17 degrees of freedom. The second fit assumes lepton universality and determines the leptonic branching ratio $B(W \rightarrow \ell\nu_{\ell})$, from which one also derives the hadronic branching ratio, assuming $B(W \rightarrow hadrons) = 1-3 \cdot B(W \rightarrow \ell\nu_{\ell})$. This fit has a $\chi^2 = 7.8$ for 19 degrees of freedom.

W BRANCHING RATIOS

The LEP collaborations obtain the W branching ratios by a fit to their measured cross sections of the final states $e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}e\nu_e$, $q\overline{q}\mu\nu_{\mu}$, $q\overline{q}\tau\nu_{\tau}$, $q\overline{q}q\overline{q}$, $\ell\nu_{\ell}\ell\nu_{\ell}$. The leptonic branching ratios and $\sigma(e^+e^- \rightarrow W^+W^-)$ at the respective center-of-mass energies are the fitted parameters. Two fits are performed, one without and one assuming lepton universality. The hadronic branching ratio is derived from the second fit assuming B($W \rightarrow hadrons$) = 1–3 \cdot B($W \rightarrow \ell\nu_{\ell}$).

$\Gamma(\ell^+\nu)/\Gamma_{\text{total}}$

 ℓ indicates average over e, μ , and au modes, not sum over modes.

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

VALUE		EVTS	DOCUMENT ID	TECN	COMMENT
0.1051±0.0024 OUR FIT					
0.1038±0.0028 OUR AVE	ERAGE				
$0.107 \pm 0.004 \pm 0.002$	avg	461	ABBIENDI	99d OPAL	$E_{cm}^{ee} = 161 + 172 + 172 + 161 + 172 + 17$
$0.113 \ \pm 0.012 \ \pm 0.003$	avg	52	ABREU	98b DLPH	183 GeV $E_{cm}^{ee} = 161.3 + 172 14 \text{ GeV}$
$0.100 \pm 0.004 \pm 0.001$	avg	324	ACCIARRI	98p L3	$E_{cm}^{ee} = 161 + 172 + 162$
0.104 ±0.008	avg	3642	⁴³ ABE	921 CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
• • • We do not use the	followi	ng data	for averages, fits, lin	nits, etc. • •	•
$\begin{array}{ccc} 0.101 & +0.011 \\ -0.010 & \pm 0.002 \end{array}$	avg	61	ACKERSTAFF	98d OPAL	Repl. by ABBI- ENDI 99D
$\begin{array}{ccc} 0.119 & +0.013 \\ -0.012 & \pm 0.002 \end{array}$		51	ACCIARRI	97м L3	Repl. by AC- CIARRI 98P
${}^{43}1216 \pm 38 {+}^{27}_{-31} \ W \rightarrow$	μu ev	ents fro	m ABE 921 and 2426	$\delta W ightarrow e u$ ev	vents of ABE 91C.

ABE 921 give the inverse quantity as 9.6 \pm 0.7 and we have inverted.

HTTP://PDG.LBL.GOV

 Γ_1/Γ

Citation: C. Caso et al. (Particle Data Group), European Phys Jour C3, 1 (1998) and 1999 partial update for edition 2000 (URL: http://pdg.lbl.gov)

$\Gamma(e^+\nu)/\Gamma_{\rm total}$

seen

seen

seen

 Γ_2/Γ

 $\frac{ABE}{E_{cm}^{pp}} = 546,630$

 $E_{cm}^{pp} = 546,630$ GeV

Repl. by ALBA-

JAR 89

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

$\frac{VALUE}{0.1078 \pm 0.0031}$		<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.109 ± 0.004 O	UR AVERAGE				
$0.117 \pm 0.009 \pm 0$	0.002 f&a	191	ABBIENDI	99d OPAL	E ^{ee} = 161+172+ 183 GeV
$0.102 \ +0.038 \ \pm 0.032 \ \pm 0.032$	0.003 f&a	16	ABREU	98b DLPH	$E_{\rm cm}^{ee} = 161.3 + 172.14 {\rm GeV}$
$0.105 \pm 0.009 \pm 0$	0.002 f&a	128	ACCIARRI	98p L3	$E_{cm}^{ee} = 161+172+183 \text{ GeV}$
$0.097 \pm 0.02 \pm 0$	0.005 f&a	21	BARATE	97s ALEP	$E_{\rm cm}^{ee} = 161.3 + 172.09 {\rm GeV}$
$0.1094 \pm 0.0033 \pm 0.0033$	0.0031 f&a	44	ABE	95W CDF	$E_{\rm cm}^{p\overline{p}} = 1.8 \text{ TeV}$
$0.10 \pm 0.014 + 0.014 + 0.001$	0.02 f&a 0.03 f&a	248 45	ANSARI	87C UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630
• • • We do not i	use the followi	ng data for a	averages, fits, lin	nits, etc. • •	•
$0.098 \ +0.022 \ \pm 0.020 \ \pm 0.020$	0.003 f&a	21	ACKERSTAFF	98d OPAL	Repl. by ABBI- ENDI 99D
$0.165 \ \begin{array}{c} +0.037 \\ -0.033 \end{array} \pm 0$	0.005	23	ACCIARRI	97M L3	Repl. by AC-
0.106 ± 0.0096		2426 46	ABE	91c CDF	Repl. by

knowledge of $\Gamma(Z \rightarrow e^+e^-) = 83.98 \pm 0.18$ MeV, and $\Gamma(Z) = 2.4969 \pm 0.0038$. ⁴⁵ The first error was obtained by adding the statistical and systematic experimental uncertainties in quadrature. The second error reflects the dependence on theoretical prediction of total *W* cross section: $\sigma(546 \text{ GeV}) = 4.7^{+1.4}_{-0.7}$ nb and $\sigma(630 \text{ GeV}) = 5.8^{+1.8}_{-1.0}$ nb. See ALTARELLI 85B.

⁴⁴ABE 95W result is from a measurement of $\sigma B(W \rightarrow e\nu)/\sigma B(Z \rightarrow e^+e^-) = 10.90 \pm 0.32 \pm 0.29$, the theoretical prediction for the cross section ratio, the experimental

⁴⁷ ALBAJAR

APPEL

ARNISON

89

UA1

86 UA2

86 UA1

299

119

172

⁴⁶ ABE 91C result is from a measurement of $\sigma B(W \rightarrow e\nu)/\sigma B(Z \rightarrow e^+e^-)$, the theoretical prediction for the cross section ratio, and the experimental knowledge of $\Gamma(Z \rightarrow e^+e^-)/\Gamma(Z \rightarrow all)$.

⁴⁷ ALBAJAR 89 experiment determines values of branching ratio times production cross section.

Citation: C. Caso et al. (Particle Data Group), European Phys Jour C3, 1 (1998) and 1999 partial update for edition 2000 (URL: http://pdg.lbl.gov)

$\Gamma(\mu^+ \nu) / \Gamma_{\text{total}}$

Гз/Г

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

VALUE				EVTS	DOCUMENT ID	TECN	COMMENT
0.1023	3 ± 0.0042						
0.102	± 0.005	OUR AVE	ERAGE				_
0.102	± 0.008	± 0.002	f&a	169	ABBIENDI	99D OPAL	$E_{\rm cm}^{ee} =$ 161+172+
							183 GeV
0.107	$^{+0.032}_{-0.027}$	± 0.003	f&a	20	ABREU	98b DLPH	$E_{\rm cm}^{ee} = 161.3 + 172.14 {\rm CeV}$
0.102	± 0.009	± 0.002	f&a	115	ACCIARRI	98p L3	$E_{\rm cm}^{ee} =$
0.112	±0.02	±0.006	f&a	25	BARATE	97s ALEP	$E_{cm}^{ee} = 161.3 + 172.09 \text{ GeV}$
0.10	± 0.01		f&a	1216	⁴⁸ ABE	921 CDF	$E_{\rm cm}^{p\overline{p}} = 1.8 \text{ TeV}$
• • •	We do n	ot use the	followi	ng data	for averages, fits, lin	nits, etc. 🔹 🔹	•
0.073	$^{+0.019}_{-0.017}$	± 0.002	f&a	16	ACKERSTAFF	98d OPAL	Repl. by ABBI- ENDI 99D
0.084	$^{+0.028}_{-0.024}$	± 0.003		13	ACCIARRI	97м L3	Repl. by AC- CIARRI 98P
							2

 $^{48}\,{\rm ABE}$ 921 quote the inverse quantity as 9.9 \pm 1.2 which we have inverted.

$\Gamma(\tau^+\nu)/\Gamma_{\text{total}}$

Γ4/Γ

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

VALUE			E	<u>VTS</u>	DOCUMENT ID	TECN	COMMENT	
0.1023	8±0.0057	OUR FIT						
0.099	± 0.008	our ave	RAGE					_
0.101	± 0.010	± 0.003	f&a	144	ABBIENDI	99d OPAL	E ^{ee} = 161+172+ 183 GeV	
0.134	$+0.050 \\ -0.048$	± 0.007	f&a	16	ABREU	98b DLPH	E ^{ee} _{cm} = 161.3 + 172.14 GeV	_
0.090	± 0.012	± 0.003	f&a	81	ACCIARRI	98p L3	$E_{\rm cm}^{ee} = 161 + 172 + 183 {\rm GeV}$	
0.113	±0.027	± 0.006	f&a	37	BARATE	97s ALEP	E ^{ee} _{cm} = 161.3 + 172.09 GeV	
• • •	We do n	ot use the f	ollowing	data for a	averages, fits, lin	nits, etc. • •	•	
0.140	$^{+0.030}_{-0.028}$	± 0.005	f&a	23	ACKERSTAFF	98d OPAL	Repl. by ABBI- ENDI 99D	
0.109	$+0.042 \\ -0.039$	± 0.005		15	ACCIARRI	97м L3	Repl. by AC- CIARRI 98P	

$\Gamma(hadrons)/\Gamma_{total}$

Γ_5/Γ

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

To obtain OUR EVALUATION the correlation between systematics is properly taken into account.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT			
0.6873 ± 0.0089 OUR EVALUATION							
0.6846 ± 0.0073 OUR FIT							
0.687 ± 0.009 OUR AVER	AGE						
$0.679 \pm 0.012 \pm 0.005$ a	vg 395	ABBIENDI	99d OPAL	E ^{ee} = 161+172+ 183 GeV			
$0.660 \ {}^{+0.036}_{-0.037} \ \pm 0.009$ a	vg 57	ABREU	98b DLPH	E ^{ee} _{cm} = 161.3 + 172.14 GeV			
$0.701 \pm 0.013 \pm 0.004$ a	vg 462	ACCIARRI	98p L3	E ^{ee} _{cm} = 161+172+ 183 GeV			
$0.677 \pm 0.031 \pm 0.007$ a	vg 65	BARATE	97s ALEP	E ^{ee} _{cm} = 161.3 + 172.09 GeV			
• • • We do not use the fol	lowing data for a	averages, fits, lin	nits, etc. • •	•			
$0.698 \begin{array}{c} +0.030 \\ -0.032 \end{array} \pm 0.007$ a	vg 52	ACKERSTAFF	98d OPAL	Repl. by ABBI- ENDI 99D			
$0.642 \begin{array}{c} +0.037 \\ -0.038 \end{array} \pm 0.005$	70	ACCIARRI	97м L3	Repl. by AC- CIARRI 98P			
$\Gamma(\mu^+\nu)/\Gamma(e^+\nu) \qquad \Gamma_3/\Gamma_2$ Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.							

VALUE EVTS DOCUMENT ID TECN COMMENT 0.949±0.043 OUR FIT 0.97 ±0.06 OUR AVERAGE $E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV ⁴⁹ ABACHI 95D D0 f&a 13k 0.89 ± 0.10 $E_{\rm cm}^{p\overline{p}} = 1.8 \text{ TeV}$ ⁵⁰ ABE 921 CDF f&a 1216 1.02 ± 0.08 • • We do not use the following data for averages, fits, limits, etc. • • •

1.00	± 0.14 ± 0.08	67	ALBAJAR	89 UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
1.24	$+0.6 \\ -0.4$	14	ARNISON	84d UA1	Repl. by ALBA- JAR 89

 49 ABACHI 95D obtain this result from the measured σ_W B($W o \mu
u$)= 2.09 \pm 0.23 \pm 0.11 nb and $\sigma_W B(W \rightarrow e\nu) = 2.36 \pm 0.07 \pm 0.13$ nb in which the first error is the combined statistical and systematic uncertainty, the second reflects the uncertainty in the luminosity.

⁵⁰ ABE 921 obtain σ_W B($W \rightarrow \mu \nu$)= 2.21 \pm 0.07 \pm 0.21 and combine with ABE 91C σ_W $B((W \rightarrow e\nu))$ to give a ratio of the couplings from which we derive this measurement.

$\Gamma(\tau^+\nu)/\Gamma(e^+\nu)$

Γ_4/Γ_2

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

VALUE		<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.949±0.058 OUR FIT					
1.00 ± 0.08 OUR AVER	AGE				
$0.94\ \pm 0.14$	f&a	179	⁵¹ ABE	92e CDF	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV
$1.04\ \pm 0.08\ \pm 0.08$	f&a	754	⁵² ALITTI	92F UA2	$E_{cm}^{p\overline{p}}$ = 630 GeV
$1.02\ \pm 0.20\ \pm 0.12$	f&a	32	ALBAJAR	89 UA1	$E_{cm}^{p\overline{p}} = 546,630$
					GeV
• • • We do not use the	followi	ng data	for averages, fits, li	mits, etc. • •	•
$0.995\!\pm\!0.112\!\pm\!0.083$		198	ALITTI	91c UA2	Repl. by
$1.02 \ \pm 0.20 \ \pm 0.10$		32	ALBAJAR	87 UA1	ALITTI 92F Repl. by ALBA- IAR 89
F 1					5, 11 05

 51 ABE 92E use two procedures for selecting $W o au
u_{ au}$ events. The missing E $_{ au}$ trigger leads to $132\pm14\pm8$ events and the au trigger to $47\pm9\pm4$ events. Proper statistical and systematic correlations are taken into account to arrive at $\sigma B(W \rightarrow \tau \nu) = 2.05 \pm 0.27$ nb. Combined with ABE 91C result on $\sigma B(W \rightarrow e\nu)$, ABE 92E quote a ratio of the couplings from which we derive this measurement.

 52 This measurement is derived by us from the ratio of the couplings of ALITTI 92F.

$\Gamma(\pi^+\gamma)/\Gamma(e^+\nu)$				Г ₆ /Г	2
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
< 7 × 10 ⁻⁴	95	ABE	98h CDF	$E^{p\overline{p}}_{ m cm} = 1.8 { m TeV}$	
$<~4.9\times10^{-3}$	95	⁵³ ALITTI	92d UA2	$E_{\rm cm}^{p\overline{p}}$ = 630 GeV	
$< 58 \times 10^{-3}$	95	⁵⁴ ALBAJAR	90 UA1	E ^{pp} _{cm} = 546, 630 GeV	

 53 ALITTI 92D limit is 3.8×10^{-3} at 90%CL. 54 ALBAJAR 90 obtain < 0.048 at 90%CL.

$\Gamma(D_{s}^{+}\gamma)/\Gamma(e^{+}\nu)$					Γ_7/Γ_2
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<1.2 × 10 ⁻²	95	ABE	98P CDF	$E^{p\overline{p}}_{ m cm}=1.8~ m TeV$	
$R_{cs} = \Gamma(c\overline{s})/\Gamma(had)$	drons)				Γ ₈ /Γ ₅
VALUE	-	DOCUMENT ID	TECN	COMMENT	
$0.46^{ig+0.18}_{-0.14}{\pm}0.07$		⁵⁵ ABREU	98N DLPH	$E_{\rm cm}^{ee} = 161 + 172$	GeV

 55 ABREU 98N tag c and s jets by identifying a charged kaon as the highest momentum particle in a hadronic jet. They also use a lifetime tag to independently identify a c jet, based on the impact parameter distribution of charged particles in a jet. From this measurement $|V_{cs}|$ is determined to be $0.94 \substack{+0.32\\-0.26} \pm 0.13$.

AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAY

Summed over particle and antiparticle, when appropriate.

VALUE		DOCUMENT ID	TECN	COMMENT
19.23±0.74		⁵⁶ ABREU	98c DLPH	$E_{\rm cm}^{ee}$ = 172 GeV
⁵⁶ ABREU 98C comb states after demor topology within er	ine results Istrating th rors.	from both the fully hat the W decay ch	hadronic as w arged multipl	ell semileptonic <i>W W</i> finaticity is independent of th
A REVIEW GOE	triple Es heri	GAUGE COUPL E – Check our	INGS (TGC WWW Li	:'S) st of Reviews
$\alpha_{W\phi}$				
0.05±0.20 OUR AV	EVIS ERAGE	DOCUMENT ID	<u></u>	COMMENT
$0.22^{+0.25}_{-0.28}{\pm}0.06$	89	⁵⁷ ABREU	98k DLPH	<i>E</i> ^{ee} _{cm} =161+172 GeV
$-0.14 \substack{+0.27 + 0.14 \\ -0.25 - 0.12}$	78	⁵⁸ BARATE	98Y ALEP	E ^{ee} _{cm} = 172 GeV
 ⁵⁷ ABREU 98K obta production. ⁵⁸ BARATE 98Y obta production. 	in this res ain this val	ult using both <i>W</i> ue using semileptor	pair productio	on and single $W\left(We u_e ight)$ nic decay modes in W pai
αw		DOCUMENT ID	TECN	COMMENT
0.1 ±0.4 OUR AVE	RAGE	DOCUMENT ID	TECN	COMMENT
$0.11 \!+\! \begin{array}{c} \!$	89	⁵⁹ ABREU	98k DLPH	<i>E</i> ^{ee} _{cm} =161+172 GeV
$0.06 \substack{+0.56 + 0.12 \\ -0.50 - 0.20}$	78	⁶⁰ BARATE	98Y ALEP	$E_{\rm cm}^{ee}$ = 172 GeV
 ⁵⁹ ABREU 98K obta production. ⁶⁰ BARATE 98Y obta production. 	in this res ain this val	ult using both <i>W</i> ue using semileptor	pair productio	on and single $W\left(We u_e ight)$ nic decay modes in W pai
$\alpha_{\pmb{B}\pmb{\phi}}$				
<u>VALUE</u>		DOCUMENT ID	TECN	COMMENT
0.4 -0.8 UUK AVE	RAGE			
$0.22^{+0.66}_{-0.83}\pm0.24$	89	⁶¹ ABREU	98k DLPH	<i>E</i> ^{ee} _{cm} =161+172 GeV
$1.01^{+0.71}_{-1.75}\pm 0.33$	78	⁶² BARATE	98Y ALEP	$E_{\rm cm}^{ee}$ = 172 GeV
⁶¹ ABREU 98K obta production.	in this res	ult using both W_{\parallel}	pair productio	on and single $W(We u_e)$

W ANOMALOUS MAGNETIC MOMENT ($\Delta \kappa$)

The full magnetic moment is given by $\mu_W = e(1+\kappa+\lambda)/2m_W$. In the Standard Model, at tree level, $\kappa = 1$ and $\lambda = 0$. Some papers have defined $\Delta \kappa = 1-\kappa$ and assume that $\lambda = 0$. Note that the electric quadrupole moment is given by $-e(\kappa-\lambda)/m_W^2$. A description of the parameterization of these moments and additional references can be found in HAGIWARA 87 and BAUR 88. The parameter Λ appearing in the theoretical limits below is a regularization cutoff which roughly corresponds to the energy scale where the structure of the W boson becomes manifest.

VALUE $(e/2m_W)$ DOCUMENT IDTECN• • • We do not use the following data for averages, fits, limits, etc. • •

•		,	/
65	ABBOTT	981	D0
66	ACCIARRI	98N	L3
67	ABE	95 G	CDF
68	ALITTI	92C	UA2
69	SAMUEL	92	THEO
70	SAMUEL	91	THEO
71	GRIFOLS	88	THEO
72	GROTCH	87	THEO
73	VANDERBIJ	87	THEO
74	GRAU	85	THEO
75	SUZUKI	85	THEO
76	HERZOG	84	THEO

⁶⁵ ABBOTT 98I obtain the 95% CL limits (for Λ =2.0 TeV) $-0.30 < \Delta \kappa < 0.43$ for λ =0 and $-0.20 < \lambda < 0.20$ for $\Delta \kappa$ =0 from a simultaneous fit to the three final states $W \gamma$, $W W \rightarrow$ dilepton, and $W W/W Z \rightarrow e \nu_e j j$ obtained from $\overline{p} p$ collisions at $\sqrt{s} = 1.8$ TeV.

⁶⁶ ACCIARRI 98N study single W production in e^+e^- interactions at 130, 136, 161, 172, and 183 GeV. Varying freely both couplings, they report $\Delta \kappa_{\gamma} = 0.06 \substack{+0.27 \\ -0.26}$ with 95% CL limits $-0.46 < \Delta \kappa_{\gamma} < 0.57$ and $\lambda_{\gamma} = -0.48 \substack{+0.44 \\ -0.21}$ with 95% CL limits $-0.86 < \lambda_{\gamma} < 0.75$. ACCIARRI 98N define $\Delta \kappa = \kappa - 1$.

⁶⁷ ABE 95G report $-1.3 < \kappa < 3.2$ for $\lambda=0$ and $-0.7 < \lambda < 0.7$ for $\kappa=1$ in $p\overline{p} \rightarrow e\nu_e \gamma X$ and $\mu\nu_\mu \gamma X$ at $\sqrt{s} = 1.8$ TeV.

- ⁶⁸ ALITTI 92C measure $\kappa = 1 \stackrel{+2.6}{-2.2}$ and $\lambda = 0 \stackrel{+1.7}{-1.8}$ in $p\overline{p} \rightarrow e\nu\gamma + X$ at $\sqrt{s} = 630$ GeV. At 95%CL they report $-3.5 < \kappa < 5.9$ and $-3.6 < \lambda < 3.5$.
- ⁶⁹SAMUEL 92 use preliminary CDF and UA2 data and find $-2.4 < \kappa < 3.7$ at 96%CL and $-3.1 < \kappa < 4.2$ at 95%CL respectively. They use data for $W\gamma$ production and radiative W decay.
- ⁷⁰SAMUEL 91 use preliminary CDF data for $p\overline{p} \rightarrow W\gamma X$ to obtain $-11.3 \leq \Delta \kappa \leq 10.9$. Note that their $\kappa = 1 \Delta \kappa$.
- ⁷¹ GRIFOLS 88 uses deviation from ρ parameter to set limit $\Delta \kappa \lesssim 65 \ (M_{W}^2/\Lambda^2)$.

⁷² GROTCH 87 finds the limit $-37 < \Delta \kappa < 73.5 (90\% \text{ CL})$ from the experimental limits on $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ assuming three neutrino generations and $-19.5 < \Delta \kappa < 56$ for four generations. Note their $\Delta \kappa$ has the opposite sign as our definition.

⁷³ VANDERBIJ 87 uses existing limits to the photon structure to obtain $|\Delta \kappa| < 33$ (m_W/Λ) . In addition VANDERBIJ 87 discusses problems with using the ρ parameter of the Standard Model to determine $\Delta \kappa$.

⁷⁴ GRAU 85 uses the muon anomaly to derive a coupled limit on the anomalous magnetic dipole and electric quadrupole (λ) moments 1.05 > $\Delta \kappa \ln(\Lambda/m_W) + \lambda/2 > -2.77$. In the Standard Model $\lambda = 0$.

⁷⁵ SUZUKI 85 uses partial-wave unitarity at high energies to obtain $|\Delta \kappa| \lesssim 190 \ (m_W/\Lambda)^2$. From the anomalous magnetic moment of the muon, SUZUKI 85 obtains $|\Delta \kappa| \lesssim 2.2/\ln(\Lambda/m_W)$. Finally SUZUKI 85 uses deviations from the ρ parameter and obtains a

very qualitative, order-of-magnitude limit $|\Delta\kappa|~\lesssim~150~(m_W/\Lambda)^4$ if $|\Delta\kappa|~\ll 1$.

⁷⁶ HERZOG 84 consider the contribution of *W*-boson to muon magnetic moment including anomalous coupling of *WW* γ . Obtain a limit $-1 < \Delta \kappa < 3$ for $\Lambda \gtrsim 1$ TeV.

W REFERENCES

ABBIENDI	99C	hep-ex/9901025	G. Abbiendi+	(OPAL	Collab.)
CERN-EP/9	98-197	PLB (to be publ.)		(-	,
ABBIENDI	99D	EPJ C8 191	G. Abbiendi+	(OPAL	Collab.)
ACCIARRI	99	CERN-EP/99-17	M. Acciarri+	(L3	Collab.)
PL B (subr	nitted)	- ,		(-	,
BARATE	99	PL B453 121	R. Barate+	(ALEPH	Collab.)
ABBOTT	981	PR D58 031102	B. Abbott+) (D0	Collab.)
ABBOTT	98N	PR D58 092003	B. Abbott+	(D0	Collab.)
ABBOTT	98O	PRL 80 3008	B. Abbott+	(D0	Collab.)
ABBOTT	98P	PR D58 012002	B. Abbott+	(D0	Collab.)
ABE	98H	PR D58 031101	F. Abe+	(ĊDF	Collab.)
ABE	98P	PR D58 091101	F. Abe+	(CDF	Collab.)
ABREU	98B	EPJ C2 581	P. Abreu+	(DELPHI	Collab.)
ABREU	98C	PL B416 233	P. Abreu+	(DELPHI	Collab.)
ABREU	98K	PL B423 194	P. Abreu+	(DELPHI	Collab.)
ABREU	98N	PL B439 209	P. Abreu+	(DELPHI	Collab.)
ACCIARRI	98N	PL B436 417	M. Acciarri+) (L3	Collab.)
ACCIARRI	98P	PL B436 437	M. Acciarri+	(L3	Collab.)
ACKERSTAFF	98D	EPJ C1 395	K. Ackerstaff+	(OPAL	Collab.)
BARATE	98B	PL B422 384	R. Barate+	(ÀLEPH	Collab.)
BARATE	98Y	PL B422 369	R. Barate+	(ALEPH	Collab.)
ABREU	97	PL B397 158	+Adam, Adye, Adzic+	(DELPHI	Collab.)
ACCIARRI	97	PL B398 223	+Adriani, Aguilar-Benitez, Ahlen+	(L3	Collab.)
ACCIARRI	97M	PL B407 419	M. Acciarri+	(L3	Collab.)
ACCIARRI	97S	PL B413 176	M. Acciarri+	(L3	Collab.)
BARATE	97	PL B401 347	+Buskulic, Decamp, Ghez $+$	(ALEPH	Collab.)
BARATE	97S	PL B415 435	R. Barate+	(ALEPH	Collab.)
ABACHI	96E	PRL 77 3309	+Abbott, Abolins, Acharya+) (D0	Collab.)
ACKERSTAFF	96B	PL B389 416	+Alexander, Allison, Altekamp+	(OPAL	Collab.)
AID	96D	PL B379 319	+Andreev, Andrieu, Appuhn $+$) (H1	Collab.)
ABACHI	95D	PRL 75 1456	+Abbott, Abolins, Acharya+	(D0	Collab.)
ABE	95C	PRL 74 341	+Albrow, Amidei, Antos, Anway-Wiese+	(CDF	Collab.)
ABE	95G	PRL 74 1936	+Albrow, Amidei, Antos+	(CDF	Collab.)
ABE	95P	PRL 75 11	+Albrow, Amidei, Antos, Anway-Wiese+	(CDF	Collab.)
Also	95Q	PR D52 4784	Abe, Albrow, Amidei, Antos, Anway-Wie	se+ (CDF	Collab.)
ABE	95W	PR D52 2624	+Albrow, Amendolia, Amidei, Antos+	(CDF	Collab.)
Also	94B	PRL 73 220	Abe, Albrow, Amidei, Anway-Wiese $+$	(CDF	Collab.)

HTTP://PDG.LBL.GOV

Page 14

Created: 6/24/1999 10:12

ARE	04R	PRI 73 220	+Albrow Amidei Anway-Wiese+	(CDE Collab.)
ROSNER	94D 94	PR D49 1363	+Worah Takeuchi	(EFL ENAL)
ARE	02E	PRI 68 3308	+Amidei Apollinari Atac⊥	(CDE Collab)
ABE	021	PRI 60 28	+Amidei, Apollinari, Atac Auchincloss+	(CDF Collab.)
	02	DI B276 365	Ambrosini Ansari Autioro Barovro I	(UA2 Collab.)
	92 02B	DI B276 354	Ambrosini, Ansari, Autiero, Bareyre	(UA2 Collab.)
	92D	DI B277 104	Ambrosini, Ansari, Autiero, Barovro I	(UA2 Collab.)
	020	DI B277 203	Ambrosini, Ansari, Autiero, Bareyre	(UA2 Collab.)
	92D	DI B280 137	Ambrosini, Ansari, Autiero, Bareyre	(UA2 Collab.)
LED	02	PL B276 247	$\pm \Delta I EPH DEI PHI I 3 OPAI$	(LEP Collabs)
SAMUEI	02	PL B280 124	Li Sinha Sinha Sundarosan	(OKSIL CARL)
ARE	92 01C	PR D44 20	+Amidei Apollinari Atac Auchincloss+	(CDE Collab.)
	01	PI B253 503	\pm Albrow Allkofer Ankovick Apsimon \pm	(UA1 Collab.)
	010	7PHV (52 200	\pm Ambrosini Ansari Autiero \pm	(UA1 Collab.)
SAMUEI	91C 01	PRI 67 9	+Li Sinha Sinha Sundaresan	(OKSU CARL)
Also	91C	PRI 67 2920 erratum		
ARF	90	PRI 64 152	+Amidei Apollinari Atac Auchincloss+	(CDE Collab.)
Also	91C	PR D44 29	Abe Amidei Apollinari Atac Auchincloss+	- (CDF Collab.)
ARF	90G	PRI 65 2243	+Amidei Apollinari Atac+	(CDF Collab.)
Also	91B	PR D43 2070	Abe Amidei Apollinari Atac Auchincloss+	- (CDF Collab.)
ALBAJAR	90	PL B241 283	+Albrow. Allkofer+	(UA1 Collab.)
ALITTI	90B	PL B241 150	+Ansari, Ansorge, Autiero+	(UA2 Collab.)
ALITTI	90C	ZPHY C47 11	+Ansari, Ansorge, Bagnaia+	(UA2 Collab.)
ABE	891	PRL 62 1005	+Amidei, Apollinari, Ascoli, Atac+	(CDF Collab.)
ALBAJAR	89	ZPHY C44 15	+Albrow, Allkofer, Arnison, Astbury+	(UA1 Collab.)
BAUR	88	NP B308 127	+Zeppenfeld	(FSU, WISC)
GRIFOLS	88	IJMP A3 225	+Peris, Sola	(BARC, DESY)
Also	87	PL B197 437	Grifols, Peris, Sola	(BARC, DESY)
ALBAJAR	87	PL B185 233	+Albrow, Allkofer, Arnison, Astbury+	(UA1 Collab.)
ANSARI	87	PL B186 440	+Bagnaia, Banner, Battiston+	(UA2 Collab.)
ANSARI	87C	PL B194 158	+Bagnaia, Banner, Battiston+	(UA2 Collab.)
GROTCH	87	PR D36 2153	+Robinett	(PSU)
HAGIWARA	87	NP B282 253	+Peccei, Zeppenfeld, Hikasa (KEk	K, UCLA, FSU)
VANDERBIJ	87	PR D35 1088	van der Bij	(FNAL)
APPEL	86	ZPHY C30 1	+Bagnaia, Banner, Battiston+	(UA2 Collab.)
ARNISON	86	PL 166B 484	+Albrow, Allkofer, Astbury+	(UA1 Collab.) J
ALTARELLI	85B	ZPHY C27 617	+Ellis, Martinelli (CERN,	FNAL, FRAS)
GRAU	85	PL 154B 283	+Grifols	(BARC)
SUZUKI	85	PL 153B 289		(LBL)
ARNISON	84D	PL 134B 469	+Astbury, Aubert, Bacci+	(UA1 Collab.)
HERZOG	84	PL 148B 355		(WISC)
Also	84B	PL 155B 468 erratum	Herzog	(WISC)
ARNISON	83	PL 122B 103	+Astbury, Aubert, Bacci+	(UA1 Collab.)
BANNER	83B	PL 122B 476	+Battiston, Bloch, Bonaudi+	(UA2 Collab.)