

Sr-90 Contamination at INTEC

June 2006

Jeffrey Forbes - CWI

INTEC

INTEC Historical Information* (formerly Idaho Chemical Processing Plant)

- Reprocessed SNF to recover U-235 from 1953 to 1992
- Total of ~31,000 kg U-235 recovered
- Acidic HLLW stored in 300,000 gal underground stainless steel tanks
- ~8M gal HLLW converted to ~3,800 m³ calcined solids (7-fold volume reduction)
- Calcined solids stored in stainless steel bins
- INTEC was first to:
 - Reprocess highly-enriched SNF and breeder reactor fuels
 - Reprocess zirconium clad fuels (hydrofluoric acid)
 - Reprocess stainless-steel clad fuels (electrolytic)
 - Perform production-scale calcination of HLLW
 - ³ *Source: Knecht et al., RadWaste, May 1997

INTEC Subsurface Hydrogeologic Conceptual Model

Former Injection Well History

- 1951: Injection well installed (Depth = 600 ft; water level = 450 ft)
- 1953 1984: Received ~1 MGD (average) ICPP service wastewater
- Primary radionuclides sent to injection well:
 - Tritium (~21,300 Ci, or 96% of total activity)
 - Cs-137 (20 Ci)
 - Sr-90 (16 Ci)
 - Tc-99 (~12 Ci estimate)
 - I-129 (<1 Ci)
- 1984: Taken out of routine service (Percolation Ponds in service)
- 1989: Injection well plugged and abandoned by pressure grouting

Tank Farm Historical Release Sites

CH2M+WG

Tank Farm Underground Tank Construction

Construction of monolithic octagonal vault for 300,000 gal underground tank.

Interior of typical 300,000-gal stainless steel tank showing cooling coils

OU 3-14 COC Source Term Summary

	Tank Farm	Former	Former	Other	Other	
	Soil Releases	Injection	Percolation	Soil	Liquid	
Radionuclide	(Ci)	Well (Ci)	Ponds (Ci)	Releases	Releases	Total (Ci)
Tritium	9.7	20,100	999	0	378	21,487
Sr-90	18,100	24.3	0.30	918	309	19,352
Tc-99	3.6	11.9	1.1	0.09	0	17
I-129	0.001	0.86	0.08	0	0	0.94
U-234	0.14	0.14	0.04	0.14	0	0.45
Np-237	0.03	1.1	0	0.13	0	1.23
Pu-239	6.9	0.014	0.001	1.1	0	8.0
Pu-240	1.07	0.007	0.001	0.12	0	1.2

Source: OU 3-14 RI/BRA, Table 8-1.

Note: In 2005, groundwater exceeded safe drinking water standards for Sr-90, Tc-99, I-129, and nitrate. Modeling predicts that Sr-90 is the only COC that will still exceed its MCL in the compliance year 2095.

Subsurface Conceptual Model

CH2M+WG

IDAHO, LLC

Snake River Plain Aquifer at INTEC

- Depth to Water: ~460 feet
- Aquifer matrix: fractured basalt
- Flow Direction: south to southwest
- Flow velocity: ~5 feet per day
- Exceeds drinking water standards in 2005 at or near INTEC for:
 - Sr-90 (≤ 35 pCi/L; MCL = 8 pCi/L)
 - Tc-99 (≤ 2,700 pCi/L; MCL = 900 pCi/L)
 - I-129 (≤ 1.5 pCi/L; MCL = 1 pCi/L)
 - Nitrate (\leq 11 mg/L as N; MCL = 10 mg/L)

Shallow Perched Water at INTEC

CH2M+WG

- Depth: 100 to 140 feet below ground surface
- Perched water at sedimentary interbeds between basalt flows
- Perched water volume: 5 to 20 million gal (varies seasonally)
- Perched water recharge sources:
 - Precipitation infiltration

- Big Lost River infiltration (when flowing)
- Clean water discharges & leaks
- Contains high concentrations of Sr-90 (>100,000 pCi/L)
- Shallow perched water has persisted during drought 2000-2005
- Contaminated shallow perched water continues to move downward, but Sr-90 impacts from the shallow perched water have not yet been observed in the aquifer

Lateral Extent of Northern Shallow Perched Water in 2005

Idaho Cleanup Project

CH2M+WG

Upper Shallow Perched Water Level Contours – 5/16/05

Idaho Cleanup Project

Upper Shallow Perched Water Level Visualization

Idaho Cleanup Project

CH2M+WG

Sr-90 in Shallow Perched Water - 2005

Idaho Cleanup Project

Sr-90 Trends in Selected Shallow Perched Monitoring Wells

19

IDAHO, LLC

Perched Water Remedial Activities Completed

- Old percolation ponds taken out of service 8/26/02
- Sewage effluent re-directed to new percolation ponds 12/02/04
- Concrete-lined ditches installed around Tank Farm (2003-04)
- Lined evaporation pond installed in 2003
- Subsurface injection of steam condensate has been reduced
- Lawn irrigation reduced
- Several underground water line leaks located/repaired 2004-05
- Performed INTEC water balance (2005)
- Monthly perched water-level monitoring
- Annual perched water sampling

Hydrographs for Selected Shallow Perched Wells

Sr-90 Trends in the Aquifer

(MCL is 8 pCi/L)

USGS-112

Idaho Cleanup Project

Summary

- Former INTEC injection well (1953-1984) was an early source of radionuclides to the aquifer (Sr-90, Cs-137, Tc-99, I-129, tritium), but plume from this source is shrinking
- Past releases of radionuclides beneath the tank farm have impacted the vadose zone and perched water with Sr-90 & Cs-137, and the aquifer with Tc-99 and nitrate. Sr-90 from this source has not yet reached the aquifer.
- The big question: Will the large VZ inventory of Sr-90 decay away before it reaches the aquifer?

